Supplementary materials for ## N⁶-methyladenosines in mRNAs reduce the accuracy of codon reading by transfer RNAs and peptide release factors Ka-Weng Ieong^{1,#}, Gabriele Indrisiunaite^{1,2,#}, Arjun Prabhakar^{3,4}, Joseph D. Puglisi³ and Måns Ehrenberg^{1*} ¹Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden ²Current address: Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark. ³Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA. ⁴Current address: Pacific Biosciences, Inc., Menlo Park, CA 94025, USA. *These authors contributed equally to the work *Corresponding Author: mans.ehrenberg@icm.uu.se ## **Supplementary Figures** Figure S1. m^6 A modifications and the impact of aminoglycoside addition on the efficiency of codon reading by T_3 at high $[Mg^{2+}]$ concentration. The experiments were carried out as described in Figure 2 of main text with ribosomes $(0.6 \mu M)$ in excess over ternary complex (T_3) . Fractions of GTPs hydrolyzed on Glu-tRNA^{Glu}-containing T_3 (y-axis) at different reaction times (x-axis, log_{10} display) for T_3 reading unmodified codons at 25 mM (A) and modified codons at 16 mM (B) free $[Mg^{2+}]$. Cognate GAA (A) or Gm^6AA (B) closed black squares in the absence and open black squares in the presence of Par. Near cognate GAU (A) or Gm^6AU (B) filled red circles in the absence and open red circles in the presence of Par. Near cognate GAU open green circles in the presence of Neo (A). Figure S2. A comparison of peptide release measured by scintillation counting (total peptide) and HPLC (only fMFY). 0.3 μ M ribosomal termination complexes containing ³H-labelled fMet-Phe-Tyr-tRNA^{Tyr} in the P site and UAG codon in the A site were reacted to 3.3 μ M RF2 in polymix buffer with 2.5 mM free Mg²⁺ at 37 °C. The k_{rel} measured by HPLC and by scintillation counting was the same (0.9 ± 0.06 /min and 0.9 ± 0.04 /min respectively). **Figure S3.** Measurements of RF1 and RF2 association and dissociation kinetics on UAA and Um⁶AA codons from single-molecule assay. (A) Time-course of RF1 arrival on UAA and Um⁶AA codons fit to single exponential functions. (B) Time-course of RF1 dissociation from UAA and Um⁶AA codons fit to single exponential functions. (C) Time-course of RF2 arrival on UAA and Um⁶AA codons fit to single (Um⁶AA) and double (UAA) exponential functions. (D) Time-course of RF2 dissociation from UAA and Um⁶AA codons fit to single exponential functions. All time-course plots are cumulative distribution functions generated from measured RF arrival and RF occupancy times (see Figure 8C-D). ## **Supplementary Tables** Table S1. Accuracy parameters for tRNA^{Glu} selection on modified and unmodified codons with and without the aminoglycoside paromomycin. Measurements were conducted in polymix buffer with 2.3 mM free Mg²⁺. Related to Figure 3. | Codon pairs | Paromomycin | k _a (μM ⁻¹ s ⁻¹) | d_e value | Initial selection | Proofreading | Total
accuracy | |---------------------------------------|-------------|--|---------------|-------------------|--------------|-------------------| | GAA/GAU | No | 239 ± 10 | 80 ± 4 | 60 ± 10 | 290 ± 40 | 17500 ± 2600 | | GAA/GAU | 10 μΜ | 260 ± 15 | 11 ± 1 | | | | | Gm ⁶ AA/Gm ⁶ AU | No | 20 ± 9 | 20 ± 13 | 15 ± 1.6 | 92 ± 8 | 1360 ± 170 | | Gm ⁶ AA/Gm ⁶ AU | 10 μΜ | 22 ± 9 | 2.8 ± 1.2 | | | | Table S2. Kinetic parameters for tRNA^{Glu} reading its cognate codons. Measurements were conducted in polymix buffer with 2.3 mM free Mg²⁺. Related to Figure 4A,B. | Codon | k _{GTP} (s ⁻¹) | | k_{cat}/K_m (GTP) $(\mu M^{-1}s^{-1})$ | <i>k_{dip}</i> (s ⁻¹) | <i>k</i> _{pep} (s ⁻¹) | Yield of dipeptide
(μM) | |--------------------|-------------------------------------|---|--|---|--|----------------------------| | GAA | 120 ± 15 | 2 | 59 ± 7 | 50 ± 5 | 86 ± 18 | 0.65 | | Gm ⁶ AA | 12 ± 0.6 | 2 | 5.9 ± 0.3 | 10 ± 0.3 | 58 ± 30 | 0.63 | **Table S3.** Kinetic parameters for dipeptide formation from tRNA^{Glu} misreading GAU and Gm⁶AU. Related to Figure 4C, D. T₃ - ternary complex EF-Tu·Glu-tRNA^{Glu}·GTP. | Codon | Τ ₃ (μΜ) | <i>k_{dip}</i> (ms ⁻¹) | $\frac{k_{cat}/K_m}{(\text{mM}^{-1}\text{s}^{-1})}$ | Average k_{cat}/K_m (mM ⁻¹ s ⁻¹) | |----------------------------|---------------------|--|---|---| | GAU | 0.7 | 2.2 ± 0.3 | 3.2 ± 0.4 | 3.4 ± 0.3 | | GAU | 1.4 | 5.0 ± 0.7 | 3.6 ± 0.5 | | | $\mathrm{Gm}^6\mathrm{AU}$ | 0.7 | 2.7 ± 0.3 | 3.9 ± 0.4 | 4.1 ± 0.3 | | Gm ⁶ AU | 1.4 | 6.1 ± 0.6 | 4.4 ± 0.4 | | Table S4. Kinetic parameters for measurement of apparent dissociation constant for $tRNA^{Glu}$ reading its cognate codons. | Codon | Aslow/Afast | k_{slow} (s ⁻¹) | k_{dis} (s ⁻¹) | |----------|-------------|-------------------------------|------------------------------| | GAA | 1.1 | 1.1 ± 0.2 | 2.4 ± 0.3 | | Gm^6AA | 0.84 | 0.76 ± 0.17 | 1.4 ± 0.3 |