On-line Table: Details of included MRI studies, scanned at >35 weeks' postmenstrual age

MRI Modality		Population	Timing of MRI (wk)	Main Findings
Structural conventional	Sie et al ⁵²	43 Infants <37 wks	36	Severe WM abnormalities had a PPV of 85%–100% for PDI $^{\rm a}$ $<$ 70 a
	Skiöld et al ⁴²	117 Infants <27 wks	38–41	18 mos and 100% PPV for the development of CP Moderate/severe WM abnormalities were related to
		12416	27	neurodevelopment ^a at 30 mos; PPV for the development of CP was 50%; patients with DEHSI had normal outcome ^a
	Jeon et al ¹⁰	126 Infants <32 wks	37	Cystic PVL and PWML were significantly related to CP; DEHSI was not related to adverse neurodevelopment ^a at 24 mos
	lwata et al ⁵⁹	76 Infants <32 wks	38–42	WM injury predicted low full-scale IQ (OR, 8.3), CP (OR, 10.0), and requirements for special assistance at school (OR, 7.0) at 9 yrs; DEHSI and GM abnormalities were not associated with impaired outcome
	Woodward et al ⁵⁷	110 Infants <32 wks	Term	Extent of WM abnormalities were significantly related to executive-function ability at 4 yrs
	Spittle et al ⁴⁵	227 Infants <30 wks	38–42	Severity of WM abnormalities was related to proportion of severe motor impairment at 5 yrs; mild WM abnormalities had an OR of 5.6 for severe motor impairment
	Kidokoro et al ⁶³	160 Infants <30 wks	40	DEHSI was not related to neurodevelopmental outcome ^a at 24 mos
	Hart et al ⁵¹	67 Infants <35 wks	37–44	Overt abnormalities were related to neurodevelopmental outcome ^a at 18 mos; DEHSI was not related to abnormal outcome
	de Bruïne et al ⁶²	110 Infants <32 wks	40–44	PWML (OR, 18.38) and ventricular dilation (OR, 4.57) predicted motor delay at 24 mos; PWML was also related to MDI ^a at 24 mos; DEHSI was not related to abnormal outcome
	Munck et al ⁵³	180 Infants <1500 g	Term	Major cerebral abnormalities were significantly correlated to decreased outcome ^a at 24 mos
	De Vries et al ⁶⁷	12 Infants <36 wks	40	Asymmetric PLIC caused by venous infarction predicted future hemiplegia
	Lind et al ⁶⁹	5 Infants <1500 g	Term	Caudothalamic cysts were not correlated to neurodevelopmenta outcome ^a at 24 mos or intelligence at 5 yrs
	Hnatyszyn et al ⁴³	23 Infants <36 wks	38–40	Asphyxiated brain injury was correlated to the development of CP at 24 mos
	Clark and Woodward ⁵⁸	103 Infants <33 wks	40	Severity of brain injury (WM > GM) was strongly related to working memory at 6 yrs
	Spittle et al ⁵⁵	188 Infants <30 wks	38–42	WM abnormalities were associated with lower social-emotional competence at 24 mos
	Spittle et al ⁴⁴	86 Infants <30 wks	38–44	WM abnormalities were associated with motor outcome at 12 mos
	Brown et al ⁴⁷	168 Infants <30 wks	38–42	WM and GM abnormalities were correlated strongly to neurobehavioral performance at term age
	Spittle et al ⁹	86 Infants <30 wks	38–44	Severity of WM abnormalities was related to abnormal general movement at 1 and 3 mos
	Reidy et al ⁶⁰ Edgin et al ⁵⁶	198 Infants <30 wks 100 Infants <33 wks	Term 39–41	WM abnormalities predicted several language abilities at 7 yrs Mild and moderate/severe WM abnormalities were correlated to
	Nanba et al ⁴⁶	289 Infants <34 wks	36–43	lower executive-functioning performance at 2 and 4 yrs PWML in the corona radiata above the PLIC were correlated to
	lwata et al ⁶¹	210 Infants <36 wks	Term	gross motor functions at 3–5 yrs Subtle WM injury was significantly related to full-scale IQ at
	Woodward et al ¹⁵	167 Infants <30 wks	38–42	6 yrs Increasing severity of WM abnormalities was associated with lower outcome ^a at 24 mos
	Mirmiran et al ¹⁶	61 Infants < 30 wks	36–40	PPV of brain lesions was 60% for the development of CP at 31 mos
	Valkama et al ¹⁷	50 Infants <34 wks	39	Parenchymal lesions predicted CP at 18 mos; sensitivity, 82%; specificity, 97%
	Aida et al ⁴⁸	15 Infants <33 wks	35–45	Parenchymal lesions predicted CP at 12 mos
DTI	van Kooij et al ⁷²	64 Infants <31 wks	40–45	At 24 mos, PDI ^a was correlated to FA in the CC; fine-motor performance, a to FA in the major WM tracts; and gross motor
	van Kooij et al ⁷⁴	69 Infants <31 wks	40–45	performance, a to FA in the PLIC, fornix, and thalamus At 24 mos, PDI was correlated to volume and length of the CC and right PLIC in girls; fine-motor performance was correlated to volume and FA of the left PLIC in boys
	Kaukola et al ⁷⁷	30 Infants <32 wks	38–42	Higher ADC in the corona radiata was associated with poorer gross-motor outcome ^b at 24 mos

