On-line Table: Details of included MRI studies, scanned at >35 weeks' postmenstrual age | MRI Modality | | Population | Timing of MRI (wk) | Main Findings | |-------------------------|--|--|--------------------|--| | Structural conventional | Sie et al ⁵² | 43 Infants <37 wks | 36 | Severe WM abnormalities had a PPV of 85%–100% for PDI $^{\rm a}$ $<$ 70 a | | | Skiöld et al ⁴² | 117 Infants <27 wks | 38–41 | 18 mos and 100% PPV for the development of CP
Moderate/severe WM abnormalities were related to | | | | 12416 | 27 | neurodevelopment ^a at 30 mos; PPV for the development of CP was 50%; patients with DEHSI had normal outcome ^a | | | Jeon et al ¹⁰ | 126 Infants <32 wks | 37 | Cystic PVL and PWML were significantly related to CP; DEHSI was
not related to adverse neurodevelopment ^a at 24 mos | | | lwata et al ⁵⁹ | 76 Infants <32 wks | 38–42 | WM injury predicted low full-scale IQ (OR, 8.3), CP (OR, 10.0), and requirements for special assistance at school (OR, 7.0) at 9 yrs; DEHSI and GM abnormalities were not associated with impaired outcome | | | Woodward et al ⁵⁷ | 110 Infants <32 wks | Term | Extent of WM abnormalities were significantly related to executive-function ability at 4 yrs | | | Spittle et al ⁴⁵ | 227 Infants <30 wks | 38–42 | Severity of WM abnormalities was related to proportion of severe motor impairment at 5 yrs; mild WM abnormalities had an OR of 5.6 for severe motor impairment | | | Kidokoro et al ⁶³ | 160 Infants <30 wks | 40 | DEHSI was not related to neurodevelopmental outcome ^a at 24 mos | | | Hart et al ⁵¹ | 67 Infants <35 wks | 37–44 | Overt abnormalities were related to neurodevelopmental outcome ^a at 18 mos; DEHSI was not related to abnormal outcome | | | de Bruïne et al ⁶² | 110 Infants <32 wks | 40–44 | PWML (OR, 18.38) and ventricular dilation (OR, 4.57) predicted
motor delay at 24 mos; PWML was also related to MDI ^a at 24
mos; DEHSI was not related to abnormal outcome | | | Munck et al ⁵³ | 180 Infants <1500 g | Term | Major cerebral abnormalities were significantly correlated to decreased outcome ^a at 24 mos | | | De Vries et al ⁶⁷ | 12 Infants <36 wks | 40 | Asymmetric PLIC caused by venous infarction predicted future
hemiplegia | | | Lind et al ⁶⁹ | 5 Infants <1500 g | Term | Caudothalamic cysts were not correlated to neurodevelopmenta outcome ^a at 24 mos or intelligence at 5 yrs | | | Hnatyszyn et al ⁴³ | 23 Infants <36 wks | 38–40 | Asphyxiated brain injury was correlated to the development of CP at 24 mos | | | Clark and
Woodward ⁵⁸ | 103 Infants <33 wks | 40 | Severity of brain injury (WM > GM) was strongly related to working memory at 6 yrs | | | Spittle et al ⁵⁵ | 188 Infants <30 wks | 38–42 | WM abnormalities were associated with lower social-emotional competence at 24 mos | | | Spittle et al ⁴⁴ | 86 Infants <30 wks | 38–44 | WM abnormalities were associated with motor outcome at 12 mos | | | Brown et al ⁴⁷ | 168 Infants <30 wks | 38–42 | WM and GM abnormalities were correlated strongly to
neurobehavioral performance at term age | | | Spittle et al ⁹ | 86 Infants <30 wks | 38–44 | Severity of WM abnormalities was related to abnormal general movement at 1 and 3 mos | | | Reidy et al ⁶⁰
Edgin et al ⁵⁶ | 198 Infants <30 wks
100 Infants <33 wks | Term
39–41 | WM abnormalities predicted several language abilities at 7 yrs
Mild and moderate/severe WM abnormalities were correlated to | | | Nanba et al ⁴⁶ | 289 Infants <34 wks | 36–43 | lower executive-functioning performance at 2 and 4 yrs PWML in the corona radiata above the PLIC were correlated to | | | lwata et al ⁶¹ | 210 Infants <36 wks | Term | gross motor functions at 3–5 yrs
Subtle WM injury was significantly related to full-scale IQ at | | | Woodward et al ¹⁵ | 167 Infants <30 wks | 38–42 | 6 yrs Increasing severity of WM abnormalities was associated with lower outcome ^a at 24 mos | | | Mirmiran et al ¹⁶ | 61 Infants < 30 wks | 36–40 | PPV of brain lesions was 60% for the development of CP at 31 mos | | | Valkama et al ¹⁷ | 50 Infants <34 wks | 39 | Parenchymal lesions predicted CP at 18 mos; sensitivity, 82%; specificity, 97% | | | Aida et al ⁴⁸ | 15 Infants <33 wks | 35–45 | Parenchymal lesions predicted CP at 12 mos | | DTI | van Kooij et al ⁷² | 64 Infants <31 wks | 40–45 | At 24 mos, PDI ^a was correlated to FA in the CC; fine-motor performance, a to FA in the major WM tracts; and gross motor | | | van Kooij et