Supplementary Information

Toxicological Responses of α-Pinene-Derived Secondary Organic Aerosol and its Molecular Tracers in Human Lung Cell Lines

Faria Khan[†], Karina Kwapiszewska[†], Yue Zhang^{‡,§}, Yuzhi Chen[‡], Andrew T. Lambe[§], Agata Kołodziejczyk^{†,∥}, Nasir Jalal[⊥], Krzysztof Rudzinski[†], Alicia Martínez-Romero[£], Rebecca C. Fry[‡], Jason D. Surratt^{‡,i*}, Rafal Szmigielski^{†**}

[†] Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

[‡] Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States 27599

[§] Aerodyne Research Inc, Billerica, Masachusetts, United States, 01821

TROPOS (Leibniz-Institut für Troposphärenforschung, Permoserstrasse 15, 04318 Leipzig, Germany)

[⊥] Department of Interdisciplinary Science, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China, 210044

[£] Cytomics Core Facility. Príncipe Felipe Research Center. Avda. Eduardo Primo Yúfera, 3, 46012, Valenica, Spain

¹ Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States 27599

Corresponding Authors:

RS: ** ralf@ichf.edu.pl JDS: * surratt@unc.edu

Figure S1. Inhibitory concentration-50 (IC₅₀) of SOA produced from a-pinene ozonolysis was found to be 912 and 230 μ g mL⁻¹ for 48 and 24 hours, respectively. logIC₅₀ was found to be 2.96 and 2.363 at the two different treatment time points in BEAS-2B cells. IC₅₀ was calculated using GraphPad Prism (Version 8.00 for Windows, GraphPad Software, La Jolla California USA, <u>www.graphpad.com</u>).

Figure S2. The cellular proliferation (in %) for BEAS-2B cells treated with equimolar mixtures of two selected α -pinene SOA molecular tracers in increasing concentration for 24 (blue bars) and 48 (black bars) hours: (a) pinonic and pinic acids; (b) pinonic acid and MBTCA; and (c) pinic acid and MBTCA.

Figure S3. The cellular proliferation (in %) of A549 cell lines when treated with equimolar mixtures of two selected α -pinene SOA molecular tracers in increasing concentration for 24 (blue bars) and 48 (black bars) hours: (a) pinonic and pinic acids; (b) pinonic acid and MBTCA; and (c) pinic acid and MBTCA

Figure S4. Inverted phase microscopy (Nikon Eclipse T1-SAM, Japan) images of A549 cells treated with increasing concentrations of pinonic acid at x100 magnification. The micrographs are scaled at 600 μ m x 800 μ m

Figure S5. Inverted phase microscopy (Nikon Eclipse T1-SAM, Japan) images of A549 cells treated with increasing concentrations of pinic acid at x100 magnification. The micrographs are scaled at 600 μ m x 800 μ m

Figure S6. Inverted phase microscopy (Nikon Eclipse T1-SAM, Japan) images of A549 cells treated with increasing concentrations of MBTCA at x100 magnification. The micrographs are scaled at 600 μ m x 800 μ m

Figure S7: The phase contrast microscopy micrograph of A549 cells at 24 hours. The micrographs depict untreated control cells have similar morphology to α -pinene ozonolysis generated SOA treated A549. The positive control for cytotoxicity (Triton-X 100 treated cells) show visible signs of cellular degradation.

Figure S8. Six-point calibration curves for MBTCA, *cis*-pinonic acid and *cis*-pinic acid generated by RPLC/ESI-HR-QTOFMS negative ion mode analysis. Note that the data points within the linear range and the linear fit are shown in blue while the non-linear data points and the polynomial fit are shown in orange.