On-line Table: (Continued)

MRI Modality		Population	Timing of MRI (wk)	Main Findings
DTI	Rose et al ⁷⁸	78 Infants <32 wks	33–42	Neurodevelopmental outcome at 18 mos ^a was correlated to FA of the right PLIC
	Bassi et al ⁸⁰	37 Infants <33 wks	39–43	FA of the optic radiation was correlated with visual function at term-equivalent age
	Krishnan et al ⁷³	38 Infants <34 wks	38–44	Without focal brain injury, lower ADC in the WM was correlated to developmental outcome ^b at 24 mos
	Arzoumanian et al ⁷⁹	63 Infants <34 wks	34–42	FA in the PLIC was reduced in infants with abnormal neurologic examination findings at 24 mos
	Rogers et al ⁷⁵	111 Infants <30 wks	37–43	Higher ADC in the orbitofrontal cortex was correlated to social- emotional problems at 5 yrs
Volumetric	Boardman et al ⁷⁶	80 Infants ≤34 wks	38–44	Decreased development ^b was associated with decreased tissue reduction of WM and deep GM
	Jary et al ⁶⁶	25 Infants <30 wks	38–47	In infants with PHVD, total cerebral volume was correlated to MDI ^a and PDI ^a at 24 mos; thalamic and cerebellar volume were correlated to PDI ^a
	Tich et al ⁹⁷	182 Infants < 30 wks	40	Biparietal diameter was correlated to neurodevelopmental outcome ^a at 24 mos
	Maunu et al ⁹⁶	225 Infants <1500 g	Term	Ventricular dilation with additional brain pathology was associated with CP and outcome ^a at 24 mos
	Lind et al ⁸⁶	164 Infants <1500 g	Term	PDI ^a and MDI ^a scores at 24 mos <70 was associated with larger ventricles and lower volume of cerebrum, cerebellum, frontal lobe, basal ganglia, and thalamus
	Spittle et al ⁹⁸	83 Infants <30 wks	38–40	Reduced cerebellar diameter was correlated to abnormal general movement at 3 mos
	Lind et al ⁸⁷	97 Infants <1500 g	Term	Reduced cerebellar volume was associated with poorer executive functions and motor skills at 5 yrs
	Thompson et al ⁹³	184 Infants <30 wks	38–42	Reduced hippocampal volume was related to
	T	(F. Informer < 20l.)	40 43	neurodevelopmental outcome ^a at 24 mos
	Tan et al ⁸⁵ Beauchamp et al ⁹⁴	65 Infants <29 wks 156 Infants <30 wks	40–43 38–42	Total brain volume was correlated to MDI ^a at 9 mos Reduced hippocampal volume was related to working memory deficits at 24 mos
	Shah et al ⁹²	68 Infants <33 wks	Term	Inferior occipital brain regions were correlated to impaired oculomotor-function control at 24 mos
	Shah et al ⁸⁸	83 Infants <32 wks	38–43	Reduced cerebellar volume was associated with WM injury and outcome ^a at 24 mos
	Woodward et al ⁵⁴	92 Infants <32 wks	39–41	After correcting for WM injury, total brain volume was correlated to object working memory at 24 mos
	Inder et al ²⁸	119 Infants <33 wks	39–41	Decreased cortical and deep GM volumes and increased CSF volumes were correlated to neurodevelopmental disability at 12 mos
	Peterson et al ⁹⁰	10 Infants <37 wks	35	Sensorimotor and midtemporal WM volumes were correlated strongly with outcome ^a at 20 mos
	Valkama et al ⁹⁵	51 Infants <34 wks	Term	Reduced brain stem volume was associated with neurosensory disability at 18 mos
¹ H-MRS	Gadin et al ⁹¹	38 Infants <30 wks	36	Decreased subcortical GM was associated with low PDI ^a at 6 mos; MRS measurements did not correlate with
	van Kooij et al ⁸⁹	112 Infants <31 wks	39–45	neurodevelopmental outcome ^a Cerebellar volume and cerebellar NAA/Cho ratio were positively correlated to MDI ^a at 24 mos

Note:—PHVD indicates posthemorrhagic ventricular dilation; CP, cerebral palsy; OR, odds ratio; PPV, positive predictive value; CC, corpus callosum; GM, gray matter; PDI, Psychomotor Development Index; MDI, Mental Development Index; PVL, periventricular leukomalacia.

^a Bayley Scales of Infant Development.

^b Griffiths Mental Developmental Scales.