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Supplemental Information 
Transparent Methods  
Vestibular Axon Model 
Vestibular afferents are categorized by firing regularity into two types: Type I (irregular) and Type II (regular) 
neurons. Both types of afferents differ in physiology, synaptic inputs, and channel expression. However, the 
Hight & Kalluri model showed that vestibular firing can be simulated accurately. Type I and Type II neurons 
are modeled as differing only in channel expression and EPSC magnitude (K), and interval (o). The model 
also uses a set of non-linear differential equations to simulate channel dynamics for a number of channels 
specific to vestibular afferents, finding only a sodium (Na), high-voltage gated potassium (KH), and low-
voltage gated potassium (KL) channel as well as a leak term are necessary to reproduce firing dynamics. 
The membrane potential (𝑉) varies as: 

𝑑𝑉

𝑑𝑡
= 1/(𝐶𝑚𝑆)(𝐼𝑁𝑎 + 𝐼𝐾𝐿 + 𝐼𝐾𝐻 + 𝐼𝑙𝑒𝑎𝑘 + 𝐼𝑒𝑝𝑠𝑐 + 𝐼𝑠𝑡𝑖𝑚)    (1) 

where in addition to the current from each channel, membrane potential is influenced by the EPSCs arriving 
at the hair cell (Iepsc) and the injected current (Istim).  The system of equations in (Hight and Kalluri, 2016) 
represents each cell as a single node with overall surface area, S = 1.1 ∙ 10−5 cm2 and capacitance Cm = 0.9 

F/cm2.  

For this study, we used a modified version of the Hight & Kalluri (HK) model to simulate an irregular axon on 
which to test the response to GVS stimulation (Supplemental Methods). We simulated an irregular afferent, 
because experimental data only exist for long-term and short-term experiments on irregular neurons. Our 
experimental data comes from two studies (Goldberg, Smith and Fernandez, 1984; Manca et al., 2019) in 
which the neurons have different spontaneous firing rates (100 sps and 20 sps) and different firing ranges 
(0-250 sps and 0-60 sps). 

In (Hight and Kalluri, 2016), a range of biophysically realistic conductance values for hair cells were given: 
gNa = 1.7-75 mS/cm2, gKL = 0-1.7 mS/cm2, and gKH = 1.8-11 mS/cm2; these values were explored for each 
channel, and they found irregular firing could be imitated with conductance values: gNa = 13 mS/cm2, gKH = 
2.8 mS/cm2, and gKL = 1.1 mS/cm2. In our simulations, we found gNa and gKH could significantly change the 
induced firing range of neurons, and gNa had the stronger effect on firing range. Induced firing range similar 
to regular irregular afferents (fr = 188 sps) could be simulated with gNa = 6∙13 = 78 mS/cm2, gKH = 4∙2.8 = 
11.2 mS/cm2, and gKL = 1.1 mS/cm2 (Supplemental Fig. S1).  We construct an in vitro axon by lowering 
conductances such that the induced firing range matched that observed in the study (Manca et al., 2019). 
There are multiple ways to model a lower conductance axon with lower firing range. To minimize changes 
in parameters we only decrease gNa to 7.8 mS/cm2, and we decreased 𝜇𝑜 to 8-15 ms, to produce lower 
spontaneous rate, fro of 15-20 sps. 

In the HK model (Hight and Kalluri, 2016), hair cells are simulated with a stochastic function that releases 
EPSCs at a certain rate (o) and with certain quanta size (K) for the whole simulation that drives the 
spontaneous firing rate. The authors find that a number of combinations of K and  result in the correct firing 
properties and select K = 1 and  = 3 ms as the typical settings for simulating an irregularly firing neuron. 
They also tested several EPSC shapes, noting shape did not have a significant effect on the range of K and 
o used to obtain the correct firing properties. We use the EPSC shape matched synaptic current recordings 
from calyx terminals, with α = 0.4 for all studies. To match the spontaneous rate of each study, we assume 
the quanta size (K =1) is maintained across studies and set the spontaneous rates by changing EPSC 
release rate. For a spontaneous rate of 100-120 sps, o = 0.55-0.75 ms was used. For a spontaneous rate 
of 15-20 sps (with the lower firing range conductance values), o = 8-15 ms was used.  

