

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202003091

Avidity-based selection of tissue-specific CAR-T cells from a combinatorial cellular library of CARs

Peixiang Ma[#], Ping Ren[#], Chuyue Zhang[#], Jiaxing Tang[#], Zheng Yu, Xuekai Zhu, Kun Fan, Guanglei Li, Wei Zhu, Wei Sang, Chenyu Min, Wenzhang Chen, Xingxu Huang, Guang Yang^{*}, Richard A Lerner^{*}

Supporting Information

Avidity-based selection of tissue-specific CAR-T cells from a

combinatorial cellular library of CARs

Peixiang Ma[#], Ping Ren[#], Chuyue Zhang[#], Jiaxing Tang[#], Zheng Yu, Xuekai Zhu, Kun Fan, Guanglei Li, Wei Zhu, Wei Sang, Chenyu Min, Wenzhang Chen, Xingxu Huang, Guang Yang^{*}, Richard A Lerner^{*}.

Supplementary Figures:

Figure S1. Proof of concept of CAR selection using cell-cell interaction. (a) The high-affinity scFV 028 was spiked into a single chain fragment variable (scFv) antibody library at a ratio of $1:10^4$. (b) In the positive selection group, the CAR-cell library was activated by K562-CD38 cells. (c) In the negative-positive selection group, initially healthy PBMCs with low expression of CD38 were used to activate the CAR-cell library. The activated cells were discarded as they were the result of activation by non-tumor cells. The remaining, non-activated cells were collected and exposed to K562-CD38 cells for activation. The positive cells were collected for sequencing. RP02-CAR synNotch was expressed in HEK-293 cells, then co-cultured with CD38⁻ (K562) cells (d) and CD38⁺ (Daudi) cells (e). RP03-CAR synNotch was

expressed in HEK-293 cells, then co-cultured with CD38 (K562) cells (**f**) and CD38⁺ (Daudi) cells (**g**). (**h**) The CAR-synNotch construct consists of an N-terminal extracellular domain containing a hCD8 α signaling peptide, a myc peptide, and a CAR; a transmembrane domain consisting of *m*Notch1 core (from 1427 to 1752 amino acids); and an intracellular domain consisting of Gal4-VP64. (**i**) The effector construct was designed to monitor chimeric Notch signaling, in which synNotch activation resulted in Gal4-VP64 release and, subsequently, BFP expression through interaction between the released Gal4-VP64 and the Gal4 DNA binding domain. A *m*Cherry fluorescent protein was used in the construct as an internal transduction marker.

Figure S2 | Comparison of CAR density on the cell surface of HEK293F and human T cells. (a) Representative images of HEK293F cells grown in suspension. Scale bar is 100 μ m. (b) Representative images of human T cells grown in suspension. Scale bar is 100 μ m. (c) Diameter of HEK293F and primary T cells. The diameter of HEK293F is 17.1±0.3 μ m and primary T is 9.4±0.1 μ m. (n=60) (d) Cell surface synNotch on HEK293F and primary T cells was analyzed using PE-labelled rabbit anti- myc antibody. (e) Comparison of cell surface density of synNotch on HEK293F and primary T cells.

5

<i>h</i> CD38-ECD	-VPRWRQQWSGPGTTKRFPETVLARCVKYTEI-HPEMRHVDCQSVWDAFKGAFISKHPCN 58
mCD38-ECD	LRPRSLLVWTGEPTTKHFSDIFLGRCLIYTQILRPEMRDQNCQEILSTFKGAFVSKNPCN 60
	** *:* ***:* : .*.**: **:* :****. :**.: .:***:*:*****
<i>h</i> CD38-ECD	ITEEDYQPLMKLGTQTVPCNKILLWSRIKDLAHQFTQVQRDMFTLEDTLLGYLADDLTWC 118
mCD38-ECD	ITREDYAPLVKLVTQTIPCNKTLFWSKSKHLAHQYTWIQGKMFTLEDTLLGYIADDLRWC 120
	. * **:** ***: **** *:**: *. ****:* :* : ********
hCD38-ECD	GEFNTSKINYQSCPDWRKDCSNNPVSVFWKTVSRRFAEAACDVVHVMLNGSRSKIFDKNS 178
mCD38-ECD	GDPSTSDMNYVSCPHWSENCPNNPITVFWKVISQKFAEDACGVVQVMLNGSLREPFYKNS 180
	*: .**.:** ***.* ::* ***::****.:*:********
<i>h</i> CD38-ECD	TFGSVEVHNLQPEKVQTLEAWVIHGGREDSRDLCQDPTIKELESIISKRNIQFSCKNIYR 238
mCD38-ECD	TFGSVEVFSLDPNKVHKLQAWVMHDIEGASSNACSSSSLNELKMIVQKRNMIFACVDNYR 240
	******:.*:*:*:*:*:*:*:*: *:*::*::*::*::*:*:*:*
<i>h</i> CD38-ECD	PDKFLQCVKNPEDSSCTSEI 258
mCD38-ECD	PARFLQCVKNPEHPSCRLNT 260
	* :*******: ** :

