
ON-LINE APPENDIX
Voxel-Based Morphometric Analysis

Imaging Protocol. T1-weighted structural MR images were ob-

tained with the following parameters: TR � 25 ms, TE � 4.6 ms,

section thickness � 1.2 mm, no section gap, section number �

140, flip angle � 30°, and in-plane resolution � 256 � 256

(0.94 � 0.94 mm). For each subject, 1 T1-weighted structural

image was obtained on an Intera 1.5T MR scanner (Philips

Healthcare) during a single image session.

Data Preprocessing. Data preprocessing was performed by using

SPM8. First, the new-segment procedure was used to segment the

MR images into 6 partitions, including GM, WM, CSF, and 3

other background partitions based on a modified mixed-model

cluster analysis technique. The new segment procedure is gener-

ally more robust than using the “segment” button. Next, GM and

WM templates were generated from the entire image dataset by

using the Diffeomorphic Anatomical Registration Through Ex-

ponentiated Lie Algebra Toolbox (SPM8) technique, which

matches the GM and WM to each other.1 Finally, GM and WM

images were spatially normalized to the GM and WM templates

that were created in the second step and then were smoothed by

an isotropic Gaussian filter with a 6-mm full width at half maxi-

mum kernel. The GM and WM concentration maps were

obtained.

Statistical Analysis. The GM and WM concentration maps of the

patients and controls were used for statistical analysis. The pa-

tients and healthy subjects were compared by using the “Specify

2nd-level” routine in SPM8. Two-sample t tests were applied to

make group comparisons of the patients and healthy controls.

The findings in On-line Fig 2 were considered significant at a

voxel level of P � .001, uncorrected for multiple comparisons.

On-line Fig 2A shows the GM comparison between the pa-

tients and the controls, while On-line Fig 2B is the WM

comparison.

The most significant difference in GM between the 2 groups of

subjects is that the concentration in the right temporal lobe is

reduced and the concentration in the left temporal lobe is in-

creased in patients compared with healthy controls. The second

difference is that the concentration decreased more in the right

hemisphere than in the left hemisphere, while the concentration

increased more in the left hemisphere than in the right hemi-

sphere. The left and the right sides of the cerebellum present a

similar phenomenon. Overall, the decreased GM concentration is

more prevalent than the increased GM concentration in the pa-

tients with R-mTLE.

The WM concentration in the right temporal lobe and subcor-

tex significantly decreased; however, the WM concentration in

the left temporal lobe and subcortex slightly decreased. The WM

concentration in most parts of the cerebral cortex increased (the

WM concentration in the sensorimotor cortex and dorsal tempo-

ral cortex decreased). Overall, the WM concentration in the left

hemisphere increased more than that in the right hemisphere.

Notably, the WM concentration was not apparently reduced.

The GM and WM concentration comparison between patients

and healthy controls confirmed the fact that the influence of R-

mTLE on the human brain presents a lateralized trend—that is,

the atrophy of the GM and WM epileptogenic side of the human

brain is more serious than that on the contralateral side. The con-

tralateral side even presents increased WM concentration, which

may underpin the lateralized functional connectivity change and

support the compensatory mechanism indicated in the article.

ROI Definition for the Entire Brain
Evidence from structural MRI, DTI, and fMRI studies suggested

that mTLE is a network disease. A T1-weighted structural MRI–

based study constructed whole-brain networks by using the cor-

tical thickness; the network can be used for differentiating pa-

tients with mTLE from healthy controls with a accuracy of 93%.2

A voxel-based DTI study showed that the epileptic networks were

principally in the ipsilateral temporal lobe and the limbic system.3

Graph-theoretical analysis of the cortical thickness network re-

vealed that the small-world networks were disrupted in patients

with mTLE.4 DTI-, structural MRI-, and fMRI-combined studies

reported that the cortical atrophy and microstructural white mat-

ter impact the resting-state network in mTLE and the altered RS-

FCs were not confined to hippocampus.5

The template for ROI definition can be categorized into ana-

tomic and functional templates. It is difficult to say which kind is

more reliable and accurate. In our study, the ROIs used for time-

series extraction were defined according to a functional template

used in a previous study, which gave an estimation of the under-

lying functional area architecture.6 Our study aimed at investigat-

ing the R-mTLE from the functional integration perspective; thus,

we used the functional template.

