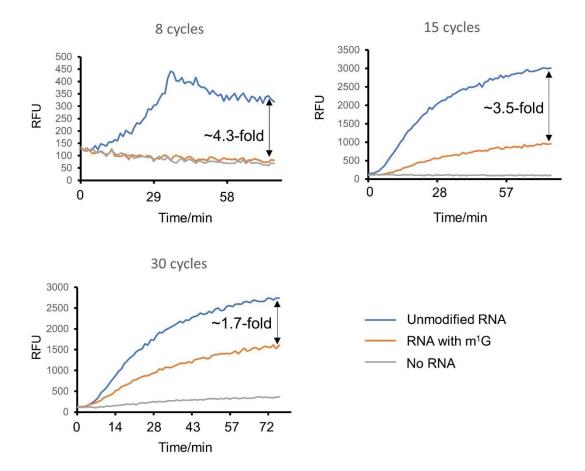
Supporting Information

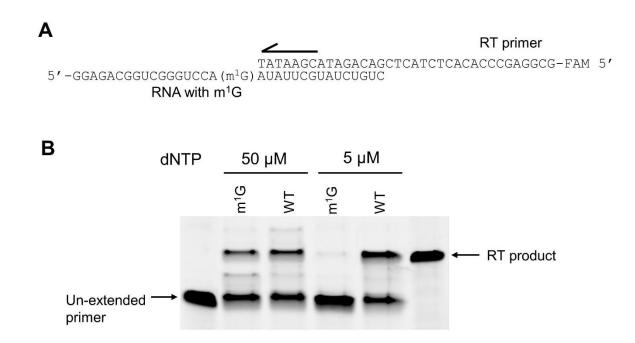
A High-throughput Screening Method for Evolving a Demethylase Enzyme with Improved and New Functionalities

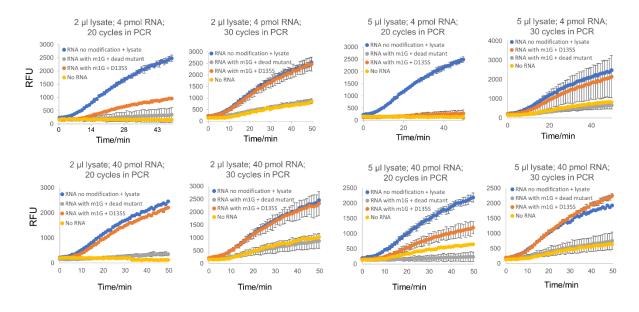

Yuru Wang^{1,2}, Christopher D. Katanski¹, Christopher Watkins¹, Jessica N. Pan¹, Qing Dai², Zhuoxun Jiang¹, Tao Pan^{1,*}

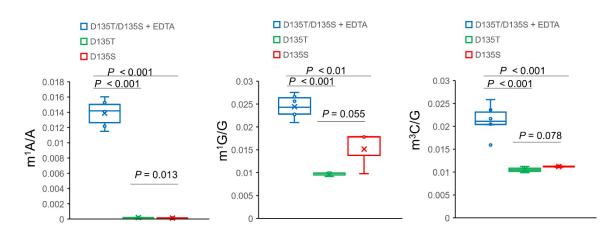
1. Department of Biochemistry and Molecular Biology, 2. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA

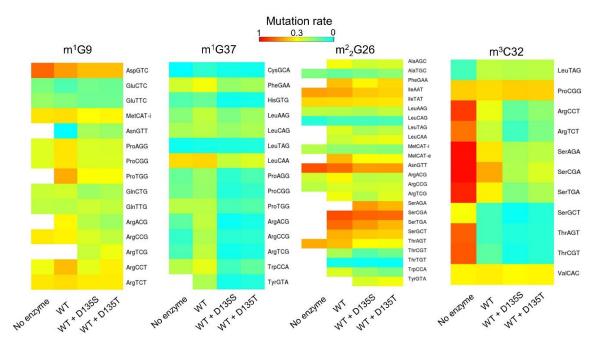
*corresponding author: taopan@uchicago.edu