Figure S3 | Interactions between purified scFv antibodies and hCD38-ECD / mCD38-ECD proteins. (a) Comparison of binding affinities of RP02 and RP03 antibodies to hCD38-ECD / mCD38-ECD by surface plasmon resonance (SPR) measurement. (b) Sequence alignment between hCD38-ECD and mCD38-ECD.

b

Figure S4 | CD38 expression in different cells. (a) Relative expression levels of CD38 in indicated cells were measured by real-time quantitative reverse transcription PCR (qRT-PCR). The results were normalized to GAPDH mRNA levels and represent the means \pm SEM. (n = 3) (b) Cell surface expression of CD38 was evaluated by FACS.

Specific Killing of CD38⁺ Cells by CD38 CAR-T Cells (24 h)

Figure S5 | Evaluation of anti-tumor efficiency of RP02 CAR-T and RP03 CAR-T.

In contrast to results seen with mock T cells, co-culture of CD38⁺ target tumor cells (Daudi and RPMI8226) with RP02 or RP03 anti-CD38 CAR-T cells for 24 hours at an E:T ratio of 1:1 resulted in significant cytotoxicity. Data are represented as the mean \pm s.e.m. of n = 3 technical replicates. Significance was considered as *p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.001.

Figure S6 | **028 scFv cross-linked with** *h***CD38-ECD via IADKSTNTAY and ARCVKY peptides.** (a) Secondary MS showing cross-linked peptides ARCVKY-IADKSTNTAY. (b) Peptide mass fingerprint for ARCVKY. (c) Peptide mass fingerprint for IADKSTNTAY. The MS data were deposited in the proteomics identifications (PRIDE) database with accession number PXD019944.

MS ³ of	F SCKNIY				MS ³ of	IYDNNKRP	SGIPDR	F		
#1	b⁺	Seq.	y ⁺	#2	#1	b⁺	Seq.	b⁺	b ²⁺	#2
1		S		6	1	114.09	I			15
2	191.0485	С	640.3123	5	2	277.15	Y	1678.82	883.08	14
3	301.13(-H2 O)	К	537.3031	4	3	392.18	D	1515.76	801.6	13
4	433.1864	Ν	409.4	3	4	506.22	Ν	1400.73	743.93	12
5	528.26(-H2 O)	I.	295.1652	2	5	620.26	Ν	1286.69	670.94	11
6		Y	182.0812	1	6	785.59(- NH ³)	К	1172.65	614.2	10
					7	904.46	R	1044.55	522.78	9
					8	1069.57(- H²O)	Ρ	888.46	444.73	8
					9	1088.54	S	791.4	396.2	7
					10	1234.54	G	704.37	352.68	6
					11	1258.65	I.	647.35	324.17	5
					12	1355.71	Р	534.43	267.63	4
					13	1470.73	D	437.21	219.11	3
					14	1626.83	R	322.18	161.59	2
					15		F	166.08	83.54	1

Figure S7 | RP02 scFv cross-linked with *h*CD38-ECD via IYDNNKRPSGIPDRF and SCKNIY peptides. (a) Secondary MS showing cross-linked peptides SCKNIY-IYDNNKRPSGIPDRF. (b) Peptide mass fingerprint for SCKNIY. (c) Peptide mass fingerprint for IYDNNKRPSGIPDRF. The MS data were deposited in the proteomics identifications (PRIDE) database with accession number PXD019868.