Only internal current stimulation is modeled in the HK study. We added external GVS stimulation to the 
model as a point source; the current experienced at the axon is reduced by the distance of the axon to the 
point source, r, which for an object x vertical and y horizontal distance from the point source is: 𝑟 =

√(𝑥2 + 𝑦2). Then, the current change of the axon would be the surface area of the axon (S) times the current 

per surface are at a distance r. The increase in firing rate with 𝐼𝑎𝑥𝑜𝑛 is significantly lower than reported in 
(Goldberg, Smith and Fernandez, 1984), and the original HK model does not include non-quantal (NQ) 
modulation.  We added an NQ effect that amplifies current change, 𝑘𝑁𝑄 = 4.5, and found the slope of 

increase in firing rate with current amplitude approaches previously reported levels.  

𝐼𝑎𝑥𝑜𝑛 = −𝑘𝑁𝑄𝑆
𝐼𝑠𝑡𝑖𝑚

4𝜋𝑟2
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The lower conductance value axon must be responsive to GVS stimulation but at a lower level than in vivo, 
so, when simulating a low conductance axon, we set 𝑘𝑁𝑄 = 1 to reduce responsiveness of the axon to GVS 

stimulation. 

The channel equations used in the original model can be found below. 
𝑑𝑉

𝑑𝑡
= (

1

𝐶𝑚𝑆
) (−𝐼𝐾𝐿 − 𝐼𝑁𝑎 − 𝐼𝐾𝐻 − 𝐼𝑙𝑒𝑎𝑘) 

For every state: 
𝑑𝑥

𝑑𝑡
= (𝑥∞ − 𝑥)/ 𝜏𝑥            

Sodium Channels 
INa 
ENa = 82 mV 
 

𝐼𝑁𝑎 = 𝒈𝑁𝑎𝑚3ℎ𝑆(𝑉 − 𝐸𝑁𝑎) 

𝑚∞ = (1 + 𝑒
−𝑉+38

7 )
−1

 

 

ℎ∞ = (1 + 𝑒
𝑉+65

6 )
−1

 

𝜏𝑚 = 10 [5𝑒
𝑉+60

18 + 36𝑒
−𝑉+60

25 ]
−1

+ 0.04 

𝜏ℎ = 100 [7𝑒
𝑉+60

11 + 10𝑒
−𝑉+60

25 ]
−1

+ 0.6 

 

Potassium Channels 
EK = -81 mV 

IKH 

𝜙 = 0.85 

𝐼𝐾𝐻 = 𝒈𝐾𝐻𝑆(𝜙𝑛2 + (1 − 𝜙)𝑝(𝑉 − 𝐸𝐾) 

𝑛∞ = (1 + 𝑒
−𝑉+15

5 )
−0.5

 

𝑝∞ = (1 + 𝑒(−𝑉+23)/6)
−1

 

𝜏𝑛 = 100[11𝑒(𝑉+60)/24 + 21𝑒−(𝑉+60)/23]
−1

+ 0.7 

𝜏𝑝 = 100[4𝑒(𝑉+60)/32 + 5𝑒−(𝑉+60)/22]
−1

+ 5 

 

 

IKL 

𝐼𝐾𝐿 = 𝒈𝐾𝐿𝑆𝑤4𝑧(𝑉 −  𝐸𝐾) 

𝑤∞ = (1 + 𝑒
−𝑉+44

8.4 )
−

1
4
 

𝑧∞ = (1 − 𝛾) (1 + 𝑒
𝑉+71

10 )
−1

+ 𝛾, 𝛾 =  .5 

𝜏𝑤 = 100 (6𝑒
𝑉+60

6 + 16 (e−
𝑉+60

45 ))

−1

+ 1.5 

𝜏𝑧 = 1000 (𝑒
𝑉+60

20 + 16𝑒
−𝑉+60

8 )
−1

+ 50 

 
Eleak =  -65 mV 
 

𝐼𝑙𝑒𝑎𝑘 =  𝑔𝑙𝑒𝑎𝑘𝑆(𝑉 − 𝐸𝑙𝑒𝑎𝑘) 
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Additionally, in supplemental work, we assessed the contribution of other axonal channels to firing to 
determine whether the axon alone could produce the transient effect. The equations used for this analysis 
can be found below. 
 
