

**ON-LINE FIG 1.** Bland-Altman plots showing the difference between velocity magnitude from 3D PC-MRI and CFD, with inflow boundary conditions obtained from 2D PC-MRI.



**ON-LINE FIG 2.** Bland-Altman plots showing the difference between singular energy from 3D PC-MRI and CFD, with inflow boundary conditions obtained from 2D PC-MRI.



**ON-LINE FIG 3.** Bland-Altman plots showing the difference between velocity magnitude from 3D PC-MRI and CFD, with inflow boundary conditions obtained from 3D PC-MRI.



**ON-LINE FIG 4.** Bland-Altman plots showing the difference between singular energy from 3D PC-MRI and CFD, with inflow boundary conditions obtained from 3D PC-MRI.



**ON-LINE FIG 5.** Bland-Altman plots for velocity magnitude (A) and singular energy difference (B) between 3D PC-MRI and CFD, with inflow boundary conditions obtained from 2D PC-MRI at peak systole and diastole for all aneurysms.



**ON-LINE FIG 6.** Bland-Altman plots for velocity magnitude (A) and singular energy difference (B) between 3D PC-MRI and CFD, with inflow boundary conditions obtained from 3D PC-MRI at peak systole and diastole for all aneurysms.

| On-line Tab<br>vessel areas | ole 1: Locations a<br>s, mean velocity | ind size of the aneur<br>magnitude, and pea | ysms, voxel size of t<br>ik systolic velocity a | he 3D rotatio<br>s measured l | onal angiograp | phy datasets, volume<br>PC-MR imaging | es, number       | of elemer        | nts, elemen      | t density of      | the mesh         | es and inpu     | t flows, inf       | MO              |
|-----------------------------|----------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------|----------------|---------------------------------------|------------------|------------------|------------------|-------------------|------------------|-----------------|--------------------|-----------------|
|                             |                                        |                                             |                                                 |                               |                |                                       |                  |                  |                  |                   | Input /<br>Veloo | Mean<br>city    | Input Po<br>Systol | eak             |
|                             |                                        | Size<br>(mm. length ×                       | lsotropic Voxel<br>Size 3D RA                   | Mesh<br>Volume                | No. of<br>Mesh | Element Density                       | Input<br>(mL     | Flow<br>/s)      | Inflow<br>Area ( | Vessel<br>mm²)    | Magni<br>(cm,    | itude<br>/s)    | Veloci<br>(cm/s    | È C             |
| Aneurysm                    | Location                               | width × height)                             | (mm³)                                           | (mm³)                         | Elements       | (elements/mm <sup>3</sup> )           | 2D               | 3D               | 2D               | 3D                | 2D               | 3D              | 2D                 | 3D              |
| -                           | Left MCA                               | $12.6 \times 7.3 \times 9.1$                | 0.22                                            | 554                           | 1.765.310      | 3186                                  | 1.7 <sup>a</sup> | 3.4 <sup>a</sup> | 5.9 <sup>a</sup> | 10.5 <sup>a</sup> | 31 <sup>a</sup>  | 35 <sup>a</sup> | 89 <sup>a</sup>    | 86 <sup>a</sup> |
| 2                           | BA                                     | 7.4	imes 6.2	imes 6.4                       | 0.22                                            | 272                           | 1.422.476      | 5230                                  | 2.2              | 3.1              | 5.3              | 11.9              | 41               | 27              | 87                 | 95              |
| ŝ                           | <b>Right MCA</b>                       | $13.0 \times 7.9 \times 11.3$               | 0.25                                            | 732                           | 2.608.270      | 3563                                  | 2.0              | 3.8              | 3.6              | 10.2              | 57               | 39              | III                | 011             |
| 4                           | <b>Right MCA</b>                       | 5.6 	imes 5.0 	imes 7.2                     | 0.10                                            | 261                           | 1.467.689      | 5623                                  | 2.2              | 3.5              | 6.3              | 12.8              | 37               | 29              | 78                 | 011             |
| ß                           | <b>Right MCA</b>                       | 9.2 	imes 6.0 	imes 5.3                     | 0.17                                            | 260                           | 1.168.002      | 4492                                  | 1.9              | 3.2              | 4.0              | 10.3              | 49               | 31              | 102                | 66              |
| 9                           | BA                                     | 8.8	imes 8.7	imes 11.5                      | 0.22                                            | 588                           | 2.313.009      | 4282                                  | 2.1 <sup>b</sup> | 2.2 <sup>b</sup> | 6.9 <sup>b</sup> | 9.4 <sup>b</sup>  | 31 <sup>b</sup>  | 25 <sup>b</sup> | 69 <sup>b</sup>    | 78 <sup>b</sup> |
| 7                           | Left MCA                               | 12.0 	imes 12.1 	imes 9.7                   | 0.22                                            | 674                           | 2.238552       | 3934                                  | 2.3              | 2.8              | 4.6              | 10.3              | 52               | 29              | 123                | 106             |
| ∞                           | BA                                     | 10.3 	imes 9.3 	imes 10.9                   | 0.22                                            | 687                           | 2.559.296      | 3725                                  | 2.6 <sup>b</sup> | 2.9 <sup>b</sup> | 6.0 <sup>b</sup> | 12.6 <sup>b</sup> | 44 <sup>b</sup>  | 24 <sup>b</sup> | 87 <sup>b</sup>    | 89 <sup>b</sup> |
| Note:-BA indi               | licates basilar artery.                |                                             |                                                 |                               |                |                                       |                  |                  |                  |                   |                  |                 |                    |                 |

