In vivo **and** *in vitro* **reconstitution of unique key steps in cystobactamid**

antibiotic biosynthesis

Groß *et al*.

Supplementary Method 1. *In silico* **analysis and revision of the native cystobactamid BGC**

sequence

The previously published cystobactamid BGC sequence (GenBank accession number: KP836244) of *C*. *velatus* Cbv34 includes 52,081 bp with a GC content of 65 %. During the dotplot analysis (*EMBOSS 6.5.7* tool *dottup*: http://emboss.sourceforge.net/) of the BGC we found three repetitive sequence segments in *cysK* (27,422 bp to 41,059 bp) (Supplementary Figure 1). The sequence repeats were identified between modules 1 (C1, A1, T1) and 2 (C2, A2, T2), between modules 1 and 4 (C4, A4, T4), and between modules 2 and 4. Therefore, NRPS modules 1-4 of *cysK* were separately amplified by PCR and re-sequenced using Sanger sequencing (LGC Genomics GmbH). Primer binding sites were located in unique linker regions between the modules to avoid multiple binding in repetitive sequence segments. We used one to two forward and reverse primers for the amplification of the same sequence stretch (two separate PCR reactions per module). We used the primers CysK1 for, CysK1 rev 1, CysK 1 rev 1/2 to amplify module 1, CysK2 for 0, CysK2 rev 1, CysK2 rev 1/2 to amplify module 2, CysK3 for 0, CysK3 rev 1, CysK3 rev 1/2 to amplify module 3 and CysK4 for 0, CysK4 rev, CysK2 rev 1/2 to amplify module 4 (Supplementary Data 3). PCR products were ligated into pETDeut-1 after vector/insert hydrolysis using *Bam*HI and *Hind*III. We found 71 differences compared to the previously published sequence leading to the revision of the sequence. We deposited the revised sequence in GenBank database with accession number KP836244.2.

Supplementary Method 2. *In silico* **design of the modified BGC**

The unrevised Cbv34 BGC sequence (GenBank: KP836244) was initially used as template sequence to design the modified BGC. The modified BGC (GenBank accession number MT572315) was organized in two transcriptional units CysOp1 and CysOp2 (Supplementary Figure 2). CysOp1 contains native operon *cysA* – *N* (without native promoter, RBS of *cysA* and terminator). CysOp2 combines two native operons $\cos O - T$ and $\theta rf1 - \theta rf5$. $\theta rf1 - \theta rf5$ was engineered downstream of *cysO* – *T* (native promoters, terminators and RBS of *cysO* excluded; RBS of *Orf5* included). Vanillate-inducible promoter system¹ (P_{van}) was used for inducible gene expression in *M. xanthus* DK1622. *Pvan*, including *vanR* encoding repressor gene, was engineered upstream of CysOp1 and only *Pvan* (without *vanR*) was added upstream of CysOp2. *tD1* terminator sequence from *M. xanthus* bacteriophage Mx8² was engineered downstream of both modified operons, respectively. For transformation-associated recombination (TAR) assembly, we engineered *LEU2* gene encoding β-isopropylmalate dehydrogenase auxotrophy marker downstream and 100 bp sequences originating from *URA3* gene downstream and upstream of both operons, respectively. We added unique recognition sequences for restriction endonucleases (R-sites) for cloning purposes. Supplementary Table 1 lists all genetic elements including sequence origin and unique R-sites used for the design of CysOp1 and CysOp2. We removed R-sites (e.g. *Bsa*I) by synonymous codon substitutions while keeping the codon usage bias for a single amino acid as similar as possible to the native codon usage bias in the BGC (Supplementary Table 2). To reduce costs and turnaround time for DNA synthesis, we divided the modified BGC into twelve fragments (Supplementary Table 3). We added 100 bp homologous sequences to all adjacent cluster fragments used for TAR cloning. R-sites were engineered at the 5' and 3' ends of all fragments for DNA synthesis vector release or for step-wise assembly in cloning vectors. We flanked some fragments by splitter elements (SEs) if they were used for three-step assembly in cloning vectors.³ SEs consist of unique 'conventional' type II R-sites flanked by two *Bsa*I recognition sequences extended with 5 bp sequences. *Bsa*I is a type IIS restriction endonuclease cutting outside of the recognition sequence. This allowed generation of variable and unique 5 bp sticky ends for ligation. Unique 'conventional' R-sites allowed stepwise cloning of several fragments into a cloning vector.

Supplementary Method 3. *In silico* **design of the cloning and expression vector system**

pMYC

Three pMYC vector system fragments were designed for TAR assembly of the cystobactamid BGC in yeast, standard cloning procedures in *E. coli* and transformation and integration of the cluster into *M. xanthus* DK1622 genome. The basic pMYC building block contains *p15A* origin of replication (ori) for replication in *E. coli*, *cat* gene encoding chloramphenicol acetyl transferase (mediating resistance towards chloramphenicol), origin of transfer (*oriT*) and transfer gene (*traJ*) for conjugation (not used in this study), *CEN6*/*ARS4* ori for replication in yeast, and *URA3* encoding orotidine 5'-phosphate decarboxylase for counter-selection in yeast. A unique *Eco*RV R-site was located in *URA3* for vector linearization prior to TAR cloning. The flanking 100 bp sequences upstream and downstream of the *Eco*RV R-site are homologous to short sequences added to CysOp1 and CysOp2 to capture the marginal DNA synthesis fragments during TAR cloning. A second pMYC building block (Mx8-tetR) contained the genes *mx8 int* and *tetR*. *mx8 int* encodes *mx8* integrase for integration of plasmids via phage attachment site (*attP*) in the genome of *M. xanthus* DK1622 or other strains harboring the appropriate *attB* site. The *tetR* gene encodes an efflux transporter mediating resistance towards (oxy)tetracycline. A third pMYC building block (Mx9-kanR) contained genes *mx9 int* and *aph(3')-Ia*. The *mx9 int* gene encodes *Mx9* phage integrase for *M. xanthus* DK1622 genome integration and *aph(3')-Ia* encodes aminoglycoside-3'-phosphotransferase-Ia mediating kanamycin resistance. All genetic elements including unique R-sites and their sequence origin are listed in Supplementary Table 4. Synonymous codon substitutions were performed to remove R-sites from pMYC building blocks (Supplementary Table 5). Supplementary Figure 3 shows vector maps of basic pMYC, pMYC20 (basic pMYC with Mx8-tetR) and pMYC21 (basic pMYC with Mx9-kanR). The sequences were deposited in GenBank database under the following accession numbers: pMYC (MT572316), pMYC20 (MT572317) and pMYC21 (MT572318).