Other Channels Added into the model: 

HCN a.k.a. Ih 
𝐼ℎ = 𝑔ℎ(1 − 𝑟3)𝑆(𝑉 − 𝐸ℎ) 

𝑟∞ = (1 + 𝑒
−𝑉+100

7 )
−1

 

𝜏𝑟 = 105 (237𝑒
𝑉+60

12 + 17𝑒
−𝑉+60

14 )
−1

+ 25  

 

INav1.5 
A Markov model implementation of a Nav1.5 channel opening and closing was modified into an efficient 
matrix multiplication in MatLAB. The original code as individual equations can be found in Balbi et al. 
(Balbi, Massobrio and Hellgren Kotaleski, 2017). This model relies on capturing changes between two 
closed states, two open states, and two inactivated states. The rows of the matrix were in the order B 
(magnitude), v (hemiactivation voltage), k (slope factor). This matrix Y was 12 x 6. The transitions were 
separated into a hyperpolarizing and a depolarizing component with the same three variables: 

State 
Transitions 

Bhyp vhyp khyp Bdep vdep kdep 

C1C2 0 0 0 10 -13 10 

C2C1 1 -43 8 10 -13 -10 

C201 0 0 0 10 -23 -10 

O1C2 1 -53 8 10 -23 -10 

C2O2 0 0 0 0.05 -10 -10 

O2C2 2 -50 10 0.05 -10 -10 

O1I1 7 -44 13 10 -19 -13 

I1O1 0.00001 -20 10 0 0 0 

I1C1 0.19 -100 7 0 0 0 

C1I1 0 0 0 0.016 -92 -6 

I1I2 0 0 0 0.00022 -50 -5 

I2I1 0.0018 -90 30 0 0 0 

 
The states were a vector in the order:  
A, the transition rates were calculated as follows for all state transitions simultaneously, producing a 12x1 
vector: 

𝐴 = 𝑌1 (1 + 𝑒
𝑉−𝑌2

𝑌3 )

−1

+ 𝑌4 (1 + 𝑒
𝑉−𝑌5

𝑌6 )

−1

 

  
A then needed to be multiplied by the current states to get the correct transition probabilities over time. 
The states were arranged in the vector x in the order (O1, O2, C1, C2, I1, I2). 
 
The transitions in and out of state were then calculated in a matrix form with the following equation M: 

-(A4 +A7)       0 0 A3                                     A8 0 
0 -A6 0 A5    0 0 
0 0 -(A1 + A10)             A2     A9                               0 
A4 A6 A1 -(A2 + A3 + A5) 0 0 
A7 0 A10 0 -(A9 + A11 + A8) A12 
0 0 0 0 A11 -A12 

 
𝑥(𝑡 + 1) = 𝑑𝑡𝑀 + 𝑥(𝑡) 

 
𝐼𝑁𝑎 = 𝒈𝑁𝑎𝑆(𝑥1 + 𝑥2)(𝑉 − 𝑉𝑁𝑎) 
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Where 𝑥1 + 𝑥2 is the total probability of being in the open state. S is the same surface area of the axon 
used above. dt was the same as for the rest of the study (1e-3 ms). 
 
Dynamic NQ effect: 
There were no existing data that could be used to model the mechanism of K+ concentration change in 
the synaptic calyceal cleft and the resulting effect on the axon and hair cell. Instead, we created a more 
realistic phenomenological model of the non-quantal effect based on trajectories of the non-quantal effect 
in response to current and voltage steps (Contini, Price and Art, 2017). 
 

𝜏𝑁𝑄 = 100 𝑚𝑠, 𝑔𝑁𝑄 = 0.025 to get the correct trajectory and the change in current necessary to produce 

the size of non-quantal effect needed to replicate the slope of change in firing rate with DC stimulation. 
These equations transform internal DC current (s) at the afferent into the current at the axon with the non-
quantal effect trajectories of slow rise with current amplitude (n). 
 

