## Supplementary Information for

## Seasonal overturn and stratification changes drive deep-water warming in one of Earth's largest lakes

Eric J. Anderson<sup>1\*</sup>, Craig A. Stow<sup>1</sup>, Andrew D. Gronewold<sup>2</sup>, Lacey A. Mason<sup>1</sup>, Michael J. McCormick<sup>1</sup>, Song S. Qian<sup>3</sup>, Steven A. Ruberg<sup>1</sup>, Kyle Beadle<sup>1</sup>, Stephen A. Constant<sup>1</sup>, Nathan Hawley<sup>1</sup>

<sup>1\*</sup>Great Lakes Environmental Research Laboratory, Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration
<sup>2</sup>School for Environment and Sustainability, University of Michigan
<sup>3</sup>Department of Environmental Sciences, The University of Toledo



**Supplementary Figure 1: Lake Michigan long-term subsurface temperature mooring.** Thermistor sensor depths for each deployment indicated by black dots/lines for the thirty-year period.



Supplementary Figure 2: Linear trends of monthly water temperatures. Time-series of water temperature data separated into months, and linear trends computed by simple linear regression and Theil-Sen estimators, for the **a**, surface, **b**, 30 m, **c**, 60 m, **d**, 75 m, **e**, 100 m, **f**, 110 m, and **g**, 140 m transects. Slopes from the simple linear regressions are used to indicate warming and cooling trends in Figure 3. For each month, the x-axis represents the range 1990 - 2019.