## Science Advances

advances.sciencemag.org/cgi/content/full/7/12/eabe2470/DC1

### Supplementary Materials for

### GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERa glycosylation and stability to cancer

Eun Myoung Shin, Vinh Thang Huynh, Sultan Abda Neja, Chia Yi Liu, Anandhkumar Raju, Kelly Tan, Nguan Soon Tan, Jayantha Gunaratne, Xuezhi Bi, Lakshminarayan M. Iyer, L. Aravind, Vinay Tergaonkar\*

\*Corresponding author. Email: vinayt@imcb.a-star.edu.sg

Published 17 March 2021, *Sci. Adv.* 7, eabe2470 (2021) DOI: 10.1126/sciadv.abe2470

#### This PDF file includes:

Figs. S1 to S5 Table S1

#### **Supplementary Figure Titles and Legends**

#### Fig. S1: *GREB1* KO in ER<sup>+ve</sup> breast cancer cell lines.

(**A**) Relative mRNA expression of *GREB1* was analyzed by qPCR in a panel of ER $\alpha^{+ve}$  or ER $\alpha^{-ve}$  cell lines. n = 2.

(**B**) gRNAs were designed to target the locus about 100bp downstream of ATG site in *GREB1*'s Exon 2 (upper panel). Genomic DNA of *GREB1*-KO clones was amplified by PCR and sequenced (lower panel). Unless specified, *GREB1*-KO clone 441 was used in subsequent experiments shown in the paper.

(**C**) GREB1 levels in MCF7-WT and *GREB1*-KO derivative cell lines with or without E2 stimulation.

(**D**) The growth of MCF7-WT and *GREB1*-KO cell lines was assessed by fluorimetric viability assay. n = 6; \* p < 0.05 by two-way ANOVA with Holm-Sidak's multiple comparisons test.

(E) Growth of MCF7-WT and *GREB1*-KO cell lines was assessed by colony-formation assay using crystal violet staining. Photo credit: Sultan Abda Neja, Institute of Molecular and Cell Biology, A\*STAR.

(**F-G**) MCF7-WT or *GREB1*-KO cells were subcutaneously injected into the flanks of the same NOD/SCID mice, each cell line on one side. The resulting tumors in these mice were harvested (**F**) and weighted (**G**). n = 8; \*\*\*\* p < 0.0001 by unpaired t-test. Photo credit: Anandhkumar Raju, Institute of Molecular and Cell Biology, A\*STAR

(H) BT474-WT and BT474-*GREB1*-KO cell lines were treated with or without E2 stimulation. Levels of indicated proteins were analyzed by western blot.

(I) T47D-WT and T47D-*GREB1*-KO cell lines were treated with or without E2 stimulation. Levels of indicated proteins were analyzed by western blot.

(J) Growth of BT474-WT, BT474-*GREB1*-KO, T47D-WT and T47D-*GREB1*-KO cells was analyzed by colony formation assay with crystal violet staining. Photo credit: Eun Myoung Shin, Institute of Molecular and Cell Biology, A\*STAR

#### Fig. S2: GREB1 modulates ER $\alpha$ signaling with direct interaction.

(A-E) MCF7-WT and *GREB1*-KO cells were transduced with Vec or *GREB1* expression construct.

(A) Protein levels were analyzed by western blot.

(**B**) mRNA expression levels were analyzed by qPCR. n = 2; ns = not significant, \*\* p < 0.01 by one-way ANOVA with Holm-Sidak's multiple comparisons test.

(**C**) Growth of transduced MCF7-WT and *GREB1*-KO cell lines was analyzed by colony formation assay with crystal violet staining. Photo credit: Sultan Abda Neja, Institute of Cell and Molecular Biology, A\*STAR.

(**D-E**) ChIP of ER $\alpha$  was performed in transduced MCF7-WT and *GREB1*-KO cells. ER $\alpha$  recruitment at indicated promoters *GREB1* (**D**) and *XBP1* (**E**) were analyzed by qPCR. n = 2; ns = not significant, \* p < 0.05, \*\* p < 0.01 by one-way ANOVA with Holm-Sidak's multiple comparisons test.

(**F**) Cytoplasmic (C) and nuclear (N) fractions of indicated cell lines were biochemically separated and blotted for the indicated proteins.

(**G**) *ESR1* constructs with corresponding regions were generated as depicted in this schematic.

(H) FLAG pulldown was performed and analyzed for indicated proteins by western blot in MCF7-WT cells expressing the ESR1 constructs. ns, non-specific band.