𝑑𝑛

𝑑𝑡
(𝑡) = 𝑔𝑁𝑄𝑠(𝑡) −

1

𝜏𝑁𝑄

𝑛(𝑡 − 1) 

𝑛(𝑡) = 𝑛(𝑡 − 1) +
𝑑𝑛

𝑑𝑡
(𝑡) 

Then, n can be directly added to received EPSC inputs to produce the change in internal current over 
time at the axon. 
 

Hair Cell Adaptation Effect 
In the in vitro experiments (Manca et al., 2019), an adaptation in response to a 10 s GVS current step, 
decayed with time constants of up to 8.5 secs. In the literature, an adaptation of time of up to 13 secs in 
firing rate was found to natural, mechanical stimulation (Rabbitt et al., 2005) . We hypothesize that GVS 
stimulation can activate this natural adaptation mechanism in the hair cell, resulting in the observed 
adaptation in Manca et al. (2019). In Rabbitt, et al. (Rabbitt et al., 2005), the adaptation was shown to have 
two components, represented as two hidden states, a slow state and a fast state. Both states have the 
same state evolution equations 

𝑑𝜂𝑘

𝑑𝑡
= 𝑔𝑘

𝑑𝑠

𝑑𝑡
+

𝑔∞𝑘

𝜏𝑘

𝑠 −
1

𝜏𝑘

𝜂𝑘 

, where s is the stimulus signal, 𝑔𝑜is the instantaneous gain to a change in the signal, and 𝑔∞ is the steady 

state gain to which the signal will adapt (Rabbitt et al., 2005).   We hypothesize that the 𝑔∞ term, a baseline 

shift in firing rate is negligible compared to larger axonal effects. So, we set 𝑔∞ = 0, such that  
𝑑𝜂𝑘

𝑑𝑡
= 𝑔𝑘

𝑑𝑠

𝑑𝑡
−

1

𝜏𝑘
𝜂𝑘 for both adaptation states. 

 
The total adaptation in firing rate (𝑓𝑟𝑎𝑑𝑎𝑝𝑡) is a sum of the two states we call s and f, where the response to 

excitatory mechanical stimulation has a larger fast component than the response to inhibitory stimulation: 

𝑓𝑟𝑎𝑑𝑎𝑝𝑡 = 𝜂𝑠 + 𝑟𝜂𝑓 , 𝑟 = {
𝛼  𝜂𝑓 < 0

 1   𝜂𝑓 ≥ 0
 

The choice of 𝛼 was not carefully measured in the paper; we set 𝛼 = 0.1. For a different choice of 𝛼, 𝑔𝑠 and 

𝑔𝑓 would have to be adjusted to fit the data.  

 
The hair cell affects firing rate in the HK model through the stochastic process that generates EPSCs with 
a magnitude (K) and inter-EPSC timing (μ). We theorize μ(t) is a function of  𝑓𝑟𝑎𝑑𝑎𝑝𝑡, because hair cells do 

not typically modify the packing of vesicles (K), but vesicle release rates have been shown to change in 
response to stimuli (Dulon et al., 2009). Adaptation was modeled as an additive effect on top of the natural 
firing rate, so that 𝑓𝑟(𝑡) = 𝑓𝑟𝑎𝑥𝑜𝑛 + 𝑓𝑟𝑎𝑑𝑎𝑝𝑡(𝑡), due to evidence of a separable hair cell adaptation pathway 

and axonal responsiveness to GVS stimulation. In this absence of stimulation 𝑓𝑟𝑎𝑥𝑜𝑛 would just be 𝑓𝑟𝑜. We 

assume firing rate and EPSC release rate are approximately linearly related, such that 𝑓𝑟𝑜= 
𝑘𝑓𝑟

𝜇𝑜
 . Then, the 

fr relation can be solved in terms 𝜇(𝑡): 
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𝑘𝑓𝑟

𝜇(𝑡)
=

𝑘𝑓𝑟

𝜇𝑜

+ 𝑓𝑟𝑎𝑑𝑎𝑝𝑡(t) 