Supplementary Method 4. Assembly of the modified BGC

At the time of sequence revision, we already ordered cluster fragments with sequences based on the previously published *cysK* sequence. Thus, fragments K1, K2 and K3 were completely (and 3-GHIJ5-K partly) synthesized again and named K1_v2, K2_v2, K3_v2 and 3-GHIJ5-K_flong_v2, respectively. 3-GHIJ5-K_flong_v2 contains 1,222 bp of the 3' end of 3-GHIJ5-K (without mutations) and 1,796 bp of pGH DNA synthesis vector, including 559 bp of *ampR* (*bl*a). We used unique R-sites to exchange the mutated part in 3-GHIJ5-K for the generation of 3-GHIJ5-K_v2. The DNA fragments hPvanABCDEF5-G, K123_v2, 3- KLNtD1LEU2h (all part of CysOp1) and ABC3-2345tD1LEU2h (CysOp2) were assembled using pSynbio1³ as cloning vector. Fragments K123_v2 and 3-KLNtD1LEU2h contained SEs, which were removed by restriction hydrolysis with *Bsa*I and re-ligation (rejoining) using T4 ligase. After rejoining of the fragments, the generated construct did not contain additional Rsites (Supplementary Figure 4). Release of the final fragments from pSynbio1 was achieved by *BsaI* hydrolysis. Generation of 3-GHIJ5-K v2 was achieved by ligating 3-GHIJ5-K flong v2 into pGH-3-GHIJ5-K. Release of 3-GHIJ5-K_v2, G, hPvanOPQRS and T-ABC15-2 from pGH was achieved by *Bsa*I hydrolysis.

KDummy was generated via PCR using K-rpsLF and K-rpsLR primers pairs (Supplementary Data 3) and pSW1b plasmid as template (unpublished data). pSW1b contains the *rpsL* counter selection marker (mediating streptomycin sensitivity), flanked by *Bsa*I R-sites and 50 bp sequences of *cysK*, which are homologous to the 3' end of 3-GHIJ5-K v2 and the 5' end of 3-KLNtD1LEU2h. To remove a single point mutation (that we observed after sequence revision) from KDummy, we cloned KDummy into pJET1.2blunt vector (Thermo Fisher Scientific). We used two overlapping, complementary, mutagenic primers KrpsLF_v2_SDM and KrpsLR v2 SDM to generate pJET1.2KDummy v2 from pJET1.2KDummy via PCR. Template DNA was hydrolysed with *Dpn*I. KDummy_v2 was released from pJET1.2 using *Xba*I/*Xho*I hydrolysis.

TAR cloning was used to assemble pMYC20preCysOp1_v2 and pMYC21CorOp2. For pMYC20preCysOp1_v2 assembly, DNA fragments hPvanABCDEF5-G, G, 3-GHIJ5-K_v2, KDummy_v2, 3-KLNtD1LEU2h and *Eco*RV-linearized pMYC20 were used. KDummy_v2 was used instead of *cysK* fragments (K123_v2) to avoid unspecific recombination caused by repetitive sequence segments. pMYC21CysOp2 was cloned from fragments hPvanOPQRS, T-ABC15-2, ABC3-2345tD1LEU2h and *Eco*RV-linearized pMYC21. During TAR assembly, the counter selection marker *URA3* in the vectors was disrupted whereas *LEU2* was introduced into the plasmid together with the cluster fragments. Transformation of *S. cerevisiae* ATCC4004247 was done based on the *standard high-efficiency transformation protocol I* described by Agatep *et al*. 4 as described in the method section of the manuscript. Constructed plasmids were isolated as decribed in the method section of the manuscript and transformed into *E. coli* DH10β. Clones harboring the correct construct were verified by restriction analysis after plasmid DNA isolation via standard alkaline lysis.

KDummy_v2 was replaced by K123_v2 in pMYC20preCysOp1_v2 via restriction/ligation to generate pMYC20CysOp1_v2. To generate final expression construct pMYC20Cys_v2, we ligated CysOp2 into pMYC20CysOp1_v2. Supplementary Figure 5 schematically depicts all cloning steps performed to obtain the final expression construct pMYC20Cys_v2. Supplementary Table 6 lists all conventional cloning steps for the generation of pMYC20Cys_v2. We verified all generated constructs by restriction analysis. Additionally, the Illumina paired-end technology on a MiSeq PE300 platform (in-house) was used to verify the sequences of pMYC20CysOp1_v2 (2,244-fold mean sequencing coverage), pMYC21CysOp2 (2,856-fold) and pMYC20Cys_v2 (1,108-fold). Supplementary Data 1 and Supplementary Data 2 summarize all strains and plasmids generated during cloning process, respectively.

Supplementary Methods 5. Identification of the new cystobactamid derivatives

We identified 22 new cystobactamid derivatives (13 natural and 9 unnatural) based on highresolution masses and the $MS²$ fragmentation patterns. The fragment ions that we used to identify the structural differences of the new derivatives, including the respective calculated fragment masses, are shown in Supplementary Figure 6 and Supplementary Data 4. We only focused on the three fragments a, b and c, because fragment a only contains the N-terminal cystobactamid part (*p*NBA1-*p*ABA2), whereas fragment b contains the N-terminal part plus the linker and one additional *p*ABA (*pNBA*₁-*pABA*₂-linker-*pABA*₃). Fragment c contains one additional (tailored) *p*ABA (*p*NBA1-*p*ABA2-linker-*p*ABA3-*p*ABA4) compared to fragment b. Those three fragments were also described previously by Baumann and coworkers (in the SI).⁵ We decided to look at those three fragments, because it enabled us to find structural differences in the N-terminal part, e.g. after deletion of *cysR* (m/z 269.0562 \rightarrow 239.0821 [M+H]⁺; NO₂ \rightarrow NH₂), in the linker, e.g. after deletion of *cysQ* (m/z 532.1468 \rightarrow 518.1312 [M+H]⁺; methoxy-L-(iso)Asn \rightarrow hydroxy-L-(iso)Asn), and in the C-terminal part, e.g. m/z 725.2207 \rightarrow 711.2051 $[M+H]^+$; isopropoxyl-pABA₄ \rightarrow ethoxy-pABA₄).