#### Fig. S3: GREB1 GT domain is important for GREB1 mediated cell proliferation.

(**A**) Multiple sequence alignment of the TAGT family of GT domains including GREB1 and its orthologs, J-base glycosyltransferases and phage TAGTs. Proteins are denoted by their accession numbers and species name. Red-filled circles indicate residues mutated in this study to create the GT-Mut construct.

(B) GREB1 was expressed in *S. cerevisiae*. Using the same lysates, O-GalNAcylation levels (left panel) and O-GlcNAcylation (right panel) were analyzed by western blot.
(C) HEK293T cells were transfected with OGT, FLAG-ERα together with either Vec or GREB1 expression constructs. FLAG-pulldown was performed; protein levels were analyzed by western blot.

#### Fig. S4: GREB1 O-GlcNAcylates ER $\alpha$ at T553 and S554 to regulate its stability.

(A) Percentage of glycosylated peptides at indicated sites.

(**B**) Densitometry analysis for ER $\alpha$  bands from western blot in Fig. 4C. n=4, \*\*p<0.01, by two-way ANOVA.

(**C**) Densitometry analysis for ER $\alpha$  bands from western blot in Fig. 4D. n=4, non-significant (ns), by two-way ANOVA.

(**D-E**) MCF7-WT cells transduced with ER $\alpha$ -WT or ER $\alpha$ -2M were transfected with control siRNA (Cnt) or OGT siRNA for 48 hours and subsequently subjected to qRT-PCR; n=3; \* p <0.05; \*\*\* p <0.001 by Student's t-test (**D**) and western blot (**E**).

(**F**) MCF7-WT ectopically expressing ER $\alpha$ -WT cells were transfected with siOGT. 48 hours post-transfection, cells were subjected to FLAG-pulldown, and O-GlcNAcylation of ER $\alpha$  were examined by western blot analysis.

(**G**) MCF7-WT cells transduced with ER $\alpha$ -WT or ER $\alpha$ -2M were transfected with siRNA Control (Cnt) or siOGT for 48 hours and subsequently subjected to cycloheximide

(CHX) treatment. The amount of remaining ER $\alpha$  after CHX treatment was analyzed by western blot.

(H) Western blots of CHX chase assays of cells with and without OGT knockdown by siRNA were analyzed by densitometry. Relative remaining protein was computed as the densitometry ratio between CHX treated and un-treated conditions, n=2.

(I-J) MCF7-WT cells (I) and GREB1-KO cells (J) were transduced with either shControl (shCnt) or shXBP1 and subsequently analyzed by qRT-PCR of indicated target genes in HBP pathway. n = 2; \* p < 0.05, by unpaired t-tests.

(**K-M**) MCF7-WT cells transduced with ER $\alpha$ -WT were transfected with either control siRNA (siCnt) or siXBP1 were subjected to E2 treatment. mRNA levels of XBP1 were analyzed by qRT-PCR. \* p < 0.05; \*\* p < 0.01 by Student's t-test (**K**). O-GlcNAcylation of ER $\alpha$  was examined by FLAG M2 pulldown followed by western analysis (**L**) and densitometry analysis which compute the ratio of O-GlcNAc band-1 and Flag- ER $\alpha$  band-2 (**M**).

#### Fig. S5: *GREB1* and breast cancer prognosis

(**A-B**) Kaplan Meier plots in a cohort of breast cancer patients regardless of treatments, plotting tumor's (**A**) *ESR1* and (**B**) *GREB1* mRNA as a function of overall patient survival.

(**C-D**) Kaplan Meier plots in a cohort of breast cancer patients treated with endocrine therapies, plotting tumor's (**C**) *ESR1* and (**D**) *GREB1* mRNA as a function of overall patient survival.

(E) Kaplan Meier plots in a cohort of ER $\alpha$ -ve breast cancer patients, plotting *GREB1* expression as a function of overall patient survival.

#### Supplementary Table Legends:

# Table S1: ER $\alpha$ 's interactors identified by mass spectrometry from MCF7-WT cells

FLAG-pulldown was performed in MCF7-WT cells expressing ERα-WT, and eluates were analyzed by mass spectrometry in the same experiment described in Fig. 7. Identified proteins are listed alphabetically, and highly similar proteins are grouped together.



