
ON-LINE APPENDIX
MR Imaging Acquisition
All MR images were acquired in axial sections with a 1.5T or 3T

scanner. We acquired the following imaging sequences and pa-

rameters: T1-weighted postcontrast images were a spin-echo se-

quence with the following range of parameters—section thick-

ness � 3.0 –5.0 mm, TR � 400 –750 ms, TE � 2.45–17 ms, flip

angle � 90°. FLAIR images were acquired with inversion recovery

turbo spin-echo with the following ranges of parameters: section

thickness � 3.0 –5.0 mm, TE � 109 –129 ms, TR � 9000 ms, flip

angle � 150°. Similarly, T2-weighted MR images were acquired

with turbo spin-echo: section thickness � 3.0 –5.0 mm, TE � 100

ms, TR � 4000 ms, flip angle � 150°.

Preprocessing of MR Imaging Sequences
For every patient study, all the available MR imaging protocols

(T1WI, T2WI, FLAIR) were coregistered with reference to T1-

weighted MR imaging by using 3D affine registration with a 12-df

encoding rotation, translation, sheer, and scale via 3D Slicer. To

account for resolution variability, during registration, we resa-

mpled every MR imaging section to a uniform pixel spacing of

0.5 � 0.5 mm2 and we interpolated every MR imaging volume to

3-mm section thickness. We then corrected every study for inten-

sity nonstandardness. “Intensity nonstandardness” refers to the

inherent signal intensity drift between different MR imaging ac-

quisitions due to which image intensities do not have a fixed tis-

sue-specific numeric meaning, even within the same protocol for

the same body region or for images of the same patient obtained

on the same scanner.1 Correction for intensity nonstandardness

was implemented by using the approach described by Madab-

hushi and Udupa1 and implemented in Matlab R2014b (Math-

Works) (On-line Fig 2). Additional preprocessing involved skull

stripping and bias field correction. Skull stripping was performed

via an open-source automated BrainSuite tool (http://brainsuite.

org), while bias field artifacts were corrected for with the popular

N3 algorithm.2

Description of Texture Features

Haralick Texture Features. Haralick features are based on quan-

tifying the spatial gray-level co-occurrence within local neighbor-

hoods around each pixel in an image, stored in the form of ma-

trices. Thirteen Haralick texture descriptors were calculated from

every lesion for every sequence by computing the median of the

statistics derived from the corresponding co-occurrence matrices.

Laws Texture Features. Laws features use 5 � 5 separable masks

that are symmetric or antisymmetric to extract level, edge, spot,

wave, and ripple patterns on an image.3 The convolution of these

masks with every image resulted in 25 distinct Laws features for

each image for every MR imaging sequence.

Laplacian Pyramids. Laplacian pyramids allow capturing multi-

scale edge representations via a set of bandpass filters.4,5 First, the

original image is convolved with a Gaussian kernel. The Laplacian

is then computed as the difference between the original image and

the low-pass-filtered image. The resulting image is then sub-

sampled by a factor of 2, and the filter subsample operation is

repeated recursively. This process is continued to obtain a set of

bandpass-filtered images (because each is the difference between

2 levels of the Gaussian pyramid). Twenty-four filtered image

representations are obtained from every lesion for every MR im-

aging sequence by computing the median of feature values across

all pixels within a lesion.

Histogram of Gradient Orientations. For every pixel c on an im-

age, gradients along the X and Y direction are computed as �X

and �Y.5,6 The gradient orientation is then computed as �(c) �

tan�1(�Y/�X). After one obtains the gradient orientation at every

pixel, within the segmented lesion, the pixels are binned into a

histogram, spanning 0°–360°. The entire histogram is binned

in 20 bins, with each bin spanning 18°. The feature vector

consists of binned histogram values in the form of vectors of

20 � 1 in length.
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On-line Table 2: Top 5 features identified on the training cohort by mRmR feature-selection scheme across T1WI, T2WI, and FLAIR
sequences on primary and metastatic brain tumor subgroups

Sequence and Primary Brain Tumor Subset: Energy Metastatic Brain Tumor Subset: Correlation
Gd-T1WI

Gabor, � � 22.5, � � 4 Information measure of correlation
Laws, E5L5 Difference variance (Laplace)
Information measure of correlation Laws, S5E5
Inertia Gabor, � � 45, � � 2