The differences between experimental masses and the calculated masses of the new derivatives (and their corresponding fragments) are listed in Supplementary Data 4. Based on the highresolution mass of the new derivatives and their fragmentation pattern we were able to propose the structures (Supplementary Figure 7) using known cystobactamids as template (example depicted in Supplementary Figure 14).

E.g. after the deletion of *cysQ*, the gene encoding the *O*-methyltransferase that acts on the linker, and heterologous expression of the deletion construct in *M. xanthus* DK1622, we did not find the two major cystobactamid peaks (Cys919-1 and Cys919-2) in the EIC with *m/z* 920.3 $[M+H]^+$. Instead we found two new masses with m/z 906.3004 (Cys905-1c) and 906.3007 $(Cys905-2c)$ [M+H]⁺ (red box in Supplementary Figure 14). The fragmentation pattern shows that fragment a (blue box), which is the N-terminal cystobactamid part ($pNBA_1-pABA_2$) of Cys905-1c/2c is the same as for Cys919-1/2. However, fragment b (green box) differs when comparing Cys919 with Cys905, as there is a mass shift of 14 Da (m/z) 532.1468 \rightarrow 518.1312 $[M+H]^+$), indicating that a methyl group is missing in Cys905 (structural difference shown in red). In fragment c (yellow box) and in the mass of the molecular ion (red box) the mass shift of 14 Da is still present, which means that no further structural difference is found between Cys919 and Cys905. Assignment of the linker moieties with the same masses (e.g. linker G and F for Cys905-1c and Cys905-2c, respectively) was done based on the different retention times that were also observed for previously reported cystobactamids, in which derivatives harboring L-isoasparagine linkers eluted between 1.4 and 1.6 min earlier than derivatives harboring Lasparagine linkers.

However, for four unnatural cystobactamids, we were not able to propose a putative structure: Cys905-2d, Cys905-2e, Cys919-2b¹ and Cys919-2b2. In *M. xanthus* DK1622 pMYC20Cys_v4∆*cysJ* and *M. xanthus* DK1622 pMYC20Cys_v4∆*cysJ*∆AMDH we found the two new minor Cys905 derivatives, Cys905-2d and Cys905-2e (Supplementary Figure 15). The retention times are different to the one observed for Cys905-1c/2c (major products in the extract of *M. xanthus* DK1622 pMYC20Cys_v4∆*cysQ*), but surprisingly, the fragmentation pattern is the same (see Supplementary Data 4). Since we found Cys905-2d and Cys905-2e in the extracts of the *cysJ* and the *cysJ*-AMDH deletion strains, we speculate that the linker is an L-asparagine rather than an L-isoasparagine derivative, because L-isoasparagine linkers only occur if the AMDH domain is present. In the *cysJ* deletion strains we expected the production of exclusively desmethoxylated linker derivatives (fragment b: m/z 502.1363 [M+H]⁺). However, the fragment ion b has an m/z of 518.1312 $[M+H]^+$, which means that fragment b potentially contains an additional hydroxyl group even though *cysJ* was deleted in the producer strains. Since the retention times are different compared to Cys905-1c/2c, we can only hypothesize that the hydroxylation occurs in a different position and that it might be catalyzed by a different enzyme encoded in the genome of *M. xanthus* DK1622. However, this enzyme must be active also in the other strains harboring different construct. Thus, we searched for cystobactamid derivatives with double-hydroxylated fragment b ions, but we did not find any of them. Finally, purification and subsequent NMR analysis would be required to understand where the hydroxylation in Cys905-2d/e occurs and why those two derivatives have a different retention time despite the same potential linker moiety. However, due to the very low production titer, this is not possible at this time.

Furthermore, we found two new Cys919 derivatives, Cys919-2b₁ and Cys919-2b₂ (Supplementary Figure 15), in the extract of the AMDH deletion strain. Both derivatives show the same fragmentation pattern compared to each other, but they have a different fragmentation pattern compared to Cys919-2 (see Supplementary Data 4). The fragmentation pattern shows that the linker is desmethylated (fragment b: m/z 518 [M+H]⁺ compared to m/z 532 [M+H]⁺ for Cys919-2), because CysQ is not able to operate in case the AMDH domain is deleted. Since fragment c has a difference of 14 Da compared to fragment c of Cys919-2, the additional methyl group has to be located in the terminal $pABA_5$ moiety. We suggest that R_2 (see Supplementary Figure 6 and Supplementary Data 4) is a 1-methylpropoxy moiety as this moiety has already been described in native cystobactamids. However, since we identified two derivatives with only slightly different retention times (0.22 min), the methyl group might also be located elsewhere or at different positions in Cys919-2b₁ and Cys919-2b₂. We also cannot exclude the possibility that there is another structural difference elsewhere in the molecule, which we cannot explain at this time and only based on $MS²$ data. As for Cys905-2d/e, we would also have to isolate those derivatives, which is not possible due to the very low production titers.

Supplementary Method 6. Analysis of CysJ activity on free L-asparagine using TLC

To test if free L-asparagine is hydroxylated by CysJ, 500 nM CysJ was incubated with 1 mM α-KG and 1 mM L-asparagine and analyzed using thin-layer chromatography (TLC) with ninhydrine (Supplementary Figure 16 lane 5). We observed different colors for L-aspartate (lane 2; control) and L-isoasparagine (lane 3; control), respectively, and a different retention factor of L-isoasparagine compared to L-asparagine (lane 1; control). The incubation of L-asparagine with CysJ and α-KG (lane 5) prior to TLC analysis did not result in visible turnover or changing retention factors compared to the L-asparagine control, L-asparagine incubated with CysJ without α -KG (lane 4), or L-asparagine incubated with denaturated CysJ and α -KG (lane 6).

