Integration of risk survival measures estimated from pre- and post-treatment CT scans

improves stratification of early stage non-small cell lung cancer patients treated with

stereotactic body radiation therapy

Supplementary data

1. Radiomics features

Imaging data used for extracting radiomics features consists of both original CT scans and data generated from wavelet decomposition of them. In this study, we applied a one-level, discrete, and undecimated three-dimensional wavelet transform to each CT image, which decomposes the original image into 8 decompositions. According to the low pass (*L*) or high pass (*H*) wavelet function in each dimension, the decomposed data sequences are labeled as *LLL*, *LLH*, *LHL*, *HLL*, *HHL*, *LHH*, *HLH*, and *HHH*. We totally defined 680 radiomics features to characterize the tumor properties of one patient, and these features can be categorized as *shape features*, *first-order features*, *gray level co-occurrence matrix* (GLCM) *features*, *gray level size zone matrix* (GLSZM) *features*, and *gray level run length matrix* (GLRLM) *features*. Specifically, the *shape features* are shared across all the 9 sequences (1 original sequence and 8 decomposed sequences), while the *first-order features*, GLCM, GLSZM, and GLRLM separately calculated from each of the 9 sequences. Detailed names of all the calculated radiomics features are summarized in Supplementary Table 1.

Supplementary Table 1. Detailed names of radiomics features.

2. Parameter settings of random forest models

To optimize and select parameters of our random survival forest structures, we applied a 3-fold cross validation on the 100-subject cohort. In this process, the RSF models are characterized by four parameters of (1) n_estimators: number of trees in the forest; (2) max_depth: maximum depth of the tree; (3) min samples split: minimum number of samples required to split an internal node; and (4) min samples leaf: minimum number of samples required to be at a leaf node. Values of all these parameters are optimized by a 3-fold cross-validation procedure of RSF models on the 100-patient cohort. The candidate ranges of parameters are: (1) n estimators: $[10, 500]$; (2) max depth: $[1, 5]$; (3) min samples split: [1, 10]; (4) min samples leaf: [1, 10]. The optimized values for the 3-fold cross validation are summarized in Supplementary Table 2.

3. GTV size of all patient cohorts

The GTV size of all patient cohorts is shown in Supplementary Figure 1. Specifically, the GTV size of the 100-patient cohort and the 60-patient cohort before and after treatment is 1.99 \pm 0.87 cm³, 1.77 \pm 0.80 cm³, and 1.19 ± 0.56 cm³, respectively.

Supplementary Figure 1. Distribution of GTV size of all patient cohorts.

4. Selection of radiomic features

To improve the prediction performance, we adopted four feature selection methods (Parmar, et al., 2015) to select the most informative radiomic features based on the training data, including Wilcoxon test based feature selection (WLCX), Mutual information based feature selection (MIFS), Minimum redundancy maximum relevance (MRMR), and T-test score based feature selection (TSCR). The prediction performance of survival analysis models built upon selected features by these methods is shown in Supplementary Figure 2. Based on these results, we chose the MRMR method to select top 70% radiomics features and built a survival analysis model which was finally combined with a survival analysis model of clinical data based on the training data. The integrated survival analysis model obtained a cindex of 0.744 on the training cohort and a c-index of 0.734 on the testing cohort.

Supplementary Figure 2. Prediction performance of survival analysis models built upon radiomic features selected by different feature selection methods.

References:

Parmar, Chintan, et al. "Machine learning methods for quantitative radiomic biomarkers." Scientific reports 5 (2015): 13087.