The examined ROIs were categorized into 6 RSNs, and we

performed analyses from the perspective of functional integra-

tion. The ROIs, which facilitated network analysis, were extracted

from the previous identified functional networks: 1) the cingulo-

opercular network, which includes several regions in the anterior

prefrontal cortex, inferior parietal cortex, basal ganglia, dorsal

anterior cingulate cortex, insula, thalamus, and cerebellum; 2) the

DMN, which includes structures in the hippocampus, posterior

cingulate cortex, medial prefrontal cortex, and bilateral inferior

parietal cortex; 3) the cerebellum network, which is regarded as a

component of the cingulo-opercular network; 4) the visual net-

work, consisting of the primary visual cortex, extra striate visual

areas, the lingual gyrus, the fusiform gyrus, and the calcarine

gyrus, is involved in visual processing; 5) the sensorimotor net-

work, which includes the primary sensory cortex, primary motor

cortex, and supplementary motor cortex; and 6) the frontoparie-

tal network, consisting of the superior parietal cortex and the

superior frontal cortex, is involved in attention processing.6 Al-

though we did not implement the task-related experiment or

group-independent component analysis to validate the existing 6

RSNs, many previous studies identified these RSNs by using var-

ious method and various subjects.7-15 Furthermore, these RSNs

were believed to represent the functional network.8,9,15-19 This

template includes 160 ROIs. Each ROI was defined as a sphere

with a given center coordinate and a radius of 5 mm. The center

coordinate for the 160 ROIs is given in the On-line Table.

The center coordinates were defined as the areas of peak activ-

ity identified in 5 meta-analyses that focused on error processing,

the DMN, memory, language, and sensorimotor functions. Al-
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though these functional networks were identified in task-related

studies, they were confirmed by many previous resting-state fMRI

studies and were further used as RSNs.15,20-22 Inevitably, using

this pre-existing localization of the ROIs can produce bias for the

established function of the ROIs; however, it is one of the most

important ROI-definition methods.23

Selection of the Radius. In our study, the radius of the ROI

sphere is 5 mm. However, radii of 4 and 7.5 mm were also tried for

time-series extraction. Then the functional connectivity con-

structed by the time-series according to ROIs with radii of 4 and

7.5 mm was also used for feature selection and classification. The

classification results are shown in Fig 1 and On-line Fig 1. When

the ROI was defined as a sphere with radii of 4, 5, and 7.5 mm, the

corresponding best classification accuracies were 88.1%, 95.2%,

and 95.2%. Moreover, when the radius was 5 mm, the accuracy of

the classification was more stable. Thus, the ROI defined as a

sphere with a radius of 5 mm is reasonable.

Anatomic Template. The automatic anatomic template divided

the cerebrum into 90 regions (45 in each hemisphere, but not

including the cerebellum and brain stem).24,25 Here, a previously

defined unsampled version of the original automatic anatomic

labeling template was adopted for ROI definition, which included

600 ROIs.26 This template was created via bisecting regions of the

automatic anatomic labeling template, and the bisecting bound-

ary was perpendicular to its principal spatial axis to create 2

equally sized subregions. The larger automatic anatomic labeling

regions were unsampled more than the smaller automatic ana-

tomic labeling regions to create an atlas of roughly equally sized

regions that still obeyed gross anatomic boundaries.

Then, the whole functional connectivity was constructed on

the basis of the 600 ROIs. The procedure of feature selection and

classification detailed in the main article was then implemented.

The highest classification accuracy of 88.1% was obtained. The

221 most discriminative functional connections were then iden-

tified and projected to a surface rendering of the mean human

cerebrum, which is shown in On-line Fig 3.

The most important finding in On-line Fig 3 is that most of the

functional connections contributing to the classification are

strengthened. Specifically, the strengthened functional connec-

tions were distributed more in the left hemisphere than in the

right hemisphere, which was highly consistent with the results in

Fig 3.

Feature-Selection Strategy
The imaging neuroscience can be viewed from functional segre-

gation and functional integration perspectives.27 The structural

imaging technique preferred to focus on the functional segrega-

tion perspective. However, we paid more attention to the distrib-

uted and integrated nature of the R-mTLE. Multivariate pattern

analysis was then used to identify groups of the most discrimina-

tive functional connections between patients with R-mTLE and

healthy controls. Mass univariate methods (eg, 2-sample t test)

can effectively select the FCs whose strength changed significantly

between groups, but they selected the discriminative FCs by look-

ing at only 1 single connection at 1 time and did not consider the

interrelationship among FCs, while multivariate pattern analysis

views multiple connections as a representation of the difference

between the patients and controls.27,28 Furthermore, groups of

FCs identified by multivariate pattern analysis have more gener-

alizability than FCs selected by simple group comparison—that is,

the dysfunction in a new patient more likely occurred on the FCs

identified by the multivariate pattern analysis.