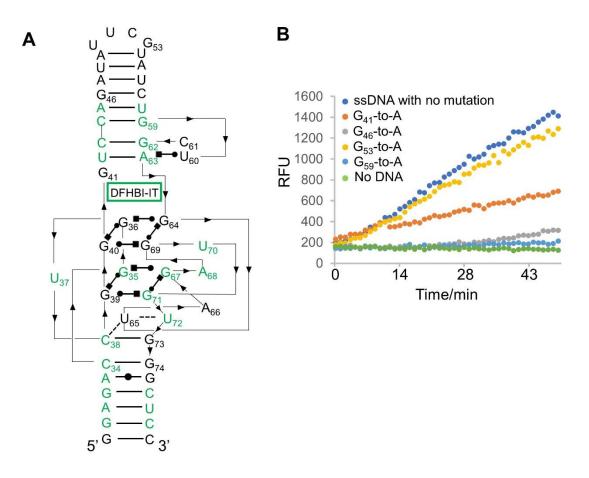
Contents


Figure S1. Evaluating the broccoli RNA fluorescence assay using pure synthetic RNAs2
Figure S2 . Testing the effect of RNase inhibitor on the RNase activity in the <i>E.coli</i> crude lysate using the RNase Activity Detection/Quantification Assay Kit
Figure S3. Testing the M-MLV RT in reverse transcription with the m ¹ G-broccoli RNA as the template
Figure S4. Optimizing the condition for screening experiments
Figure S5. LC-MS/MS to measure the demethylation efficiency of D135T and D135S on yeast tRNA
Figure S6. Heatmap showing mutation rates at m ¹ G9, m ¹ G37, m ² ₂ G26 and m ³ C32 for cytosolic tRNAs under the four conditions in tRNA-seq
Figure S7. Identifying guanosine residues in the broccoli sequence that are sensitive to the G-to-A mutation
Figure S8. The sequence alignment of AlkB family proteins and candidate residues for screening studies
Table S1. The summary of screening results for residues D135 and R210 of AlkB8
Table S2. RNA and DNA oligonucleotides (5' to 3') used in this study


Figure S1. Evaluating the Broccoli RNA fluorescence assay using pure synthetic RNAs. The assay was tested with different numbers of cycles in the PCR reaction.


Figure S2. Testing the effect of RNase inhibitor on the RNase activity in the *E. coli* crude lysate using the RNase Activity Detection/Quantification Assay Kit. (A) Fluorescence (whose relative intensity corresponds to relative RNase activity) of biological replicates 1 to 9 (S1-S9) with or without the addition of RNase inhibitor. (B) Summarization of data in (A) with statistics shown. Error bars mean SD, N=9. CV means coefficient of variation.


Figure S3. Testing the M-MLV RT in reverse transcription with the m¹G-broccoli RNA as the template. (A) Sequences of the RNA substrate and the RT primer used in the assay. (B) Testing the primer extension with dNTP at 10 times lower (50 μ M final) and 100 times lower (5 μ M final) concentrations than recommended by the manufacturer. WT means unmodified RNA.


Figure S4. Optimizing the condition for screening experiments. The parameters tested include the amount of lysate, the amount of RNA and cycle numbers in PCR. The condition of 2 μ l lysate, 4 pmol RNA and 20 cycles in PCR was used in the screening experiments for positions D135 and R210 using the m¹G-broccoli RNA as the substrate. Error bar indicates SD, n \geq 3.

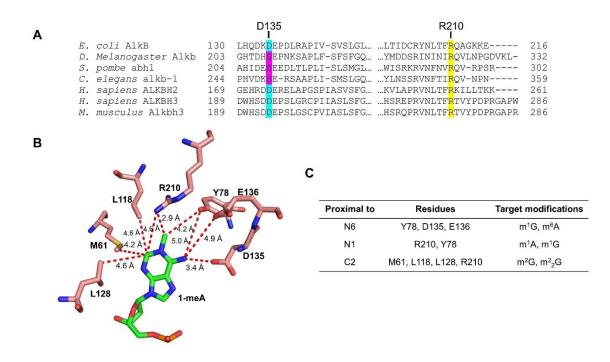

Figure S5. LC-MS/MS to measure the demethylation efficiency of D135T and D135S on yeast tRNA. Data for m¹A and m¹G were obtained after 10 min of demethylation reaction; data for m³C was obtained after 30 min of demethylation reaction. Error bar indicates SD, $n \ge 3$.

Figure S6. Heatmap showing mutation rates at m^1G9 , m^1G37 , m^2_2G26 and m^3C32 for cytosolic tRNAs under the four conditions in tRNA-seq. The tRNA samples were treated with no enzyme, wild type AlkB (WT), wild type AlkB plus the D135S mutant (WT + D135S) or wild type AlkB plus the D135T mutant (WT + D135T).

Figure S7. Identifying guanosine residues in the broccoli sequence that are sensitive to the G-to-A mutation. (A) The DNA sequence of the broccoli aptamer with conservative bases labeled in green. (B) The fluorescence signal generated from the broccoli sequence with the guanosine located at site 41, site 46, site 53 or site 59 mutated to an adenosine. Site 59 showed the highest sensitivity upon the G-to-A mutation. The numbering scheme of the Broccoli RNA is based on the ref (1).