Note:—DA indicates basing artery. <sup>a</sup> The 2D PC-MR scan was obtained in the coiled aneurysm, 10 months after the 3D PC-MR scan of the uncoiled aneurysm.

<sup>b</sup> It was not possible to measure flow at the same locations because the 2D PC-MR was performed outside the imaging volume of the 3D PC-MR measurement.

| vessel <sup>a</sup> |                              |           |      |        |      |        |       |        |       |        |       |      |
|---------------------|------------------------------|-----------|------|--------|------|--------|-------|--------|-------|--------|-------|------|
|                     |                              | MDif (cm/ | (s)  |        |      | SDň    | F (%) |        |       | RDif   | f (%) |      |
|                     | Systole                      |           | Dias | stole  | Syst | tole   | Dias  | tole   | Syst  | cole   | Dias  | tole |
| Vo                  | Dome                         | Inflow    | Dome | Inflow | Dome | Inflow | Dome  | Inflow | Dome  | Inflow | Dome  | Infl |
| -                   | 17.9                         | 39.5      | 1:1  | 5.3    | 11.2 | 14.1   | 5.0   | 6.4    | 167.9 | 133.9  | 11.7  | 21   |
| 2                   | $-0.8^{\rm b}$ ( $P = .32$ ) | 9.2       | [:[- | 5.9    | 14.2 | 23.1   | 7.6   | 9.2    | 2.7   | 17.7   | 7.6   | 26   |
| č                   | 12.5                         | 18.7      | 5.8  | 1.7    | 11.8 | 18.5   | 6.8   | 7.3    | 183.2 | 33.2   | 106.5 | 24   |
| 4                   | 16.5                         | 25.0      | 6.3  | 1.4    | 10.3 | 22.5   | 6.7   | 12.4   | 270.1 | 59.2   | 103.1 | 4.   |
| 5                   | 6.2                          | 18.7      | 1.4  | 6.3    | 13.8 | 24.9   | 8.1   | 17.1   | 41.9  | 39.5   | 12.6  | 21.  |
| 9                   | 5.7                          | 7.5       | 6.0  | 4.0    | 10.9 | 13.5   | 12.8  | 10.6   | 31.3  | 16.1   | 14.0  | 4.   |
| 7                   | 12.6                         | 17.3      | L.7  | 2.0    | 8.5  | 27.7   | 8.5   | 20.3   | 166.4 | 95.5   | 28.7  | ù.   |
| ∞                   | 10.2                         | 9.3       | 5.4  | 4.3    | 14.1 | 21.8   | 13.0  | 10.7   | 9.77  | 19.1   | 51.1  | 18.  |

On-line Table 2: Differences between velocity fields as determined with 3D PC-MRI and CFD with boundary conditions obtained from 2D PC-MRI for the dome of the aneurysm and the inflow