Supplementary Method 7. Synthesis of the di(ethylcarbonyl)asparaginyl-dicysteamine references

Supplementary Figure 17 depicts all below mentioned reaction steps for the synthesis of the di(ethylcarbonyl)asparaginyl-dicysteamine references. 55.6 mg Trityl chloride (0.2 mmol, 2eq.), 19 μL acetic anhydride (0.2 mmol, 2eq.) and 6.1 μL concentrated $H₂SO₄$ (0.115 mmol,

1.15eq.) are added to 500 μL glacial acetic acid until dissolution. 35.4 mg L-isoasparagine (0.1 mmol, 1eq.) and 50 μL DMF (dimethylformamide) are added and left to react overnight at 60°C in an oil bath. The solution was slowly poured on 2 mL ice cold H_2O , the pH was adjusted to 6.0 by addition of 10 M NaOH and left on ice for 1 h. The precipitate was filtrated using silica gel, washed with water and subsequently dissolved in DCM (dichloromethane). 37.4 mg of Trityl-L-isoasparagine (100 μmol, 1eq.) and 27.9 μL TEA (trimethylamine; 200 μmol, 2eq.) were dissolved in 500 μL THF (tetrahydrofuran) and 34.5 μL di-tert-butyl dicarbonate were added and left to react at room temperature for 2 h. Upon completion the reaction was quenched in water, the pH was acidified by addition of 1 M HCl and the boc-L-isoasparagine(trt)-OH was extracted with DCM. 50 mg boc-L-asparagine (trt)-OH or boc-L-isoasparagine (trt)-OH (105 μmol, 1eq.), 35.2 μL DIPEA (N,N-diisopropylethylamine; 367 μmol, 3.5 eq.) and 60.1 mg PyBop (115 μmol, 1.1 eq.) were dissolved in 2 mL DCM and stirred at room temperature for 30 min. 29.8 mg cysteamine hydrochloride (262 μmol, 2.5eq.) and 1 mL DMSO were added and incubated overnight at room temperature. The reaction was quenched in H_2O and the product was extracted twice with DCM. The organic fractions were dried, and the white precipitate was washed with pentane. The obtained powder was left to react at room temperature overnight in $2 \text{ mL of an } 88 \%$ TFA, 5% phenol, 5% H₂O, 2% TIPS (triisopropylsilane) solution with addition of 2 eq. of cysteamine to prevent thiol disulfide exchange. The reaction was quenched in water, washed three times with DCM and the aqueous layer was lyophilized to yield pure asparaginyl-dicysteamine. The compound was dissolved in ethanol and left to react with 5% ECF before HPLC-MS analysis.

Supplementary Figure 1. Dotplots of the entire cystobactamid gene cluster and of *cysK***. a:** Dotplot of the entire cystobactamid BGC sequence. Three repetitive sequence segments (red, blue and green lines) span from about 30 kb to 40 kb (highlighted in light grey) in *cysK*. **b:** Dotplot of *cysK*. Magnification of the grey area in a. C: condensation domain, A: adenylation domain, T: thiolation domain. The Dotplot was created using the *EMBOSS 6.5.7 tool dottup* in Geneious. Source data are provided as a Source Data file.

Supplementary Figure 2. Design of the modified BGC based on the native BGC. The modified BGC (**b**) was designed based on the native BGC (**a**) consists of two operons: CysOp1: *URA3* homology left for TAR assembly, *vanR* repressor, vanillate inducible promoter Pvan, biosynthetic genes *cysA*–*N*, tD1 terminator, *LEU2* auxotrophy marker and *URA3* homology right for TAR assembly. CysOp2: *URA3* homology left, Pvan, biosynthetic genes *cysO*–*T* and *Orf1*-*5*, tD1, *LEU2* and *URA3* homology right. Location of important R-sites are shown by dashed lines.

Supplementary Figure 3. Plasmid maps of basic pMYC, pMYC20 and pMYC21. Mx8-tetR building block engineered into basic pMYC results in pMYC20. Likewise, Mx9-kanR building block and basic pMYC generate pMYC21. Genes are annotated using green arrows. Origins of replication or transfer are annotated using blue boxes. Terminator sequence is labeled using red box and homology sequences for TAR cloning are shown in grey. Important unique R-sites are shown in dark blue. Vector maps were generated using *Geneious* v10.1.3. Source data are provided as a Source Data file.

Engineering of unique ,conventional' restriction sites within the SEs

Supplementary Figure 4. Scheme for the three-step assembly strategy using splitter elements (SEs) on the example of *cysK***. a:** Gene synthesis fragments were released from the synthesis vectors and stepwise ligated in the cloning vector pSynbio1 (subcloning). Desplitting was performed using *Bsa*I type IIS restriction enzyme. Rejoining of the fragments occurred after removal of splitter elements (SEs). Grey box: gene synthesis fragment; light-grey box: linker fragment; red box: SE. **b:** organization of a SE.

Supplementary Figure 5. Assembly strategy of the modified gene cluster. Both operons of the modified gene cluster are shown on top (see also Supplementary Figure 2). Conventional restriction/ligation-based cloning steps were used to assemble hPvanABCDEF5-G, 3-GHIJ5-K_v2, 3-KLNtD1LEU2h, K123 (CysOp1) and ABC3- 2345tD1LEU2h (CysOp2) from synthesized DNA fragments. Splitter elements (SEs; shown in red) were used for stepwise cloning into pSynbio1 (depicted in Supplementary Figure 4). TAR cloning (highlighted in beige) was used to assemble fragments hPvanABCDEF5-G, G, 3-GHIJ5-K_v2, KDummy, 3-KLNtD1LEU2h and pMYC20 to generate pMYC20preCysOp1_v2. Likewise, pMYC21CysOp2 was assembled via TAR from hPvanOPQRS, T-ABC15-2, ABC3-2345tD1LEU2h and pMYC21. KDummy was replaced by K123 in a restriction/ligation-based cloning step to generate pMYC20CysOp1_v2. Final expression construct pMYC20Cys_v2 was generated by cloning CysOp2 downstream of CysOp1 in pMYC20CysOp1_v2. Supplementary Table 6 lists all restriction/ligation-based cloning steps.