Cross-Validation and Consensus Functional Connections. Due to

our limited number of samples, we used a leave-one-out cross-

validation strategy to estimate the generalizability of the classifi-

cation algorithm. To solve the problem when samples are scarce,

M-fold cross-validation uses part of the available samples to learn

the model and the rest to test it. We split the data into M roughly

equal-sized parts. For the mth part, we learned the model for the

other M-1 parts of the data and calculated the prediction error of

the learned model when testing the mth part of the data. We did

this for m � 1, 2,…M and rearranged the FCs once for each m.

The case M � n is known as leave-one-out cross-validation, where

n is the number of samples.

Because a leave-one-out cross-validation strategy was intro-

duced to estimate the generalization ability of the classifiers (see

below) and the training dataset for feature ranking is slightly dif-

ferent in each iteration of the cross-validation, the selected fea-

tures differed slightly from iteration to iteration. Therefore, the

contribution of different regions to classification was not evenly

distributed, and some regions formed many highly discriminative

FCs with other regions, while some did not. Consensus FCs were

introduced here, which were defined as the FCs appearing in at

least 1 cross-validation iteration. The discriminative power of the

consensus FCs, representing the importance of FCs in identifica-

tion of the patients with R-mTLE, was denoted by the number of

occurrence in all the iterations of the cross-validation. The region

weight of the ROI, representing the relative contribution to the

identification of patients with R-mTLE, was denoted by accumu-

lating the discriminative power of the consensus FCs related to the

ROI.6

Univariate Feature Selection. In the main article, a multivariate

feature-selection method called “support vector machine recur-

sive feature elimination” was used to identify the most discrimi-

native functional connections. To validate the hemispheric differ-

ence of functional connectivity in R-mTLE and compare the

multivariate feature-selection method and the traditional mass

univariate feature-selection method, we also tried the 2-sample t

test method for functional connectivity selection. When 17 func-

tional connections were involved, the best classification accuracy

of 83.3% was achieved. On the basis of the leave-one-out cross-

validation, 73 consensus functional connections were identified

and projected to the surface of the human brain as shown in

On-line Fig 4.

From On-line Fig 4, we can see that the most discriminative

functional connections identified by the univariate feature-selec-

tion method (2-sample t test) present apparently hemispheric dis-

tribution—that is, the functional connections in the right hemi-

sphere were weakened, while those on the left side were

strengthened. This result is consistent with the multivariate

feature-selection result, which is shown in Fig 3. These 2 results

are strong evidence confirming the different R-mTLE-related
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changes of functional connectivity in the right and left

hemispheres.

Furthermore, the highest classification accuracy achieved by

using the functional connections identified by the 2-sample t test

is 83.3%, which is significantly lower than that obtained by using

the functional connections identified by the support vector ma-

chine recursive feature elimination. This comparison of the uni-

variate and the multivariate feature-selection methods implied

that the multivariate feature selection has an advantage over uni-

variate feature selection. The simple 2-sample t test can detect the

differences between patients and controls when the sample size is

large enough. However, a small sample size will significantly limit

its detecting power. The classification accuracy can be viewed as a

measure of the generalizability of the feature-selection method.

The classification analysis split the samples into training dataset

and testing dataset; the feature selection and classifier training

were solely implemented on the training dataset; and the testing

dataset was completely invisible for the feature selection and clas-

sifier training. In this situation, the higher classification accuracy

obtained on the testing dataset reflects the selected generalizabil-

ity of the functional connections—that is, the functional connec-

tions give higher classification accuracy reflecting the R-mTLE-

related changes in a wider population. From this point of view, the

multivariate feature selection has greater potential in dysfunction

identification than simple group comparison.

Circle Graph of the Consensus Functional Connections
There were 34 FCs in the right hemisphere; therein 29 FCs were

weakened in the patients with R-mTLE and only 5 were strength-

ened. On the other hand, there were 45 FCs in the left hemisphere,

which were all strengthened in patients with R-mTLE rather than

in healthy controls. The remaining 45 of the 124 consensus FCs all

connected 1 ROI in the left hemisphere and 1 ROI in the right

hemisphere, therein 27 FCs were weakened and 18 FCs were

strengthened.

Forty of the 124 consensus FCs were categorized as intranet-

work FCs; the remaining 84 FCs were categorized as internetwork

FCs. Sixteen of the 40 intranetwork FCs were strengthened; 24

were weakened. Fifty-two of the 84 internetwork FCs were

strengthened; 32 were weakened. Therefore, more intranetwork

FCs were weakened, while more internetwork FCs were strength-

ened in patients with R-mTLE.