Fig. S1



| A<br>Secondary structure<br>GREB1 Human<br>GREB1L Human<br>BRAFLDRAFT 125018_Branchiostoma<br>XP 022089595.1_Seastar<br>RMX61275.1_Lace_coral<br>XP_020905865.1_Exaiptasia<br>XP_004902977.1_Salpingoeca<br>EFW43542.2_Capsaspora<br>XP_005760864.1_Emiliania<br>PRP75493.1_Planoprotostelium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Strand-1           1541         Y I K S P T F T P T T G R           1541         A V K S P I F T P S S G R           1626         D I K T P I F T P T C S R           1636         A I K T P I F M W T F G R           1075         T L P Y W I F H P S H R G           1370         L D M P V V F M P S G R           1370         L D M P V V F M P S G R           1375         D V K F P I F V D S F Q R           1707         L A V K W M F T C S Y G G           2469         S L R Y P V F I S S H R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Helix-1<br>H 2 G L F N L Y H A M D G A 1<br>H 2 G L L N L F H A M E G I 1<br>Q 2 G L L N L F H A M E G S 1<br>H 2 G L I N L H H T M E G S 1<br>H 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L L N L Y H A L - E G 2<br>A 2 G L N L Y H A L - E G 2<br>A 2 G L N L Y H A L - E G 2<br>A 2 G L N L Y H A L - E G 2<br>A 2 G L N L Y H A L - E G 2<br>A 2 G L N L Y H A L - E G 2<br>A 2 G L N L Y H A L - E G 2<br>A 2 G L N L Y H A L - E G 2<br>A 2 G L N L Y H X W A C Y T D C A A A P 5<br>D 2 K I L Y H K W A C Y T D C A A A P 5<br>A 3 T Y R L N R C A A A G T Y R Y H A Y A C A A A P 5<br>A 3 T Y R L N R C A A A G A Y A Y A Y A Y A Y A Y A Y A Y | Strand-2<br>H L H V L V V K E Y<br>H L H L L V V K E Y<br>H L H L L V V K Q C<br>H I H Y L V C K Q K<br>H I H V L V C K Q K<br>H V Q L V V K K Q<br>H V Q L V F V K H Q<br>U Q V I V C R E -<br>V Q V V I C R E -<br>U Q V V V C R E -<br>C L K I L V R K F E D<br>C L K I L V R K K F E D                                                                                                                                                                                                                                                                                                                                                               | Alix-2<br>KKYWPN HIMLVL<br>(RKYWPN HIMLVL<br>(RKYWPN HILVL<br>(RKYWPN HILVL<br>(RKYWPN HILVL<br>(RSTWGK LVVYPL<br>(NKWPN HVIVGL<br>(CTHYPD VVVCAL<br>(CTHYPD VVVCAL<br>(CTHYPH LIAVL<br>(CTHYPH L | P 2<br>P 2<br>P 2<br>P 2<br>P 2<br>P 2<br>P 2<br>P 2<br>P 2<br>P 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAEGRURAFI 530b5_Naegiena<br>XP 027051456.1 Lace coral<br>GAQ83200.1 Klebsormidium<br>gp27 Nonlabens_phage_P12024L<br>JGT Trypanosoma_brucei<br>LMJF 36 2370 Leishmania_major<br>NVP10760 12 Vibrio_phage_p10760<br>ORF324 Ralstonia_phage_p18SL1<br>p128 Aeromonas_virus_65<br>consensus/85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1441 G V R S W I F V P S W N R<br>232 I K Q R W I F I P S F R R<br>277 L E I A P I F I A S R R R<br>1 M E N I F I P T K N R<br>68 G H T C P I F V P S K G R<br>107 Q N R Y P V Y I V S K G R<br>109 K N R Y P I Y I V S O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A QIALLDWPKDDIS<br>A DVAHLNLAVPWMS<br>VINSTLLKFAEQQK<br>FIHERGTLSLLIGDI<br>SLLDRSTMAVLVRDI<br>A KNGLTTKALDKMI<br>VDNQLTVERLPKG2<br>Y KNGLTWKALDRVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YRQVIVYRHS     EFQC       TRILVYRHS     EFQC       HYVLLTIEPS     DEAAA       QEVFIVEPQ     EYKS       VPFSLVVERE     EAAQ       VPFVLVVERE     EAAC       QHYLVVERE     EACC       QHVLVVERE     EACC       QHVLVVERE     EAEC       QHVLVVERE     EAEC       QHVLVCPAD     EVKAL       ADYYVCENH     ELEN      hlhhc     Ch                                                                                                                                                                                                                                                                                                                            | (R N V L G G I F V I M S L           (Y K Y C G H I F H I S L           (R K W A E Q 3 H I L V V L           (R K W A E Q 3 H I L V V L           (R C L V D R 64 V K I E V L           (R A M L D R 145 F V I E V L           (I A M L D R 145 F V I E V L           (I A M L D R 145 F V V V L A Q           (S E V V G V Q R C L V L           (I - p, h s p, h h . 