T2WI
Correlation (Laplace) Correlation (Laplace)
Laws, L5E5 Difference variance
Laws, L5E5 (Laplace) Laws, R5R5
Information measure of correlation Laws, L5E5
Laws, E5E5 Laws, R5R5 (Laplace)

FLAIR
Laws, L5E5 (Laplace) Sum average (Laplace)
Information measure of correlation Information measure of correlation
Laws, E5E5 Laws, L5S5
Correlation (Laplace) Haralick, difference variance
Energy (Laplace) Correlation

On-line Table 3: Ground truth as established from pathologic findings, classifier results, and independent assessment of 2 expert
neuroradiologists on 15 studies (11 primary and 4 metastatic) in the holdout seta

Subgroup and
Study No. Pathologist Confirmation

Radiomics
Consensus

Radiologist 1/Confidence
Score (Range, 0.5–1)

Radiologist 2/Confidence
Score (Range, 0.5–1)

Primary brain tumor
studies

1 Recurrence Recurrence RN (0.6) RN (0.7)
2 RN RN Recurrence (0.6) Unclear (leaning toward RN) (0.5)
3 Recurrence Recurrence RN (0.6) RN (0.8)
4 RN (30%), recurrent tumor (30%),b

treated as recurrence
Recurrence Recurrence (0.6) Recurrence (0.9)

5 Recurrence Recurrence Recurrence (0.7) Recurrence (1)
6 Recurrence Recurrence RN (0.6) RN (0.6)
7 RN (75%), tumor recurrence

(25%),b clinically treated as
recurrence

Recurrence RN (0.8) RN (0.8)

8 Recurrence Recurrence RN (0.6) RN (0.8)
9 Recurrence Recurrence RN (0.7) Recurrence (0.7)
10 Recurrence RN Unclear (0.5) Recurrence (0.6)
11 Recurrence Recurrence Recurrence (1) RN (0.6)

Metastatic brain
tumor studies

1 RN Recurrence RN (0.9) RN (0.7)
2 RN (60%), viable metastatic tumor

(40%),b clinically treated as tumor
recurrence

Recurrence Recurrence (1) Unclear (leaning more towards
tumor) (0.5)

3 Recurrence Recurrence RN (0.8) RN (0.7)
4 RN (50%) and reactive gliosis,

negative for viable neoplastic
cellsb

Recurrence Unclear (0.5) Recurrence (0.7)

a The confidence scores range between 0.5 and 1 (in increments of 0.1) and denote the confidence that the expert reader had in assigning a case as RN or tumor recurrence.
Confidence of 0.5 denotes that the expert was unclear as to the diagnosis based just on the routine MRI scans, while a confidence of 1 denotes that the expert was completely
confident in his or her diagnosis for RN or tumor recurrence.
b Cases that had mixed characteristics of both RN and tumor recurrence as found in the pathology report.

AJNR Am J Neuroradiol ●:● ● 2016 www.ajnr.org E3



ON-LINE FIG 1. A and C, Two MR images from 2 different patient studies. The corresponding segmentations are shown in B and D, where red
denotes automated segmentation and green denotes manual segmentation. E, Box-and-whisker plots for the top FLAIR feature obtained for
automatic and manual segmentation for 5 randomly selected studies from the primary brain tumor recurrence subgroup. The differences in
feature values obtained from automatic and manual segmentation were found to be statistically insignificant.

ON-LINE FIG 2. Illustration of intensity drift between the training (red) cohort obtained from the local institution and the holdout (blue) cohort
obtained from the collaborating institution for Gd-T1-weighted MR imaging by plotting the distributions of different patient studies along the
same axis. Note that after intensity standardization, the distributions across studies from different institutions are no longer misaligned; this
outcome suggests successful correction of the drift artifacts.

E4 Tiwari ● 2016 www.ajnr.org



ON-LINE FIG 3. A representative FLAIR section for RN (A) and tumor recurrence (E) is shown for 2 different metastatic brain tumor studies. B and
F show the original FLAIR images corresponding to RN (A) and tumor recurrence (E), respectively. C, D, G, and H, The top 2 textures corresponding
to RN (A) and tumor recurrence (E), respectively. Red represents a high feature value, while blue represents a low feature value for a given pixel.
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