For a better understanding of the inter- and intranetwork dis-

tribution of the identified most discriminative functional connec-

tions, a circle graph indicating the selected 124 consensus connec-

tion distributions and the regional weights of the related ROIs is

presented in On-line Fig 5. The region weights of the ROIs related

to the identified FCs are displayed in the On-line Table.

The Most Discriminative Functional Connections
Because the first 8 and the first 23 features are important, we

added 2 figures depicting the first 8 and first 23 features, respec-

tively. Because the leave-one-out cross-validation strategy was in-

troduced, the first 8 features in each iteration were slightly differ-

ent. Here, the combination of the first 8 features in each iteration

is shown in On-line Fig 5. The number of occurrences for the

features was termed “connection strength.” The same applies to

the first 23 features in On-line Fig 6.
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On-line Table: MNI coordinates of the ROIs and the classification
weights for the ROIs

Numeric
Label

MNI Coordinate Weight
(Normalized)X Y Z

1 6 64 3 0.03
2 29 57 18 0
3 �29 57 10 0.02
4 0 51 32 0.28
5 �25 51 27 0.76
6 9 51 16 0
7 �6 50 �1 0.07
8 27 49 26 0.21
9 42 48 �3 0.13

10 �43 47 2 0
11 �11 45 17 0.45
12 39 42 16 0
13 8 42 �5 0.03
14 9 39 20 0.01
15 46 39 �15 0
16 40 36 29 0
17 23 33 47 0
18 34 32 7 0.24
19 �2 30 27 0.04
20 �16 29 54 0.06
21 �1 28 40 0
22 46 28 31 0
23 �52 28 17 0.01
24 �44 27 33 0.83
25 51 23 8 0.10
26 38 21 �1 0
27 9 20 34 0.11
28 �36 18 2 0.07
29 40 17 40 0.0
30 �6 17 34 0.40
31 0 15 45 0.02
32 58 11 14 0.20
33 �46 10 14 0.20
34 44 8 34 0
35 60 8 34 0
36 �42 7 36 0.20
37 �55 7 23 0.13
38 �20 6 7 0
39 14 6 7 0.27
40 �48 6 1 0.45
41 10 5 51 0.02
42 43 1 12 0.01
43 0 �1 52 0.28
44 37 �2 �3 0.06
45 53 �3 32 0.37
46 58 �3 17 0
47 �12 �3 13 0.23
48 �42 �3 11 0
49 �44 �6 49 1
50 �26 �8 54 0.21
51 46 �8 24 0.40
52 �54 �9 23 0
53 44 �11 38 0
54 �47 �12 36 0.35
55 33 �12 16 0
56 �36 �12 15 0
57 �12 �12 6 0.02
58 11 �12 6 0
59 32 �12 2 0.17
60 59 �13 8 0
61 �30 �14 1 0
62 �38 �15 59 0.33
63 52 �15 �13 0.08

Continued on next column

On-line Table: Continued

Numeric
Label

MNI Coordinate Weight
(Normalized)X Y Z

64 �47 �18 50 0.05
65 46 �20 45 0.05
66 �55 �22 38 0.19
67 �54 �22 22 0.08
68 �54 �22 9 0.04
69 41 �23 55 0
70 42 �24 17 0.08
71 11 �24 2 0
72 �59 �25 �15 0
73 1 �26 31 0.43
74 18 �27 62 0
75 �38 �27 60 0.71
76 �30 �28 9 0
77 �24 �30 64 0.34
78 51 �30 5 0
79 �41 �31 48 0
80 �4 �31 �4 0
81 54 �31 �18 0
82 �41 �37 16 0
83 �53 �37 13 0.02
84 28 �37 �15 0.68
85 �3 �38 45 0
86 34 �39 65 0
87 8 �40 50 0.01
88 �41 �40 42 0
89 58 �41 20 0
90 �8 �41 3 0.16
91 �61 �41 �2 0.04
92 �28 �42 �11 0.08
93 �5 �43 25 0
94 9 �43 25 0
95 43 �43 8 0.35
96 54 �44 43 0.05
97 �55 �44 30 0.01
98 �28 �44 �25 0
99 �35 �46 48 0