al ⁷⁴ | 69 Infants <31 wks | 40–45 | performance, a to FA in the PLIC, fornix, and thalamus At 24 mos, PDI was correlated to volume and length of the CC and right PLIC in girls; fine-motor performance was correlated to volume and FA of the left PLIC in boys | | | Kaukola et al ⁷⁷ | 30 Infants <32 wks | 38–42 | Higher ADC in the corona radiata was associated with poorer gross-motor outcome ^b at 24 mos | ## On-line Table: (Continued) | MRI Modality | | Population | Timing of MRI (wk) | Main Findings | |--------------------|--|---|--------------------|--| | DTI | Rose et al ⁷⁸ | 78 Infants <32 wks | 33–42 | Neurodevelopmental outcome at 18 mos ^a was correlated to FA of the right PLIC | | | Bassi et al ⁸⁰ | 37 Infants <33 wks | 39–43 | FA of the optic radiation was correlated with visual function at term-equivalent age | | | Krishnan et al ⁷³ | 38 Infants <34 wks | 38–44 | Without focal brain injury, lower ADC in the WM was correlated to developmental outcome ^b at 24 mos | | | Arzoumanian et al ⁷⁹ | 63 Infants <34 wks | 34–42 | FA in the PLIC was reduced in infants with abnormal neurologic examination findings at 24 mos | | | Rogers et al ⁷⁵ | 111 Infants <30 wks | 37–43 | Higher ADC in the orbitofrontal cortex was correlated to social-
emotional problems at 5 yrs | | Volumetric | Boardman et al ⁷⁶ | 80 Infants ≤34 wks | 38–44 | Decreased development ^b was associated with decreased tissue reduction of WM and deep GM | | | Jary et al ⁶⁶ | 25 Infants <30 wks | 38–47 | In infants with PHVD, total cerebral volume was correlated to MDI ^a and PDI ^a at 24 mos; thalamic and cerebellar volume were correlated to PDI ^a | | | Tich et al ⁹⁷ | 182 Infants < 30 wks | 40 | Biparietal diameter was correlated to neurodevelopmental outcome ^a at 24 mos | | | Maunu et al ⁹⁶ | 225 Infants <1500 g | Term | Ventricular dilation with additional brain pathology was
associated with CP and outcome ^a at 24 mos | | | Lind et al ⁸⁶ | 164 Infants <1500 g | Term | PDI ^a and MDI ^a scores at 24 mos <70 was associated with larger ventricles and lower volume of cerebrum, cerebellum, frontal lobe, basal ganglia, and thalamus | | | Spittle et al ⁹⁸ | 83 Infants <30 wks | 38–40 | Reduced cerebellar diameter was correlated to abnormal general movement at 3 mos | | | Lind et al ⁸⁷ | 97 Infants <1500 g | Term | Reduced cerebellar volume was associated with poorer executive functions and motor skills at 5 yrs | | | Thompson et al ⁹³ | 184 Infants <30 wks | 38–42 | Reduced hippocampal volume was related to | | | T | (F. Informer < 20l.) | 40 43 | neurodevelopmental outcome ^a at 24 mos | | | Tan et al ⁸⁵
Beauchamp et al ⁹⁴ | 65 Infants <29 wks
156 Infants <30 wks | 40–43
38–42 | Total brain volume was correlated to MDI ^a at 9 mos
Reduced hippocampal volume was related to working memory
deficits at 24 mos | | | Shah et al ⁹² | 68 Infants <33 wks | Term | Inferior occipital brain regions were correlated to impaired oculomotor-function control at 24 mos | | | Shah et al ⁸⁸ | 83 Infants <32 wks | 38–43 | Reduced cerebellar volume was associated with WM injury and outcome ^a at 24 mos | | | Woodward et al ⁵⁴ | 92 Infants <32 wks | 39–41 | After correcting for WM injury, total brain volume was correlated to object working memory at 24 mos | | | Inder et al ²⁸ | 119 Infants <33 wks | 39–41 | Decreased cortical and deep GM volumes and increased CSF volumes were correlated to neurodevelopmental disability at 12 mos | | | Peterson et al ⁹⁰ | 10 Infants <37 wks | 35 | Sensorimotor and midtemporal WM volumes were correlated strongly with outcome ^a at 20 mos | | | Valkama et al ⁹⁵ | 51 Infants <34 wks | Term | Reduced brain stem volume was associated with neurosensory disability at 18 mos | | ¹ H-MRS | Gadin et al ⁹¹ | 38 Infants <30 wks | 36 | Decreased subcortical GM was associated with low PDI ^a at 6 mos;
MRS measurements did not correlate with | | | van Kooij et al ⁸⁹ | 112 Infants <31 wks | 39–45 | neurodevelopmental outcome ^a Cerebellar volume and cerebellar NAA/Cho ratio were positively correlated to MDI ^a at 24 mos | Note:—PHVD indicates posthemorrhagic ventricular dilation; CP, cerebral palsy; OR, odds ratio; PPV, positive predictive value; CC, corpus callosum; GM, gray matter; PDI, Psychomotor Development Index; MDI, Mental Development Index; PVL, periventricular leukomalacia. ^a Bayley Scales of Infant Development. ^b Griffiths Mental Developmental Scales.