Figure S9. RPLC/ESI-HR-QTOFMS positive ion mode analysis of the 1,2-ISOPOOH standard demonstrates how organic hydroperoxides are detected and break down during our ESI-HR-Q-TOFMS analyses: (a) the extracted ion chromatogram (EIC) of $[M+NH_4]^+$ ion at mass-to-charge (*m/z*) 136 for 1,2-ISOPOOH; (b) the mass spectrum for chromatographic peak with the retention time (RT) of 6.123 min; (c) the mass spectrum for chromatographic peak with the RT of 10.314 min; (d) the six-point calibration curve for 1,2-ISOPOOH in the concentration range between 0.5 and 50 ppm. Consistent with our previous study, the $[M+H]^+$ molecular ion was not seen in the full MS scan given the -OOH group being a unfavorable protonation site within ESI. Instead, the dehydrated molecular ion $[M + H - H_2O]^+$ (*m/z* 101) was observed. The presence of the $[M+NH_4]^+$ ion resulted from background NH₄⁺ contamination in our system. Therefore, the neutral loss of 35 u (i.e., NH₃ + H₂O loss from the $[M+NH_4]^+$ ion) may also contribute to the observed fragment ion at *m/z* 101. The fragment ion observed at *m/z* 85 can be explained by the neutral loss of 51 u (i.e., NH₃ + H₂O₂ loss of the $[M+NH_4]^+$ ion).

B)

D)

S8

F)

Figure S10. RPLC/ESI-HR-QTOFMS positive ion mode analysis data of the PAM-generated SOA from α -pinene ozonolysis revealed structures of organic hydroperoxides present during the exposures. Seven of these structures were tentatively identified through the accurate mass measurements and tandem mass spectra (MS/MS) spectra (figures A-G). Note that the first panel of each figure shows the extracted ion chromatogram for the $[M + H]^+$ ion associated with each organic hydroperoxide. The second panel is the positive electrospray mass spectrum for the $[M + H]^+$ ion and the third panel are the fragment ion mass spectrum (MS/MS) for the $[M + H]^+$ ion.

Table S1. Comparison of previous toxicological studies associated with α -pinene SOA with the current study. Note that the fresh α -pinene SOA is generated through ozonolysis alone, while aged SOA is α -pinene SOA heterogeneously reacted with OH radicals.

α-Pinene SOA system studied	Model used	Response Type Studied	Toxicological End Point	Conclusions	Consistent with current Study	Reference
Pinonic Acid Pinic Acid MBTCA Fresh α-pinene	A549 BEAS-2B	Cytotoxicity Oxidative Stress 24 & 48 hours 0.01, 0.1, 1, 10, 100, 200ug/mL	MTT Assay Calcein-AM/PI Staining H ₂ DCFDA	α-pinene SOA at 200ug/mL induced high time- dependent cell death due to increased ROS	N/A	This Study
Fresh α-pinene	BEAS-2B	Lung Inflammatory response	IL-8 and Cytotoxicity	No significant change in IL- 8 No toxicity	No	1
α-pinene+ NOx+ SOx	Macrophages	Lung Macrophage response	Cytotoxicty IL-6, IL-8, and TNF-a Phagocytic Activity Wound Heal	Decreased phagocytic activity	N/A	2
NOx+ NH ₃ α - pinene; SOx + NOx+ NH ₃ α -pinene;	Apo E-/-) mice	Short term Cardiopulmonary response 7 days 250, 300 mg/m3	gene expression of TBARS HO-1, ET-1 MMP-9	SO ₂ : Increased expression HO-1, MMP-9, and ET-1 No SO ₂ : Decreased expression	N/A	3
NOx+ α -pinene; SOx + NOx+ α - pinene;	Sprague-Dawley rats ApoE-/- mice	Short term Cardiopulmonary response 200 µg m ⁻³ 7 days	gene expression of TBARS HO-1, ET-1 MMP-9	Revealed limited biological response	N/A	4
NOx+ α-pinene Fresh and Aged α- pinene	DTT acellular	Oxidative potential response	Oxidative stress	Negligible or no response	Yes	5
NOx+ aged α- pinene Aged and Fresh α- pinene	Murine alveolar macrophages 0.1-10ug	Pro-inflammatory response and oxidative stress response	ROS/RNS production and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL- 6)	Similar inflammatory response to all three conditions Negligible or no response	Yes	6
Fresh & aged α- Pinene SOA	A549 cells ALI exposure system 0-14µg	Cellular Viability	LDH Assay	More decreased viability in aged than fresh sample	Yes	7
Fresh, aged & NOx α-Pinene SOA	A549 cells ALI exposure system	Cellular Viability Oxidative stress Superoxide	WST-1 assay H ₂ DCFDA ROS-Superoxide Detection Assav	No difference between NOx and NOx free system	Yes	8
Fresh α-Pinene SOA	BEAS-2B Cell Lines U937 Cell Lines	Cellular Viability Gene Expression (RT-PCR) 0.1, 1, or 10 µg/mL 3, 6 and 24 hours	GAPDH Ratio to: HMOX IL-8 ARE Activity	No significant change in viability Slightly increased HMOX activity IL-8 increase at 3 hours which is normalized at 24 hours No change in ARE activity	Yes-consistent results at similar dosage	9