Supplementary Figure 6. Fragmentation scheme of natural and unnatural cystobactamids. Fragments a, b and c were used in MS² fragmentation experiments to identify novel natural and unnatural cystobactamids (Table 1 and Supplementary Data 4). The calculated m/z [M+H]⁺ values of the fragments depend on tailoring of R0-3 and linker moiety.

Supplementary Figure 7. Proposed structures of novel natural and unnatural cystobactamids. Natural (**a**) and unnatural (b) cystobactamid structures were proposed based on exact mass from HRMS analysis and MS² fragmentation.

Supplementary Figure 8. HPLC-MS analysis of major and minor cystobactamid derivatives produced by *M. xanthus* **DK1622 pMYC20Cys_v2. a:** BPC (dark grey), EIC 920.30 (black), EIC 508.20 (dark blue), EIC 892.27 (dark green) and EIC 906.29 (red) (all EICs $[M+H]^+ \pm 0.02$ Da) show existence of Cys919-1/2, Cys507, Cys891-1a/1b/2a/2b and Cys9051a/1b/2a/2b. **b:** BPC and EICs of minor native cystobactamid derivatives in methanolic *M. xanthus* DK1622 pMYC20Cys_v2 extracts. EIC 862.26 (blue), EIC 878.26 (dark orange), EIC 935.30 (red) and EIC 936.30 (purple) (all EICs $[M+H]^+ \pm 0.02$ Da) show existence of Cys861-1/2, Cys877-1/2, Cys934-1a/1b/2a/2b and Cys935-1/2. Corresponding MS² data are listed in Supplementary Data 4.

Supplementary Figure 9. Alignment of AlbIV and CysH and previously proposed linker biosynthesis pathways. a: MUSCLE⁶ (version 3.8.425) alignment of AlbIV and CysH protein sequences (created using *Geneious* version 2020.0). The AMDH domain is labelled in orange, the ATP-binding motif (SGGKD) is colored in pink and putative core motifs identified by comparison with 25 closest homologs (see Supplementary Figure 10) are labelled in blue. **b:** Proposed reaction mechanism in albicidin linker biosynthesis for the generation of βcyano-L-alanine (modified from ⁷). **c:** Proposed cystobactamid linker biosynthesis for the generation of L-asparagine and L-isoasparagine. No biosynthesis pathway for β-cyano-L-alanine was proposed in cystobactamid linker biosynthesis so far. Source data underlying Supplementary Figure 9a are provided as a Source Data file.

a [Cystobacter velatus Cbv34]_CysH_AMDH_domain -AAAQLTYCTKCGLASSFPNTTYSAEGVCNHCEAFDKYRSVVDDYFSTMDELQSIVTEMKSIHN--SK**YDCIVA** ⁷⁴ [Robiginitomaculum_sp.]_PHR62283.1 -PKQAQNSCTRCGITDSVPGTKIT-NGICNICAGFETYKHRAAAYFKTPEALQNLVKTLPARKS--GK**YDAIVL** 73 [Tropicimonas_sediminicola]_WP_089234808.1 -----IAHCTRCGVGTDTPGIEIDDTGVCTTCSGFDSFRERASEYFGDLGAFAGIVKDRARFRR--GD**YDCLML** 70 [Leptolyngbya_sp._Heron_Island_J]_WP_023070733.1 -QSGPVTYCTRCGIASTYPGITFDHEGVCDICQTYETYRDRTEQYFKSIDEFKSRLEAARQRKQ--GE**YDCMML** ⁷⁴ [Algoriphagus_halophilus]_WP_074224043.1 -YQAPDFYCKNCGIPSNYPDASFNEEGVCNLCESFEEYQKNVASYFKSMDNLKSEILGLGENKE--KE**YDCLML** ⁷⁴ [Confluentibacter_sp._3B]_PKQ44143.1 -EVEKVINCTNCGLPSNYPEIDFDDQGVCHLCNAFKNYEDKVQKYFRTEAELKSILTKNKT-NN--PS**YDCLTL** ⁷⁴ [Arenibacter_sp._AK53]_WP_086478236.1 -PEKDVVHCTQCGLPSNYPKTDFDESGVCHLCNAFKSYKDKALRYFKTEDELASLLMSNRG-KN--PT**YDCISL** ⁷⁴ [Kriegella_aquimaris]_WP_089884457.1 -SENEVINCTECGLPSNYPNTDFDENGVCHLCNAFKGYKDEAQRYFKTTDELRDILISKRG-KN--PN**YDCLSL** ⁷⁴ [Arenibacter_certesii]_WP_026813687.1 -PENEVINCTACGLPSNYPNVDFDENGVCHICNAFKGYKQQAQRYFKTENELRDLLTSKRG-NS--PN**YDCISL** ⁷⁴ [Arenibacter_latericius]_WP_026810787.1 -PENEVINCTACGLPSNYPNVDFDENGVCHICNAFKGYKQQAQRYFKTENELRDLLTSKRG-NS--PN**YDCISL** ⁷⁴ |Pricia_antarctica|_MP_091870771.1 -PEREVVNCICOCLESNYPEIERNEQOVCOLCTSFSNYEMENTRYNDELVRINGTSKRG-BS-PE**XPDCISL 7**4
|Gelidibacter algens| WP_066429701.1 -PEEDVVNCIECGLESNYPNTDFNENGVCHLCTAFESYKVKAERY [Zobellia_uliginosa]_WP_038233587.1 -PEEEVANCTTCGLPSNYPNADFNEDGVCHLCTAFETYKDKTERYFKNDEQLVSLLTSKRG-QN--RS**YDCISL**