Figure S8. The sequence alignment of AlkB family proteins and candidate residues for future screening studies. (A) In the sequence alignment, residues aligned to D135 in *E. coli* AlkB are highlighted in cyan (D) and magenta (S). Residues aligned to R210 in *E. coli* AlkB are highlighted in yellow. The sequence alignment was made using the NCBI blast tool. (B) Residues in *E. coli* AlkB that make ionic interactions or are within van der Waals contacts with the modified nucleobase m¹A in a dsDNA substrate (3BIE) (2). (C) A summary of candidate residues that may be screened to identify variants with improved activities towards different modifications.

library Activity pool	D135X	R210X (D135S)
Ι	T (2, 0.99)	R (2, 0.47)
II	R (3, 0.49), S (5, 0.48), I (1,	G (5, 0.32), S (2, 0.29), P (2,
	0.2)	0.33), D (1, 0.267), L (1, 0.29)
III	D (WT, 3, 0), A(2, 0), G(1,	T (1, 0), A (1, 0), Q (1, 0)
	0), V(1, 0), L(1, 0), M(1, 0),	
	C(1, 0)	

Table S1. The summary of screening results for residues D135 and R210 of *E. coli* AlkB. The first number in the parenthesis is the number of times the amino acid was identified in the screening; the second number in the parenthesis is the average value of adjusted RFU ($x10^3$) for the variant.

Tuble DE . It if and DI if I ongoindereotides (5, to 5, j used in this study)	Table S2	. RNA and DNA	oligonucleotides	(5' to 3	') used in this study.
--	----------	---------------	------------------	----------	------------------------

RNA with m1G	GGAGACGGUCGGGUCCA(m ¹ G)AUAUUCGUAUCUGUC
9-mer RNA	GAGC(m ¹ G)UUAG
oligonucleotide	
Unmodified	GGAGACGGUCGGGUCCAGAUAUUCGUAUCUGUC
RNA	
ssDNA with	GCGG AGA CGG TCG GGT CCA GAT ATT CGT ATC T(O6mG)T
O6mG	CGA GTA GAG TGT GG GCT
ssDNA with no	GCGG AGA CGG TCG GGT CCA GAT ATT CGT ATC TGT CGA GTA
mutation	GAG TGT GG GCT
RT primer	GCGGAGCCCACACTCTACTCGACAGATACGAATAT
RT primer	5' FAM- GCGGAGCCCACACTCTACTCGACAGATACGAATAT
(FAM)	
RT-PCR-for	CTAATACGACTCACTATAGGGCGGAGACGGTCGGG
RT-PCR-rev	GCGGAGCCCACACTCTACTCGACAGATACGAATAT
Broccoli	5' FAM-
truncation	GCGGAGCCCACACTCTACTCGACAGATACGAATATCTGGA
Broccoli full-	5' FAM-
length	GCGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCG
	ACCGTCTCCG
D133A-H131A-	GCGCGAAACTGTCGCTGGCTCAGGCGAAATCTGAACCGGATCTG
for	CGCGC
D133A-H131A-	GCGCGCAGATCCGGTTCAGATTTCGCCTGAGCCAGCGACAGTTT
rev	CGCGC
D135X-for	CTGTCGCTGCATCAGGATAAANNSGAACCGGATCTGCGCGCGCC
	AATTG
D135X-rev	CAATTGGCGCGCGCAGATCCGGTTCSNNTTTATCCTGATGCAGCG
	ACAG
R210X-for	CCGCTACAACCTGACATTCNNSCAGGCAGGTAAAAAAGAATAAC
R210X-rev	GTTATTCTTTTTTACCTGCCTGSNNGAATGTCAGGTTGTAGCGG

13-G-to-A	GCGGAGACGGTCGGATCCAGATATTCGTATCTGTCGAGTAGAGT
	GTGGGCTCCGC
18-G-to-A	GCGGAGACGGTCGGGTCCAAATATTCGTATCTGTCGAGTAGAGT
	GTGGGCTCCGC
25-G-to-A	GCGGAGACGGTCGGGTCCAGATATTCATATCTGTCGAGTAGAGT
	GTGGGCTCCGC
31-G-to-A	GCGGAGACGGTCGGGTCCAGATATTCGTATCTATCGAGTAGAGT
	GTGGGCTCCGC
DNA-	CTAATACGACTCACTATAGGGCGGAGACGGTCGG
screening-PCR-	
for	
DNA-	GCGGAGCCCACACTCTACTCG
screening-PCR-	
rev	

Reference

- 1. Filonov, G.S., Moon, J.D., Svensen, N. and Jaffrey, S.R. (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. *J. Am. Chem. Soc.*, **136**, 16299-16308.
- 2. Yang, C.G., Yi, C., Duguid, E.M., Sullivan, C.T., Jian, X., Rice, P.A. and He, C. (2008) Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. *Nature*, **452**, 961-965.