<sup>a</sup> Indicated are *MDif, SDif,* and *RDif,* as determined on a voxel basis. <sup>b</sup> Nonsignificant difference.

van Ooij Sep 2013 www.ajnr.org **E6** 

|          |                         | MDif (c         | :m/s)                        |                             |            | SDif (c    | (s/m       |            |             | RDif        | (%)             |             |                | Median         | Angle (°)       |                 |
|----------|-------------------------|-----------------|------------------------------|-----------------------------|------------|------------|------------|------------|-------------|-------------|-----------------|-------------|----------------|----------------|-----------------|-----------------|
|          | Sys                     | stole           | Diasto                       | ole                         | Syst       | tole       | Diast      | tole       | Sys         | tole        | Dias            | tole        | Syst           | ole            | Dias            | tole            |
| Aneurysm | 2D BC                   | 3D BC           | 2D BC                        | 3D BC                       | 2D BC      | 3D BC      | 2D BC      | 3D BC      | 2D BC       | 3D BC       | 2D BC           | 3D BC       | 2D BC          | 3D BC          | 2D BC           | 3D BC           |
| -        | 21.1                    | 1.9             | 2.0                          | -4.2                        | 12.7       | 17.0       | 6.3        | 8.1        | 161.8       | 6.0         | 17.8            | 23.9        | 20.6           | 20.8           | 26.5            | 27.8            |
| 2        | $0.2^{b}$ ( $P = .77$ ) | -8.5            | $-0.0^{\rm b}$ ( $P = .97$ ) | -4.5                        | 17.1       | 16.9       | 8.5        | 9.7        | 0.6         | 19.9        | 0.1             | 21.5        | 16.9           | 18.5           | 24.7            | 25.5            |
| č        | 9.2                     | 9.2             | 5.2                          | 1.6                         | 18.0       | 17.8       | 9.6        | 12.0       | 61.0        | 61.4        | 62.1            | 13.7        | 37.3           | 33.3           | 52.6            | 50.7            |
| 4        | 19.5                    | -3.7 (P = .002) | 4.9                          | -2.6                        | 17.9       | 26.3       | 10.2       | 12.8       | 9.66        | 8.7         | 33.4            | 11.5        | 26.3           | 24.0           | 30.3            | 31.0            |
| 5        | 10.5                    | 3.5             | 3.4                          | $0.7^{\rm b}$ ( $P = .21$ ) | 17.2       | 19.3       | 10.9       | 11.9       | 40.6        | 10.8        | 20.0            | 3.5         | 21.1           | 22.0           | 25.5            | 27.5            |
| 9        | 4.8                     | I               | 4.8                          | ļ                           | 14.2       | I          | 12.2       | I          | 21.6        | I           | 34.3            | I           | 27.2           | I              | 48.4            | I               |
| 7        | 12.8                    | 9.1             | 6.5                          | 4.0                         | 12.0       | 16.9       | 10.4       | 13.4       | 100.1       | 56.0        | 62.6            | 32.2        | 32.2           | 37.3           | 44.1            | 49.1            |
| ∞        | 10.9                    | I               | 5.0                          | I                           | 19.8       | I          | 13.0       | I          | 55.7        | I           | 39.3            | I           | 34.4           | I              | 49.7            | I               |
| Average  | $11.1 \pm 6.9$          | $1.9 \pm 7.0$   | $4.0 \pm 2.1$                | $-0.8\pm3.5$                | 16.1 ± 2.8 | 19.0 ± 3.7 | 10.1 ± 2.1 | 11.3 ± 2.0 | 67.6 ± 51.4 | 27.1 ± 24.9 | $33.7 \pm 21.5$ | 17.7 ± 10.2 | $27.0 \pm 7.2$ | $26.0 \pm 7.5$ | $37.7 \pm 12.1$ | $35.3 \pm 11.5$ |

On-line Table 3: Differences between velocity fields as determined with 3D PC-MRI and  $\mbox{CFD}^a$ 

Note:---2D BC indicates the CFD simulations with inflow boundary conditions from 2D PC-MRI; 3D BC, CFD with inflow boundary condition obtained from 3D PC-MRI; -- not possible to perform the CFD with inflow boundary condition obtained from the CFD with inflow boundary conditions obtained from the CFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary conditions from 2D PC-MRI; and the cFD with inflow boundary 3D PC-MRI because the CFD inflow boundary was located outside the imaging volume of the 3D PC-MRI measurement.