FEEEVANCTTCGLPSNYPNADFNEDGVCHLCTAFETYKDKTERYFKNDEQLVSLLTSKRG-QN--RSYDCISL

PEEEVANCTKCGLPSNYPSTDPDDQGVCHLCRA -PEEEVVNCTKCGLPSNYPSTDFDDQGVCHLCRAFDTYKEKAHRYFKNDEQLVSLLSSKRD-KS--VN**YDCISL** 74
-PEEETINCSRCGLPSNYPGTDFDGOGVCHLCRAFDSYKEKVDGHFRNDGOLVALLTSKRG-ON--PD**YDCISL** 74 -
FEEETINCSRCGLPSNYPGTDFDGQGVCHLCRAFDSYKEKVDGHFRNDGQLVALLTSKRG-QN--PD**YDCISL** 74
-DSPPDRFCTRCGLPANYPSASFDAEGVCQLCRGFADYEEKARAYFRTPEDFRALFADRPVDRG--AP**YDCIML** 74 [Lewinella_marina]_WP_099106946.1 -DSPPDRFCTRCGLPANYPSASFDAEGVCQLCRGFADYEEKARAYFRTPEDFRALFADRPVDRG--AP**YDCIML** ⁷⁴ [Lewinella_nigricans]_WP_099148200.1 AAKVADHNCVRCGLPANYPTAEFDEQGVCHLCRSFQHYQENVQKYFRTMADLKALFTEKPGSAD--RA**YDCIML** ⁷⁵ [Verrucomicrobiae_bacterium_DG1235]_WP_008102120.1 -PTGAAAHCTRCGLSSHYPNIVFNAEGVCSVCDSYHSIKGEASHYFSDPESLKELFKASRNKRR--GN**YDCMVF** ⁷⁴ [Candidatus_Thiomargarita_nelsonii]_OAD19576.1 -QPTQIHYCVKCGLPSNYPETSFDEQGVCNTCRDFETHQAKVQPYFKTKADLQAILAQAKATKV--GK**YDCLAL** ⁷⁴ [Gemmatimonadetes_bacterium]_OLC11591.1 -AAKRLAHCTRCGLASNVPGTSYDAAGVCNVCRGFDAYVDKAQAYFKTPEALKALVAEMKARRT--GD**YDCLVL** ⁷⁴ [Gemmatimonadetes_bacterium]_OLC86088.1 -AAKRLTYCTRCGLASNVPGTSYDATGVCNVCRGLDTYVAKAQAYFKSPDELKALVAQMKATRTGGGE**YDCLVL** ⁷⁴ |Microvirga_flocculans]_WP_084021052.1
|Bradyrhizobium_jicamae]_WP_083519209.1
|Ricrovirga_lotononidis]_WP_083519209.1
|Microvirga_lotononidis]_WP_009491688.1
|Microvirga_lotononidis]_WP_009491688.1 Core 1 **LSGGKDSTY**ALCRMIETGARVLATI**LDNGYIS**SEAKONIRKVMRLGVDHRYLSTGHMKEIFVDSLKRHS**NVCNGCFKTIYTFA**INLAQEVGVKH**VVMGLSKGQLFETRLS**A-LER----TSTF-DNAEFEKSLVDAR
LSGGKDSYYALYRFAALTSNILTLI**DNGYIS**FEAKANIRKVTDDLGVDHRFLTTPAMNAIFADSLTRHSNNV **LSGGKDSTY**VLARLVDMGLKVLAF**TLDNGYIS**EQAKENIRSIITKLGVDHIYGSTDQMNK**IFVDSL**HRHH**NVCNGCFKTIYTLS**TKLALEKKVPF**IITGLSRGQFFETRLS**EELFL----DEEV-QIATIDDTILQAR 208 **LSGGKDSTYILAQLIGMGLKVLAFTLDNGYISDQAKGNIDKIVQKLGVDHIYGTVDKDINKIPVDSLNRHQNVCNGCFKTIYTLSTQIALDKQFFKTLDELFW-----DKNV-DVSTIDKTILEAR 208
LSGGKDSTYVLAKLIELGLKVLAFTLDNGYISDQAKONVDKIVTKLGVDHIYGNTPHMNRIFVDSLHRHKNVCNGCFKTIYTLSSKIALE LSGGKDSTY**VLAKLIELGLKVLAF**TLDNGYIS**DQAKQNVDKIVTKLGVDHIYGNTPHMNR**IFVDSL**HRHK**NVCNGCFKTIYTLS**SKIALEKQIPF**VVTGLSRGQFFETRLT**EELFW----DKNI-DVATIDRTILEAR 208 **LSGGKDSTYVL**AKLIELGLKVLAF**TLDNGYIS**DQAKQNVDKYUYKLSUPHEMEI**FUDGLHGHHHNVCNGCFKTIYTLSTQIALKK**EIF**FIVTGLSRGQFFETRLTF**EL---DKNV-DVATIDRTLTLER
LSGGKDSTYVLGRLIDMGLNVLAF**TMDNGYIS**EQAKANVDRIVTQLGVDHVGSTPHMND**IFVDSL**HRHH**NVCNGCFK LSGGKDSTY**VLARLVNMGLRVLAF**TMDNGYIS**DQAKANIDTIIKKLGVDHIYGRTPHMNE**IFVDSL**NQHH**NVCNGCFKTIYTLS**TKIALEKQIPF**IVTGLSRGQFFETRLT**EELFW----DEAL-DTKKIDQTILEAR 208 **LSGGKDSTY**VLARLINMGLKVLAF**TMDNGYIS**EQAKANVDRIVKKLGVDHVYGKTPHMNE**IFVDSLH**RHK**NVCNGCFKTIYTLS**TKIALEKNIPF**IVTGLSRGQFFETRLT**EELFW----DDEL-DTSKIDDTILEAR
16GGKDSTYVLARLINMGLKVLAFTMDNGYISEQAKANVDRIVKKLGVDHVYGKTPHMNEIFVDSLHRHKWVN **LSGGKDSTYUL**RELINNGLKVLAF**TLDNGY**ISEQAKANIDRIVTRLKVDHWGKTPHMREI**FVDSL**KRHKW**VNGCCKTIYILS**TKIALEKQIPFI**VTGLSRGQFLETRLTE----DDDL-DT**RKIDDFLKLAR 208
LSGGKDSTYULRELINNGLKVLAFTLDNGYISEQAKANIDRIVTRLKVDHWGKTPHMREIFVDSLQRHKWVNGCK Core 4 Core 5 Core 1 Core 2 Core 3 KIYHRIDANSRLDTTCVKNDKVIENIRFVDFYRCHASRQEMYDVIQ**EN/GMARTDTGRSTMCLLMDVGIYVM**NKERRYM**PYSMDVDM**GHISREEAMRELDDSADIDVENVENENDQVVGSA- 340
KAYHRTEDAITQHLKTQDLQMCKIFETVEIIDFYRYCDVFVGEVIDFLTQKAF**WIRFODTGRSTNCLINDAGIYVH**LRREGFH**NYALP** KLYHREEDAVKELLDVSLFENDAVFDKVQFVDFYRSOVSLEEMLRYL**EDTVGRETOTLORGTINQVSIYVH**KKEKGYS**NYSWDVRL**GHKTRDESLEEINEY--IDETEVKRIMNEIGYEDSDNLFEND-- 336
KLYHOEDDAVKOCLDVTMFOKEDTFERVOFLDFYRYSDVRLEEMLTFLKEKVG**WVRFDTGRSTNCLINQVGIYVH**KKOLGY KLYHQEEDAVKNLLDVSMFNTDETFEKVQFIDFYRYSDVKLEEMLTYLKEKVD**WVRPTDTGRSTNCLINQVGIYVH**KKQKGYS**NYSFPYSWDVRM**GHKTRKETLEEINEV--IDEKEVKRIINEIGYQEIGEDESN-- 337 KLYHQEEDAVKYLLDVDVFSKNETFEKVQFVDYYRYSDVSLEEMUS**VERTENT ORGSTNOLINQVGIYVB**KKQKGYS**NYSFPYSWDVRM**GHKTRETLEEINEY--IDETTVKRIMDEIGYQEPNESELG-- 337
KLYHQEEDAVKYLLDVDVFSKNETFEKVQFVDYYRYSDVSLEEMLVFLKEKVG**WVRFDTGRSTNCLINQVGIYVBK**KQK KIYHRESDAVQRLLDVSAFEDDAVFEKVQFVDFYRYSDVSLEELLNYLKDKIG**WVRPTDTGRSTNCLINQVGIYVH**KKEDGYS**NYAFPYSWDVRL**GHKTRNESLAEINEV--IDETEVMRIMEEIGYERSEADRQPT- 338 KLYHQEDDAVKKLLDVSMFDDDKLYEKVEFVDFYRFSDVSLEELLVYLKENVG**WVRPTDTGRSTNCLINQVGIYVH**KKEMGYS**NYSFPYSWDVRL**GHKTRDESLEEINEV--IDETEVKRIMKEIGYDKSDDDWQNS-- 338
KLYHQESDAVKKLLDVSMFDDDKLYEKVEFVDFYRFSDVSLEELLVYLKEKAG**WTRPTDTGRSTNCLINQVGI** KLYHQESDAVKRLLDVSIFEDESVFEKVEFVDFYRFSDVSLEEMLVYLKEKAG**WIRPTDTGRSTNCLINQVGIYVH**KKDLGYS**NYSFPYSWDVRL**GHKTRDESLEEINEV--IDKKEVLRIMEEIGYNPSQPEWES-- 337
KLYHQESDAVKKLLDTSMFDDDETFEKVQFVDFYRFSDVSLEEMLIFLKEKAG**WVRPTDTGRSTNCLINQVGIY** KLYHQESDAVKKLLDTSIFDDDETFEKVQFVDFYRFSDVSLEEMLLYLKEKVG**WRRFDTGRSTWCLINNVGIKWH**KKELGYS**NYSPFYSWWN**KGHKTRNESLEEINEL--IDEIEVKRITQEIGYNKFIEDDENNE
KLYHQESDAVKKLLDTSIFDDDQTFEKVQFVDFYRFSDVSLEEMLLYLKEKVG**WRRPDTGRSTWCLINNVGIKWKKELGY** Core 6 Core 7 **b**Core 4 Core 1 Core 2 Core 3 $\frac{9}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $rac{6}{5}$ c