1           Holival                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Distinct family<br>related to GREB1<br>J-Base glycosyltransferase<br>15<br>Phage TAGT<br>15<br>Strand 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Secondary Structure<br>GREB1_Human<br>GREB1_Human<br>BPAFLDRAFT_EUMAN<br>BPAFLDRAFT_S018_Branchiostoma<br>WA 661075<br>WA 661075<br>WA 061075<br>WA 061075<br>WA 061075<br>WA 051075<br>WA | Tenk-y<br>F n S A G V G A A H F L I K E L S<br>C n D A C V G A A H F L I K E L S<br>C n D A C V G A A H F L I K E L S<br>C n D A C V G A A H F L V K E L F<br>P E D G F I G A A H F L V K E L F<br>S A T C N D A C F I G A A H F F L V K E L F<br>S A T C N L G F T R V C I G R F A<br>N H I T R C G Y S R H V I G I L S<br>N D E I G A G Y P R L W I Q K F A<br>E N G G I T Y V R N Y I K E Y S<br>S N N G G I T Y V R N Y I L R K L<br>E T N R G V S Y V R N Y I L Q V L<br>S K S K R C Y S A R R F C I D U L S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N D S G G G S R N A R N F C I D U S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S<br>N N I K T L G A K R E W I M L Q S S<br>N N I K T L G A K R E W I M L S S<br>N N I K T L G A K R E W I M L S S<br>N N I K T L G A K R E W I M L S S<br>N N I K T L G A K R E W I M L S S<br>N N I K T L M A M N S S S R S . N N N S S S S S S S S S S S S S S S | 1 H H L E LE       16 F I V I S D         1 H H L E LE       16 F I V I S D         1 H N L E LE       16 F I V I S D         1 Y N L Q LE       16 F I V I S D         1 Y N L Q LE       16 F I V I S D         1 Y N L Q LE       16 F I I I S D         1 Y N L Q LE       16 F I I S D         1 Y N L Q LE       16 F V I M M D         1 Q N F F K E       16 F V W M M D         1 Q N F F K E       16 F V W M M D         1 Q N C G F E       16 F V W M M D         N E L G LD       16 F V W M M D         N E L G LD       16 F V W M M D         A G L E       1 W M D D         A H LK LK       R V W Q M D         3 A V N V Y A       2 W V V D O         A H LK LK       R V W V D D         A H V Y A C G 125 F Y W V D       K E N G F K         F H R F T F M M D       K E L G F K         Y H R N H N D       N H N D         Y A L G F K       H H W Y D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L K H IM Q H I E A A 3 M H<br>L K T V L Q H I E A A 3 Y H<br>L K T V L Q H I E A A 3 Y H<br>L K Z V L Q H I E A A 3 Y H<br>L K Z V I Q H I E A A 3 Y H<br>L K A L I E E V E A A 3 Y H<br>L K A L I E E V E A A 3 Y H<br>L K A L I E E V E A A 3 Y H<br>A S R I V L A S D A Q 50 D K<br>A S R I V L A S D A Q 50 D K<br>A S R I V L A S D A Q 50 D K<br>A S R I V L A S D A Q 50 D K<br>A S R I V L A S D A Q 50 D K<br>Y E E I V E R E P N T 33 C E<br>I E G L V Q N A K S N 1 C P<br>F S V L S K A A E Q F 1 S N<br>F S V L S K A A E Q F 1 S N<br>T R T M M R E V E V R 8 F S S<br>- R D A T Y R F W T K 8 - Y<br>- R C A T Y R F W T K 8 - Y<br>C F R A A E D F V D R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gum     A     L     G       Y     A     L     L     G       Y     A     L     L     G       Y     S     V     L     G       Y     Y     A     M     L       Y     Y     A     M     S       Y     Y     A     M     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     S     S       Y     Y     Y     Y     S       Y     Y     Y     Y     Y       Y     Y     Y     Y       Y     Y     Y     Y       Y     Y     Y     Y       Y     Y<                                                                                                                                                                                                   |