TBARS: thiobarbituric acid reactive substance, (HO)-1: heme-oxygenase, (ET)-1: endothelin, (MMP)-9: matrix metalloproteinase, (TNF- α): tumor necrosis factor- α , (IL-6): interleukin-6, (IL-8): interleukin-8 and antioxidant response element (ARE)

References

1. Jang, M.; Ghio, A. J.; Cao, G., Exposure of BEAS-2B Cells to Secondary Organic Aerosol Coated on Magnetic Nanoparticles. *Chemical Research in Toxicology* **2006**, *19* (8), 1044-1050.

2. Gaschen, A.; Lang, D.; Kalberer, M.; Savi, M.; Geiser, T.; Gazdhar, A.; Lehr, C.-M.; Bur, M.; Dommen, J.; Baltensperger, U.; Geiser, M., Cellular Responses after Exposure of Lung Cell Cultures to Secondary Organic Aerosol Particles. *Environmental Science & Technology* **2010**, *44* (4), 1424-1430.

3. Lund, A. K.; Doyle-Eisele, M.; Lin, Y.-H.; Arashiro, M.; Surratt, J. D.; Holmes, T.; Schilling, K. A.; Seinfeld, J. H.; Rohr, A. C.; Knipping, E. M., The effects of α -pinene versus toluene-derived secondary organic aerosol exposure on the expression of markers associated with vascular disease. *Inhalation toxicology* **2013**, *25* (6), 309-324.

4. McDonald, J. D.; Doyle-Eisele, M.; Campen, M. J.; Seagrave, J.; Holmes, T.; Lund, A.; Surratt, J. D.; Seinfeld, J. H.; Rohr, A. C.; Knipping, E. M., Cardiopulmonary response to inhalation of biogenic secondary organic aerosol. *Inhalation toxicology* **2010**, *22* (3), 253-265.

5. Tuet, W. Y.; Chen, Y.; Xu, L.; Fok, S.; Gao, D.; Weber, R. J.; Ng, N. L., Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. *Atmospheric Chemistry & Physics* **2017**, *17*, 839.

6. Tuet, W. Y.; Chen, Y.; Fok, S.; Champion, J. A.; Ng, N. L., Inflammatory responses to secondary organic aerosols (SOA) generated from biogenic and anthropogenic precursors. *Atmospheric Chemistry and Physics* **2017**, *17* (18), 11423.

7. Chowdhury, P. H.; He, Q.; Carmieli, R.; Li, C.; Rudich, Y.; Pardo, M., Connecting the Oxidative Potential of Secondary Organic Aerosols with Reactive Oxygen Species in Exposed Lung Cells. *Environmental Science & Technology* **2019**, *53* (23), 13949-13958.

8. Chowdhury, P. H.; He, Q.; Lasitza Male, T.; Brune, W. H.; Rudich, Y.; Pardo, M., Exposure of Lung Epithelial Cells to Photochemically Aged Secondary Organic Aerosol Shows Increased Toxic Effects. *Environmental Science & Technology Letters* **2018**, *5* (7), 424-430.

9. Ito, T.; Bekki, K.; Fujitani, Y.; Hirano, S., The toxicological analysis of secondary organic aerosol in human lung epithelial cells and macrophages. *Environmental Science and Pollution Research* **2019**, *26* (22), 22747-22755.