𝜇(𝑡) =
𝜇𝑜

1 +
𝜇𝑜

𝑘𝑓𝑟
𝑓𝑟𝑎𝑑𝑎𝑝𝑡

=
𝜇𝑜

1 +
𝑓𝑟𝑎𝑑𝑎𝑝𝑡

𝑓𝑟𝑜

 

EPSC generation in the HK model is performed in windows, while 𝑓𝑟𝑎𝑑𝑎𝑝𝑡(𝑡) is a continuous function. We 

assume EPSC delivery is a discretized process and therefore changes in release rate would not be 

immediate. We divided the trial into windows of length 𝑡𝑑𝜇 = 𝜇𝑜 ms, and in each window the stochastic 

EPSC generation equation was used to generate 𝜇𝑜 ms of EPSC trains which were concatenated to create 

the final EPSC train used during simulation experiments. 𝜇𝑜 ms was chosen because with 𝜇(𝑡) updating 

every 𝜇𝑜 ms EPSC summation to faster or slower EPSC releases rates would be uneffected, and at this 
value phase shift and firing rate results replicate the sine wave experiment results. 
 

Next, we tuned the equation to the observations from Manca et al. (2019) to select values of 𝑔𝑠 and 𝑔𝑓. We 

model GVS stimulation by setting 𝑠 =  −𝐼𝑠𝑡𝑖𝑚 with the current amplitude in μA, because negative/positive 
current causes an excitatory/inhibitory effect on firing. We fit the initial change in firing rate to the current 
step in (Manca et al., 2019) such that 

𝑓𝑟𝑎𝑑𝑎𝑝𝑡 = {
(𝑔𝑠 + 0.1𝑔𝑓)

𝑑𝑠

𝑑𝑡
  𝜂𝑓 < 0

 (𝑔𝑠 + 𝑔𝑓)
𝑑𝑠

𝑑𝑡
   𝜂𝑓 ≥ 0

 

 for 
𝑑𝑠

𝑑𝑡
= 10 and 

𝑑𝑠

𝑑𝑡
=  −10, finding 𝑔𝑠 = 0.375 and 𝑔𝑓 = 2.25. We find the time constants associated with 

each component by initially assuming the median time of adaptation to anodic and cathodic stimulation 

(𝜏− = 0.99 𝑠 and 𝜏+ =  .53 s) are the weighted sums of the time constants, weighted by  𝑔𝑠 and  𝑔𝑓. This 

would result in 𝜏𝑠 = 2.26 𝑠 and 𝜏𝑓 = 0.24 s. 𝜏𝑓  and 𝜏𝑠 control the frequency at which the phase shift goes to 

zero. We decrease 𝜏𝑓 = 0.15 s and 𝜏𝑠 = 2 s to better replicate experimental results. This is a minor change 

within the biophysical range (Rabbitt et al., 2005).  We also find that when the 𝜇(𝑡) function is used to 
change EPSC release rate in the full simulation, results better match the experiment when gains are 
amplified two-fold to 𝑔𝑠 = 0.75 and 𝑔𝑓 = 4.5.  

 

Simulating Firing Regularity Experiments 
The change in firing rate with GVS stimulation amplitude was measured by applying one-second GVS 

stimulation fields at each current amplitude between -100 A to 70 A. In each trial, stimulation steps were 
preceded with a 50 ms window without stimulation to assure the membrane potential was at rest. APs in 
this time window were excluded. A trial with 1050 ms of stimulation at each current amplitude was performed 
nineteen times with different random seeds to replicate experimental results (Goldberg, Smith and 
Fernandez, 1984); the CV versus ISI comparison, the change in slope, and the maximum firing rate across 
neurons were found across the population. The action potentials were detected from the voltage trace by 
finding points where the voltage was above -35 V and greater than the voltage 0.01 ms before and after. 
The CV and ISI were calculated from the detected times of action potential peak. The slope of increase 

with cathodic current was found by only including current amplitudes less than 0 A and which produced 
an increase in firing rate compared to lower amplitude cathodic current stimulation. The trend of increase 
was fit with fifth-order polynomial, and the last current for which the curve had positive slope was the lowest 
current amplitude point included.  
 

