SUPPORTING INFORMATION

Targeting Triple Negative Breast Cancer Cells with Novel Cytotoxic Peptide-Doxorubicin Conjugates

Elmira Ziaei,¹ Azam Saghaeidehkordi,¹ Cassandra Dill,¹ Innokentiy Maslennikov,¹ Shiuan Chen,² and Kamaljit Kaur^{*, 1}

¹Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA

²Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California, 91010, USA

Table of Contents

Figure S1. (a) Proton (¹H) NMR spectra for MCC-Dox in DMSO-d6. (b) Chemical shift assignments for MCC-Dox for the proton and carbon NMR spectra made using the HSQC and HMBC experiments. S2-S3 Figure S2. RP-HPLC chromatograms for (a) MCC-DOX and (b) peptide. S4-S5 Figure S3. (a) RP-HPLC chromatogram of peptide-Dox conjugate 1. Also shown are the (b) Q-TOF and (c) MALDI-TOF mass spectra for the conjugate. S5-S6 Figure S4. RP-HPLC chromatogram of conjugate 2. S6-S7 Figure S5. RP-HPLC chromatogram and mass spectrum (Q-TOF) of the aliquot (at 48 h) taken during acid stability experiment of conjugate 1. . **S**7 Figure S6. The stability of conjugate 1 in human serum at 37 °C. MALDI-TOF mass spectrometry analysis of conjugate 1 after incubation with human serum. **S**8

Figure S7. The stability of conjugate 2 in aqueous acidic solution pH 5 at 37 $^{\circ}$ C (a) and acetonitrile/water (10%) at -20 $^{\circ}$ C (b). An aliquot was taken at different time intervals for MALDI-TOF mass analysis. S9

(a)

(b)

¹ H NMR			
Number	Chemical Shift	Proton	
11-OH	14.03		
6-OH	13.28		
1 and 2	7.92	2H, m	
3	7.66	1H, m	
NH	7.38		
16' and 17'	6.99	2H, s	
1'	5.22	1H, dd	
7	4.94	1H, dd	
14	4.57	2H, s	
5'	4.14	1H, m	
OMe	3.98	3H, s	
3'	3.93	1H, m	
4'	3.36	1H, m	
14'	3.21	2H, d	
10	2.97	2H, dd	
DMSO	2.50		
8	2.14	2H, m	
8'	2.06	1H, m	
2'	1.83 and 1.39	2H, td and dd	
9' and 10'	1.66-1.55	4H, m	
13'	1.48	1H, m	
11' and 12'	1.21 and 0.845	4H, m	
6'	1.12	3H, d	

U INIVIK Number Chemical Shift		
1	118.9	
2	136.1	
3	119.6	
4	160.8	
4a	119.1	
5	186.5	
5a	110.6	
6	154.6	
ба	134.0	
7	70.0	
8	36.5	
9	75.0	
10	32.1	
10a	135.4	
11	156.0	
11a	110.8	
12	186.5	
12a	134.7	
13 (C=O)	213.6	
14	63.55	
1'	100.0	
2'	29.5	
3'	44.6	
4'	68.1	
5'	66.7	
6'	16.9	
7' (C=O)	174.1	
8'	43.1	
9'	28.3	
10'	29.1	
11'	28.1	
12'	29.24	
13'	35.8	
14'	42.8	
15' and 18'	171.4	
16' and 17'	134.3	

Figure S1. (a) Proton (¹H) NMR spectra for MCC-Dox in DMSO-d6. (b) Chemical shift assignments for MCC-Dox for the proton and carbon NMR spectra made using the HSQC and HMBC experiments.

Figure S2. RP-HPLC chromatograms for (a) MCC-DOX and (b) peptide. A gradient of acetonitrile/water (0.05% TFA) was used in different ratios over 50 min with a flow rate of 1 mL/min on Vydac C18 semi-preparative column. The inset shows MALDI-TOF mass spectra of each of them showing the $[M+H]^{+1}$ or $[M+Na]^{+1}$ as the major peak.

(a)

Figure S3. (a) RP-HPLC chromatogram of peptide-Dox conjugate **1**. Also shown are the MALDI-TOF (b) and Q-TOF (c) mass spectra for the conjugate showing the $[M+H]^{+1}$ as 2161.5 (calcd. M+H 2161.9) or (1081.43-1)*2 = 2160.86 (calcd M 2160.9) as the major peak. A gradient of acetonitrile/water (0.05% TFA) was used in different ratios over 50 min with a flow rate of 1 mL/min on Vydac C18 semi-preparative column.

Figure S4. RP-HPLC chromatogram of conjugate **2**. A gradient of acetonitrile/water (0.05% TFA) was used in different ratios over 50 min with a flow rate of 1 mL/min on Vydac C18 analytical column. The inset shows MALDI-TOF mass spectrum showing the $[M+H]^{+1}$ as the major peak.

Figure S5. RP-HPLC chromatogram and mass spectrum (Q-TOF) of the aliquot (at 48 h) taken during acid stability experiment of conjugate **1**. (a) RP-HPLC chromatogram of aliquot at 48 h. A gradient of acetonitrile/water (0.05% TFA) was used in different ratios over 50 min with a flow rate of 1 mL/min on Vydac C18 semi-preparative column. (b) Q-TOF mass spectrum for the peak at 21 minutes in HPLC. The observed mass spec peak is 883.2 (+2 charge). This matches the calculated mass (1764.7) for the acid hydrolysis fragment i.e. (883.2-1)*2 = 1764.4.

Figure S6. The stability of conjugate **1** in human serum at 37 °C. At different time intervals (0, 6, 12, and 24 hours), aliquots were removed and treated with methanol. Both the supernatant (see Figure 2b) and the precipitate were analyzed by RP-HPLC and MALDI-TOF to determine the fate of conjugate **1** in human serum. The MALDI-TOF of precipitate at 12 and 24 h are shown.

Figure S7. The stability of conjugate **2** in aqueous acidic solution pH 5 at 37 $^{\circ}$ C (a) and acetonitrile/water (9:1, v/v) at -20 $^{\circ}$ C (b). An aliquot was taken at different time intervals for MALDI-TOF mass analysis.