MS³ of GSVEVHNLQPEKVQTL

а

MS³ of IYDNNKRPSGIPDRF

#1	b⁺	Seq.	\mathbf{y}^{\star}	y ²⁺	y ³⁺	#2	#1	b⁺	Seq.	b⁺	b ²⁺	#2
1	58.02	G				16	1	114.09	I			15
2	145.06	S	1720.92	860.96	574.31	15	2	277.07	Y	1678.82	883.24	14
3	244.12	V	1633.89	817.44	545.3	14	3	392.18	D	1515.76	801.6	13
4	373.17	Е	1534.82	767.91	512.27	13	4	506.22	Ν	1400.73	728.03	12
5	472.24	V	1405.77	703.39	469.26	12	5	620.26	Ν	1286.69	671.33	11
6	591.28 (-H ² O)	Н	1306.71	653.85	436.24	11	6	785.5(- NH³)	К	1172.65	613.9	10
7	723.34	Ν	1169.65	585.32	390.55	10	7	990.56	R	1044.85	523.05	9
8	836.42	L	1055.6	528.3	352.54	9	8	1069.57(-	Р	888.72	444.73	8
9	964.56	Q	942.52	471.76	314.84	8	9	1088.54	S	791.4	396.2	7
10	1061.5 3	Ρ	814.46	407.73	272.16	7	10	1199.83	G	704.37	352.68	6
11	1190.5	Е	717.41	359.21	239.8	6	11	1258.65	I	647.35	324.17	5
12	2 1405.0	к	588.37	329.19(-	196.79	5	12	1355.71	Р	534.26	267.63	4
	6			NH ³)		-	13	1470.73	D	437.21	219.11	3
13	1503.7 6	V	460.27	230.64	154.09	4	14	1626.83	R	322.18	161.59	2
14	1545.8	Q	343.19(- H ² O)	181.1	121.07	3	15		F	166.08	83.54	1
15	1646.8 4	Т	233.14	117.07	78.38	2						
16		1	132.1	66 55	44 7	1						

Figure S8 | RP02 scFv cross-linked with hCD38-ECD via
IYDNNKRPSGIPDRF and GSVEVHNLQPEKVQTL peptides. (a) Secondary
MS showing cross-linked peptides GSVEVHNLQPEKVQTL-IYDNNKRPSGIPDRF.
(b) Peptide mass fingerprint for GSVEVHNLQPEKVQTL. (c) Peptide mass
fingerprint for IYDNNKRPSGIPDRF. The MS data were deposited in the proteomics
identifications (PRIDE) database with accession number PXD019868.

11

b

MS ³ of	GTQTVPCN	KILLW			MS ³ of IYDNNKRPSGIPDRF					
#1	b⁺	Seq.	y ⁺	#2	#1	b⁺	Seq.	b⁺	b ²⁺	#2
1		G		13	1	114.09	1			15
2	159.15	Т	1415.7715	12	2	277.07	Y	1678.82	883.24	14
3	287.135	Q	1314.7239	11	3	392.18	D	1556.8	801.6	13
4	388.1827	Т	1186.6653	10	4	506.22	Ν	1400.73	744.18	12
5	487.2511	V	1085.6176	9	5	620.26	Ν	1286.69	671.33	11
6	584.3039	Ρ	986.5492	8	6	785.5	К	1172.65	613.9	10
7	687.313	С	889.28	7	7	990.56	R	1044.85	523.05	9
8	801.356	Ν	840.38	6	8	1069.57	Р	888.5	444.73	8
9	929.4509	К	726.5	5	9	1088.54	S	791.4	396.2	7
10	1042.535	I.	544.3493	4	10	1199.83	G	704.37	352.68	6
11	1155.6191	L	431.2653	3	11	1258.65	T	647.35	324.17	5
12	1268.7031	L	318.1812	2	12	1355.71	Р	534.32	267.63	4
13		W	205.0972	1	13	1524.79	D	437.21	219.11	3
					- 14	1626.83	R	322.12	161.59	2
					15		F	166.08	83.54	1

С

Figure L **RP02** cross-linked with **S9** scFv hCD38-ECD via IYDNNKRPSGIPDRF and GTQTVPCNKILLW peptides. (a) Secondary MS showing cross-linked peptides GTQTVPCNKILLW-IYDNNKRPSGIPDRF. (b) Peptide mass fingerprint for GTQTVPCNKILLW. (c) Peptide mass fingerprint for IYDNNKRPSGIPDRF. The MS data were deposited in the proteomics identifications (PRIDE) database with accession number PXD019868.

CDR3

028-V _H	EPGERDPD-AVDI
$RP02-V_{H}$	EDYYYYMDV
RP03-V _H	DGLPRWNDIWFDL

CDR3

028-V _L	QQYNSYPLT
$RP02-V_L$	GTWDSSLSAGV
$RP03-V_{L}$	TSFTT-FKTWV

Figure S10 | Sequence alignment of variable domains. The CDR3 sequences of 028, RP02 and RP03 scFvs were aligned. The sequences were numbered using the Kabat numbering scheme.