Supplementary Figure 10. Comparison of the AMDH domain with 25 closest homologs. a: Sequence alignment of the AMDH domain with 25 closest BLAST homologs. **b:** Sequence logo of the seven core motifs (generated using https://weblogo.berkeley.edu/)⁸. Core motif 1 harbors a ATP-binding motig (SGGKD) that was also found in the unusual domain in AlbIV.⁷ Source data underlying Supplementary Figure 10a are provided as a Source Data file.

CvsK-M $\left(\begin{array}{c} c_4 \end{array} \right)$ A_4 CysK-M4 + 3-OMe-*p*ABA
m_{meas.} = 170,232 Da (-2 Da)
m_{shift} = +147 Da (-2 Da) $+147$ 170,190 CysK-M $+105$ C_4 A_4 T_4 CysK-M4 + benzoic acid
m_{meas.} = 170,190 Da (+1 Da)
m_{shift} = +105 Da (+1 Da)

169,700 170,000 170,300 170,600 *m/z*

Supplementary Figure 11. Substrate specificity of CysK-M1, CysK-M2 and CysK-M4. Observed mass shifts in deconvoluted protein MS BPCs reveal loading of *p*ABA, 3-OH-*p*ABA, 3-OMe-*p*ABA and benzoic acid but not of *p*NBA by CysK modules 1 (**a**), 2 (**b**) and 4 (**c**), respectively. Blue sphere: adenylation domain; grey sphere: thiolation domain; red cross: no substrate loading observed.

Supplementary Figure 12. UPLC-HRMS data and structures of Cys889-1b/2b produced in *M. xanthus* **DK1622 pMYC20Cys_v4∆cysR. a:** EIC *m/z* 890.29 [M+H]⁺ . **b:** MS² spectra of Cys889-1b/2b. Fragment with *m/z* 239 Da [M+H]⁺ (30 Da mass shift to natural cystobactamids) confirms that nitro group is replaced by amide group in N-terminal *p*ABA. **c:** structure proposal of Cys889-1b and Cys889-2b (Coralmycin D)⁹ .

Supplementary Figure 13. Substrate specificity of CysG-M5 and CysG-M6. Observed mass shifts in deconvoluted protein MS BPCs reveal loading of *p*ABA, *p*NBA, 3-OH-*p*ABA, 3-OMe-*p*ABA and benzoic acid by CysG module 5 (**a**). The same substrate loading, except for *p*NBA, was observed for CysG module 6 (**b**). Blue sphere: adenylation domain; grey sphere: thiolation domain; red cross: no substrate loading observed.