Simulating Adaptation Experiments 
Adaptation was captured in both replicated experiments but had a different response. We hypothesized 
that there are two components to the responses to GVS stimulation, an axonal response that produces an 
overall change in in firing rate while current is being driven through the axon and a hair cell response that 
is responsible for the adaptation shape. In (Manca et al., 2019), we believed the in vitro prep left the axon 
significantly less responsive than an in vivo axon to GVS stimulation, leading to the lower spontaneous 
range and smaller induced firing range. We fit the adaptation function to these data (see above). We then 

tested adaptation was properly captured by assuring that the response to a 10-second GVS field of +10 A 
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and -10 A produced the same initial change in firing rate with a current step and decayed back to baseline 
after 10 seconds.  
 
In the in vivo axon model with higher conductance values and a larger NQ effect, both the NQ and 
adaptation effect need to be slightly reduced to replicate experimental results. We used kNQ = 3.5 and scale 

adaptation parameters down to 𝑔𝑠 = 0.49 and 𝑔𝑓 = 2.9, so the ratio of 𝑔𝑠 and 𝑔𝑓 remain fixed. This is due 

to the axon being more responsive to inputs when conductances are larger. With these parameters, we 
confirmed that adaptation to a five-second GVS step followed by five-seconds after the current stepped 
down produced a change in baseline firing rate with an adaptation effect on top during the step and 
adaptation in the opposite direction, after it stepped down. The experiment was simulated to steps of GVS 

current of -50, -30, -10, 10, 30, 50, and 70 A. The response to -70 A could not be replicated because it 
induced firing rates out of the induced firing rate of our model, producing cathodic block.  
 

Simulating Baseline Current Step Experiments 
In the in vitro study (Manca et al., 2019), a baseline of -10 A, 0 A or +10 A GVS current was delivered 

for ten seconds then current step of ±20, ±15,  ±10, ± 7.5, ±5, ± 2.5, and 0 A  away from this baseline were 
delivered for an additional two seconds. Changing in firing rate was compared between the baseline fir ing 
rate in the last one second of baseline and the first 50-500 ms after the current step. We repeated this 
experiment on ten neurons in silico to match the size of the study in the experimental data being replicated.  
 

Simulating Sinusoidal Waveform Experiments 
In the in vitro study (Manca et al., 2019), the response to fifteen cycles of sinusoidal waves of height ±10 

A  at frequencies of 0.1, 0.2, 0.5, 1, 2, 4, and 8 Hz was recorded across ten neurons. As in the study, we 
needed to determine the phase shift of the response to each signal. For each simulated neuron, the phase 
shift was determined by fitting a sinewave of the stimulation frequency to all cycles of response to the 
sinewave. For lower frequencies, less cycles are required to capture the phase shift, so, for frequencies 
less than 1 Hz, we simulate five cycles and, for frequencies of 1 or more Hz, seventeen cycles, excluding 
the first and last cycle from analyses. We then measure the firing rate in 180-degree windows centered 
around the cathodic half of the response and anodic half of the response in each cycle and take the average. 
We report the firing rates per cathodic and anodic half of the response and phase shift across neurons. We 
extend the study to see the responses to frequencies from 0.005 Hz to 150 Hz to capture the full frequency 
response of the neurons. We analyze the results on fr(t), which represents the change that hair cell 
adaptation contributes to the neural response without the noise of axonal response, and on the full axon 
model.    
 

Statistical Comparison to Experimental Results 
To compare slope of increase with cathodic current across models, we fit the original data(Goldberg, Smith 
and Fernandez, 1984) with a line of best fit with intercept zero. We compare this slope and 95% confidence 
interval of fit to the slope and 95% confidence interval of fit of each of our models. If the experimental slope 
is within the bounds of the model, we declare the experimental data replicated. 
 
To compare CV-ISI relationships between the experimental study and the simulated results, we use the 
equation for CV* with values that match the 95% confidence interval observed in the study. We then count 
the number of points between 5 ms and 50 ms that fall within these bound, checking whether over 95% fall 
within experiment the 95% confidence bounds. 
 