| Secondary Structure<br>GREB1 Human<br>GRAB1L Human<br>BRAFLDRAFT 125018 Branchiostoma<br>XP 02208955.1 Seastar<br>RMX61275.1 Lace coral<br>XP 02006856.1 Exaiptasia<br>XP 004992977.1 Salpingoeca<br>EFW43542.2 Capasapora<br>XP 005760864.1 Emiliania<br>PR775493.1 Planoprotostelium<br>NAEGRORAFT 53065 Naegleria<br>XP 027051456.1 Lace coral<br>GA083200.1 Klebsormidium<br>GA083200.1 Klebsormidium<br>GT Nonlabens phage P12024L<br>JGT Trypanosoma brucei<br>LMJF 36 2370 Leistmania major<br>NVP10760_12_Vibrio_phage_D10760<br>ORF234_Ralstonia phage phiRSL1<br>p128_Aeromonas_virus_65<br>consensus/85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heix-5         Str           L R K W S S 9 P F         S R C H V H V           L R K W S S 9 P F         S R C H V H V           L R K W S S 9 P F         S R C H V H V           L R K W S S 9 P F         S R C H V H V           L R K W S S 9 P F         S R C H V H V           L R S V S S 9 P F         S R C H V H V           L R S V S S 9 P F         S R C H V H V           L R S V S S 9 P F         S R C H V H V           L R S V S S 9 P F         S R C H V H V           L R S V S S 9 P F         S R C H V H V           S S R D P P S S R         S R C H V H V           S S R D P P S S P         S R C H V H V           S S R D D P S S F         S R C H V H V S V S S V           S F R N D D P S S F         S R T H V S V S S V K S D S P S F           S K R D D P S S F R I L S V S S V S S V K S D S P S T L L S S F T I C S S T S S T L S S T S S T S S T S S T S S T S S T S S T S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and-6         F I I LN Y D LT         T D LT         T D LT         T D LT         T D LT         N Y Q D D         F I L LN Y D LT         N Y Q D         F I L N Y D LT         N Y Q D         F I L N Y D LT         N Y Q D         MY F LN Y D LT         N Y Q D         MY F LN Y D LT         N Y Y LN Y K ST         S Q Y Y R         A F L LN Y K ST         A Y Y LL L & L A L         A Y L L & L A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y L L E A L         A Y Y A L L E A L         A Y Y A L L E A L         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Helix-6 QN R F L C - D D V D F N L R Y V F N R Y F C - E D I D F N M R X Y F C - E D I D F N M R X Y F C - E D I D F N M R X P W P C - E D V D F N M R X A N D L S C - E D V N F N E A L Y W P C - E D V P F N F N E A L Y W P C - E D V P F N F N E A L Y W C - E D V P F N F N E A L Y W C - E D V P F N F N E A L Y W C - E D V P F N F N E A L Y W C - E D V P F N F N E A L Y W C - E D V P F N F N E A L Y W C - E D V P F N F N E A L Y Y A L - D V L Y T Y C H E X Y A L - D V L Y T Y C H E X Y A L - D V L Y T Y C H E X Y A L - D V L Y T V C Y C Y C Y C Y Y A L - D V D Y L Y C Y C Y C Y Y A L - D Y L Y C Y C Y C Y C Y C Y C Y C Y C Y C | Strand-8           HSA-GLLLCRFNRF           HSA-GLLLCRFNRF           SSG-GLLCRFNRF           SSG-NGLLCRFNRF           DKA-GLVQCNRY           DKA-GLVQCNRY           DKA-GLVQCNRY           DKA-GLVQCNRY           DKA-GLVQCNRY           DKA-GLAV           DEK-GLAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18         V P A Q Y I C A P D         1800           10         L P L Q Y I C A P D         1775           11         T F R H Y V S T P D         1925           12         T F R Y V S T P D         1925           13         E K C S I V E R P V         1822           13         E K C S I V E R P V         1822           13         E K C S I V E R P V         1822           14         F R H V V A P D         1822           15         V F A V T Q P H 1436         1832           15         R L F A V T Q P H 1436         1225           16         R L K D G Q K W P S 577         116           11         G L K C F Y R T W P S 391         186           18         N K L F V R T W P S 391         186           18         N K L F V R T W P S 391         177           17         S K M I E D L H P D 344         225           17         S K M I E D L H P D 344         245           17         S K M I E D L H P D 347 |
| Vec Vec B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vec<br>GREB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C<br>GREB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IP: FLAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