Supplementary Figure 14. Example of how structures were assigned to new cystobactamid derivatives. On top a cropped part of Supplementary Data 4 with the example Cys919-1 and Cys919-2 is shown. The measured high-resolution mass of the molecular ions is shown in the red box. The corresponding structures are shown below. The fragment ion masses are shown in the blue, green and yellow boxes with the corresponding fragment ions below. After deletion of cysQ, Cys905-1c and Cys905-2c were produced instead of Cys919-1 and Cys919-2. The measured high-resolution masses of the molecular ion and the fragment ions are shown in the red, blue, green and yellow boxes. The corresponding structures are shown below. The difference of 14 Da in the molecular ion and fragments b and c is due to a loss of a methyl group in the linker, which led to a hydroxyl group (labelled in red) instead of a methoxy group. The linker type was assigned based on the retention time difference, whereas derivatives with L-isoasparagine linkers eluted 1.4–1.6 min earlier than derivatives with L-asparagine linkers.

Supplementary Figure 15. Full HPLC-ESI-MS EIC traces of methanolic extracts from different heterologous strains. Stacked/overlayed view of the EICs m/z 920.3 [M+H]⁺ (black), 906.3 (blue), 890.3 (green) and 872.3 (orange).

Supplementary Figure 16. TLC analysis of CysJ activity on free L-asparagine. Lane 1: L-asparagine without CysJ (control). **2:** L-aspartate without CysJ (control). **3:** L-isoasparagine without CysJ (control). **4:** L-asparagine with CysJ. **5:** L-asparagine with CysJ and α-KG. **6:** L-asparagine with denaturated CysJ and α-KG. This figure was built from different TLC plates and depicts only relevant lanes showing that CysJ has no activity on free L-Asn.

Supplementary Figure 17. Derivatization of unloaded L-asparagine and organic synthesis of di(ethylcarbonyl)asparaginyl-dicysteamine references. a: Derivatization of cysteamine unloaded L-asparagine. **b:** Organic synthesis of di(ethylcarbonyl)asparaginyl-dicysteamine. **c**: Organic synthesis of di(ethylcarbonyl) isoasparaginyl-dicysteamine.

Supplementary Figure 18. HPLC-ESI-MS EIC traces of methanolic extracts from *M. xanthus* **DK1622 pMYC20Cys_v4∆***cysB*. Stacked view of the EICs m/z 920.3 [M+H]⁺ (black) and 507.3 (blue). The structure of Cys507 is depicted on top.

Supplementary Table 1. Genetic elements used in the design of the modified gene cluster. Nucleotide position numbering in modified cluster refers to CysOp1 and CysOp2 separately. Numbering in brackets refers to the entire modified BGC (GenBank accession number: MT572315). Genetic elements required for TAR assembly are highlighted in ligh-grey.

Supplementary Table 2. Removal of restriction endonuclease recognition sites (R-sites) from the modified BGC by synonymous codon substitutions. Recognition sequence of restriction endonucleases are underlined. Silent point mutations (labelled red) were made to remove R-sites inside coding sequences. Random point mutations were made to remove R-sites in intergenic regions. Nucleotide position numbering refers to original sequence. Numbering in brackets refers to revised gene cluster sequence. Sequences which do not contain blanks are non-coding sequences.

Supplementary Table 3. Name, size and restriction sites or splitter elements (SEs) of the thirteen gene synthesis cluster fragments. Spacer sequences (sp) were introduced between SE restriction sites.

Supplementary Table 4. Genetic elements used in the design of the pMYC vector system.

Supplementary Table 5. Removal of restriction sites (R-sites) from pMYC building blocks by synonymous codon substitutions. Recognition sequence of restriction endonucleases are underlined. Silent point mutations (labelled red) were made to remove R-sites inside coding sequences. Random point mutations were made to remove R-sites in intergenic regions. Nucleotide position numbering refers to original sequence. Sequences which do not contain blanks are non-coding sequences.

Supplementary Table 6. Source of vector and insert DNA and restriction endonucleases used for construction of plasmids in this work. [a] SEs were removed afterwards during desplitting with *Bsa*I, [b] blunt end ligation since pSynbio1 was linearized using only *Pme*I.

Supplementary Table 7. Manipulated plasmids generated via Red/ET recombineering and restriction hydrolysis/re-ligation.

Supplementary References

- 1. Iniesta, A. A., García-Heras, F., Abellón-Ruiz, J., Gallego-García, A. & Elías-Arnanz, M. Two systems for conditional gene expression in *Myxococcus xanthus* inducible by isopropyl-ß-Dthiogalactopyranoside or vanillate. *J. Bacteriol.* **194,** 5875–5885 (2012).
- 2. Magrini, V., Creighton, C. & Youderian, P. Site-specific recombination of temperate *Myxococcus xanthus* phage Mx8: genetic elements required for integration. *J. Bacteriol.* **181,** 4050–4061 (1999).
- 3. Yan, F. *et al.* Synthetic biology approaches and combinatorial biosynthesis towards heterologous lipopeptide production. *Chem. Sci.* **9,** 7510–7519 (2018).
- 4. Agatep, R., Kirkpatrick, R. D., Parchaliuk, D. L., Woods, R. A. & Gietz, R. D. Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol protocol. *Technical Tips Online* **3,** 133–137 (1998).
- 5. Baumann, S. *et al.* Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. *Angew. Chem. Int. Ed.* **53,** 14605–14609 (2014).
- 6. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* **32,** 1792–1797 (2004).
- 7. Cociancich, S. *et al.* The gyrase inhibitor albicidin consists of *p*-aminobenzoic acids and cyanoalanine. *Nat. Chem. Biol.* **11,** 195–197 (2015).
- 8. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. *Genome Res.* **14,** 1188–1190 (2004).
- 9. Kim, B.-M., van Minh, N., Choi, H.-Y. & Kim, W.-G. Coralmycin derivatives with potent antigram negative activity produced by the Myxobacteria *Corallococcus coralloides* M23. *Molecules* **24,** 10.3390/molecules24071390 (2019).
- 10. Rose, R. E. The nucleotide sequence of pACYC177. *Nucleic Acids Res* **16,** 356 (1988).
- 11. Rose, R. E. The nucleotide sequence of pACYC184. *Nucleic Acids Res* **16,** 355 (1988).