To compare the change in firing rate with current steps from three baseline conditions and change in firing 
rate and phase with sinewave frequency, we perform a non-parametric cluster statistic at the level of p 
<0.05. Between conditions we have two groups of neuronal responses. We permute neuron identity groups 
500 times and find clusters of values that significantly differ from permutation results and reality. The t-value 
of the cluster needed to exceed 3 to be significant. We used this test for comparisons within experimental 
(Manca et al., 2019) and simulated data between baseline conditions. We also compare results of the 
sinewave experiment with and without adaptation. We also compare experimental and simulated results of 
both experiments.  
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Supplemental Methods 
Modification to Channel Dynamics for Long-term Stability 
The dynamics of the high-voltage gated potassium (KH) channel were changed such that KH 
channels were slower and sustained firing for up to several seconds without showing instability; 
these values more closely matched previous models of KH channels (Rothman and Manis, 2003).  
𝐼𝐾𝐻, the current from the KH channel, is equal to the total conductance across the surface area of 
the node of Ranvier (𝑔𝐾𝐻̅̅ ̅̅ ̅ 𝑆) times the probability of the channel being activated (n) or inactivated 
(p) times the difference between 𝑉 and the reversal potential of potassium (𝐸𝑘); the probability of 
KH channels being activated was 𝜙 = 0.85: 

𝐼𝐾𝐻 =  𝑔𝐾𝐻̅̅ ̅̅ ̅ 𝑆[𝜙𝑛2 + (1 − 𝜙)𝑝](𝑉 − 𝐸𝐾)       (2) 

The inactivation/activation variable  𝑥 (i.e. 𝑛 and 𝑝) has rate of change (𝑥̇) defined by  

𝑥̇ = 𝑥 − 𝑥/𝜏𝑥          (3) 

where 𝜏𝑥  is the time constant of x, and 𝑥  is the steady-state value. For the KH channel, all 
dynamics were kept the same as (Hight and Kalluri, 2016) except the time coinstant for p was 
reverted to the equation from (Rothman and Manis, 2003). 

𝜏𝑝 = 100 [4𝑒
𝑉+60

32 + 5𝑒−
𝑉+60

22 ]
−1

+ 5         (4) 
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Supplemental Figures 
 
 
Supplemental Figure S1 associated with axonal conductances investigation in Figure 3. a) Increasing gNa, 
gKH and gKL from initial value to highest value possible within biologically realistic values. Original values 
(black) compared to increase. b) Result of increasing gNa in combination with each increase in gKH at each 
tested value of gKH from 2.8 to 11.2 mS/cm2. c) gKL effect on action potentials. 
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Supplemental Figure S2 associated with CV* description in Figure 3b.  Support for the idea that the output 
from the hair cell is necessary to maintain the CV* relationship when GVS is applied. a) Simulated paradigm 
in which GVS current with amplitudes between +70 µA to -100 µA is introduced to the axon with no EPSCs 
b) The CV vs ISI relationship in this case produces much lower CVs than the CV* found in experimental 
data. c) The induced firing range is approximately the same but firing rate increases from 0 sps at 0 µA of 
stimulation to the maximum firing rate.   
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Supplemental Figure S3 shows the effect of inclusion of Nav 1.5, HCN channels and Dynamic NQ response 
is insufficient to explain rapid onset and adaptation effects IV and V discussed in Figure 1. a) Multiple 
manipulation of conductances and introduction of Nav 1.5, HCN, and Dynamic NQ response without hair 
cell GVS response fails to show the rapid onset followed by slow adaptation seen in the experimental data. 
b) For the complete axon with hair cell simulation, Dynamic NQ effect that mimics the dynamics of the influx 
and efflux of K+ into the synaptic cleft has only minor impact on step responses over the constant Scalar 
NQ effect (colored lines are anodic and cathodic steps in µA).   
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Supplemental Figure S4 shows the smaller μο necessary to produce in vivo firing rates, produces the overall 
larger phase lead discussed in Figure 6.  
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