<sup>a</sup> Indicated *MDif*, *SDif*, and *RDif* and the median angle as determined on a voxel basis and averaged over the whole aneurysm and connecting vessels, between 3D PC-MRI and CFD.

 $^{\circ}$  Nonsignificant difference. All P values not given were P < .0001.

|             |                               | ШW                            | lif                          |                     |                  | 21S                | Dif              |                 |                 | RDi              | f (%)            |                 |
|-------------|-------------------------------|-------------------------------|------------------------------|---------------------|------------------|--------------------|------------------|-----------------|-----------------|------------------|------------------|-----------------|
|             | Systo                         | ble                           | Diastol                      | e                   | Sys              | tole               | Diast            | ole             | Syste           | ole              | Dias             | tole            |
| Aneurysm    | 2D BC                         | 3D BC                         | 2D BC                        | 3D BC               | 2D BC            | 3D BC              | 2D BC            | 3D BC           | 2D BC           | 3D BC            | 2D BC            | 3D BC           |
| -           | $0.02^{b}$ ( $P = .42$ )      | $0.00^{\rm b}$ ( $P = .93$ )  | -0.05 (P = .001)             | -0.09               | 0.66             | 0.67               | 0.55             | 0.74            | 1.3             | 0.1              | 4.4              | 7.5             |
| 2           | $0.02^{\rm b}$ ( $P = .55$ )  | -0.23                         | $0.01^{\rm b}$ ( $P = .74$ ) | -0.23               | 0.64             | 0.79               | 1.01             | 1.06            | 1.3             | 15.6             | 1:1              | 14.7            |
| e           | -0.08 (P = .0007)             | -0.17                         | -0.11 (P = .002)             | -0.22               | 0.83             | 0.93               | 1.24             | 1.41            | 7.6             | 15.3             | 9.7              | 18.2            |
| 4           | 0.16                          | 0.18                          | 0.30                         | 0.32                | 0.60             | 0.51               | 1.12             | 1.18            | 25.6            | 29.6             | 43.8             | 47.6            |
| 5           | $-0.04^{\rm b}$ ( $P = .37$ ) | -0.32                         | -0.12 (P = .0003)            | -0.18               | 16.0             | 0.94               | 0.75             | 0.97            | 3.6             | 28.5             | 11.6             | 17.4            |
| 9           | -0.31                         | I                             | 0.08 (P = .015)              | I                   | 0.97             | I                  | 0.94             | I               | 27.4            | I                | 8.2              | I               |
| 7           | 0.15                          | 0.24                          | 0.29                         | 0.35                | 0.57             | 0.86               | 1.08             | 1.1             | 19.1            | 29.2             | 34.6             | 39.6            |
| ∞           | 0.27                          | I                             | 0.26                         | I                   | 0.79             | I                  | 0.76             | I               | 37.8            | I                | 41.7             | I               |
| Average     | $0.02 \pm 0.17$               | $-0.05 \pm 0.23$              | $0.08 \pm 0.18$              | $-0.01 \pm 0.27$    | $0.75 \pm 0.15$  | $0.78 \pm 0.17$    | $0.93 \pm 0.23$  | $1.08 \pm 0.22$ | $15.5 \pm 13.9$ | $19.7 \pm 11.7$  | $19.4 \pm 17.6$  | $24.2 \pm 15.7$ |
| Note: JD BC | indicates the CED similation  | repaired woffer in the second | N conditions from 2D PC-W    | 4PI- 3D BC CED with | inflow hou adam, | conditions obtains | d from 3D DC-ADI | not nocciblo to | v sorform that  | od wolden dation | indaw, condition | obtained from   |

On-line Table 4: Differences between singular-energy fields as determined with 3D PC-MRI and  $\mathsf{CFD}^a$ 

<sup>a</sup> indicated are *MDif. SDif.* and *RDif.* and the median angle, as determined on a voxel basis and averaged over the whole aneurysm and connecting vessels, between 3D PC-MRI and CFD. <sup>b</sup> Nonsignificant difference. All *P* values not given were P < .0001.

E7