Lane 1 2

WB: O-GalNAc (VVL-Biotin)

Lane 1 2

Fig. S3

╋

+

4







Table S1: ERα's interactors identified by mass spectrometry from MCF7-WT cells

|                                           |                   | ee a en rea y r |                 |                   |
|-------------------------------------------|-------------------|-----------------|-----------------|-------------------|
| 26S proteasome proteins and subunits      | CDC5L             | HADHA           | NONO            | SLAIN2            |
| Actin proteins Coatomer subunits          | CHERP             | HDAC1           | NOP2            | SLC25A3/5/6/11/13 |
| ATP synthase subunits                     | CKAP4             | HIST1H1C        | NPM1            | SMARC A5/D2       |
| Elongation factors                        | CLNS1A            | HIST1H2B        | NRIP1           | SMCHD1            |
| Eukaryotic translation initiation factors | CLTC              | HIST1HB1        | NT5C2           | SNW1              |
| Exosome complex proteins                  | CNBP              | HP1BP3          | OTUD4           | SPRR2A            |
| Heat-sock proteins                        | CORO1C            | HRNR            | PABPC 1/4       | SPTBN1            |
| Heterogeneous nuclear ribonucleoproteins  | CT45A10           | HSD17B10        | PCBP 1/2        | SRP14             |
| Keratin proteins                          | CTTN              | ILF 2/3         | PDIA6           | SRPK1/2           |
| Myosin proteins                           | DDB1              | IMMT            | PFKFB 2/3       | SRPRB             |
| Ribosomal proteins                        | DDX helicases     | IVBS1ABP        | PFM             | SSB               |
| Small nuclear ribonucleo proteins         | DHX 9/15/30/36/57 | JAK1            | PKP3            | SSBP1             |
| Splicing factors                          | DIMT1             | KCTD 5/17/2     | PLRG1           | STAU1             |
| Tubulin proteins                          | DNAJA 2/3         | KDELR2          | POMGNT2         | STK38             |
| ACTR 2/3                                  | DNAJC 9/13/21     | KHDRBS1         | PPM1B           | STRAP             |
| AIFM1                                     | DRG1              | KIF11           | PPP2 CB/R1A/R2A | SVIL              |
| АКАР8                                     | DSG1              | KPNA2           | PRKRA           | TAB1              |
| ALB                                       | DSP               | L1RE1           | PRMT5           | TAF4              |
| ALYREF                                    | DSTN              | LARP1           | PRPF 3/4/19/31  | TBL2              |
| ANXA2                                     | ELAVL1            | LCE 1C/2B       | PRRC2A          | THRAP3            |
| AP2 A1/B1                                 | ELMSAN1           | LCE2B           | PTBP 1/3        | TMED10            |
| ARCN1                                     | EMD               | LIMA1           | PTS             | TMOD3             |
| ARMCX3                                    | EPB41L5           | LMNA            | PURA            | ТМРО              |
| ASPH                                      | EPRS              | LMNB1           | PURB            | TOP1              |
| ATAD3A                                    | ERH               | LRPPRC          | PYM1            | TRA2A             |
| ATXN2L                                    | ESR1              | LRRC47          | QPRT            | TRIM28            |
| BCLAF1                                    | EWSR1             | LUC7L2          | RBBP4           | TRMT1L            |
| BMS1                                      | FLG2              | LYAR            | RBM 10/39       | TSPYL1            |
| BRI3BP                                    | FMR1              | MAGED2          | RBM4            | TTN               |
| C1QBP                                     | FTSJ3             | MAP 4/7         | RFC1            | TXNDC12           |
| C7orf50                                   | FUS               | MATR3           | RIO1            | U2SOP2            |
| CAD                                       | FXR1              | MCM 3/5         | RPN1            | UPF1/2            |
| CALM1                                     | G3BP 1/2          | MOB2            | RRBP1           | USP10             |
| CAMSAP3                                   | G6PD              | MOGS            | RS27A           | WDR5              |
| CAPNS1                                    | GAPDH             | MOV10           | RSBN1           | WDR77             |
| CAPRIN1                                   | GLYR1             | MSI2            | SART3           | XP32              |
| CAPZB                                     | GREB1             | MTDH            | SCYL2           | XRCC 5/6          |
| CASP14                                    | GREB1L            | MYBBP1A         | SEMA3B          | XRN2              |
| СВХЗ                                      | GTPBP4            | NAP1L1          | SERBP1          | YBX 1/3           |
| CCAR2                                     | H1FX              | NAT10           | SGPL1           | YME1L1            |
| CCT 5/6A/7                                | H2AFZ             | NCL             | SIRT1           | YWHA Q/Z          |