100 42 �46 21 0
101 �48 �47 49 0.07
102 �41 �47 29 0
103 �59 �47 11 0.30
104 �53 �50 39 0
105 5 �50 33 0
106 �18 �50 1 0.06
107 44 �52 47 0
108 �5 �52 17 0
109 �24 �54 �21 0
110 �37 �54 �37 0
111 10 �55 17 0.13
112 �6 �56 29 0.02
113 �34 �57 �24 0.19
114 �32 �58 46 0
115 �11 �58 17 0
116 32 �59 41 0.08
117 51 �59 34 0.30
118 �34 �60 �5 0
119 36 �60 �8 0.03
120 �6 �60 �15 0
121 �25 �60 �34 0
122 32 �61 �31 0
123 46 �62 5 0.03
124 �48 �63 35 0
125 �52 �63 15 0.01
126 �44 �63 �7 0

Continued on next page
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On-line Table: Continued

Numeric
Label

MNI Coordinate Weight
(Normalized)X Y Z

127 �16 �64 �21 0.03
128 21 �64 �22 0.19
129 19 �66 �1 0.01
130 1 �66 �24 0.04
131 �34 �67 �29 0
132 11 �68 42 0.01
133 17 �68 20 0.03
134 �36 �69 40 0
135 39 �71 13 0
136 �9 �72 41 0
137 45 �72 29 0
138 �11 �72 �14 0
139 29 �73 29 0.04
140 33 �73 �30 0.33
141 �2 �75 32 0
142 �29 �75 28 0
143 5 �75 �11 0
144 14 �75 �21 0.04
145 �16 �76 33 0
146 �42 �76 26 0.13
147 9 �76 14 0.02
148 15 �77 32 0
149 20 �78 �2 0
150 �21 �79 �33 0.29
151 �6 �79 �33 0
152 �5 �80 9 0
153 29 �81 14 0.34
154 33 �81 �2 0.08
155 18 �81 �33 0.07
156 �37 �83 �2 0
157 �29 �88 8 0.01
158 13 �91 2 0
159 27 �91 2 0
160 �4 �94 12 0

Note:—MNI indicates Montreal Neurological Institute.
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ON-LINE FIG 1. Classification results for patients with R-mTLE and healthy controls by using the ROI with radii of 4 (A) and 7.5 mm (B). The x-axis
indicates the number of connections involved in the classification; the y-axis indicates classification accuracy (as represented by the general-
ization rate). The subplot illustrates the prediction results of all the subjects with the highest accuracy.

ON-LINE FIG 2. A T-map for group comparison of the GM and WM between the patients with R-mTLE and healthy controls. A, The 2-sample
t test of the GM map for patients with R-mTLE and the healthy controls. B, The 2-sample t test of the WM map for patients with R-mTLE and
the healthy controls. The color bar represents the T-value of the comparison.
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ON-LINE FIG 3. Region weights and connection strengths by using the anatomic template with 600 ROIs. The connections are displayed in a
surface rendering of a human brain. The thicknesses of the consensus connections in the leave-one-out cross-validation are scaled by their
strengths (which were the normalized occurrences of the first 221 connections during all iterations of the leave-one-out cross-validation).
Connections with greater strengths in patients with R-mTLE than in controls are displayed in red, and connections with lower strengths in
patients with R-mTLE than in controls are depicted in green. The ROIs related to the selected consensus connections are also scaled by their
weights (calculated as the sum of the weights of all connections to and from the ROI of interest) and are displayed. The ROIs are color-coded
the same manner as in Figs 3 and 4. The numeric labels for the ROIs in this figure are provided in the On-line Table.
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ON-LINE FIG 4. Region weights and connection strengths given by the 2-sample t test. The connections are displayed in a surface rendering of
a human brain. The thicknesses of the consensus connections in the leave-one-out cross-validation are scaled by their strengths (which were the
normalized occurrences of the first 17 connections during all iterations of the leave-one-out cross-validation). Connections with greater
strengths in patients with R-mTLE than in controls are displayed in orange; connections with lower strengths in patients with R-mTLE than in
controls are depicted in light blue. The ROIs related to the selected consensus connections are also scaled by their weights (calculated as the
sum of the weights of all connections to and from the ROI) and are displayed. The ROIs are color-coded in the same manner as in Figs 3 and 4.
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ON-LINE FIG 5. Circle graph indicating the selected consensus connection distribution and the regional weights of related ROIs. The names of
the ROIs are color-coded by using the coding scheme in Figs 3 and 4. The cyan lines represent connections that were weakened in patients with
R-mTLE, and the red lines represent connections that were strengthened in patients with R-mTLE. The numeric labels for the ROIs in this figure
are provided in the On-line Table.
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ON-LINE FIG 6. The first 8 most discriminative functional connections. The ROIs are color-coded in the same manner as in Figs 3 and 4.
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