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Transparent Methods 

 

Biological GRN models 

We used a set of 35 models of GRNs downloaded from an online repository called 

Cell Collective (Helikar et al., 2012), consisting of a maximum of 25 nodes each. Each 

model is defined as a standard Boolean Network (BN) (Herrmann et al., 2012): a discrete 

dynamical system whose nodes represent the components of the system (e.g., genes or 

proteins) that can be in one of two states, namely 1 (ON) or 0 (OFF), and whose edges 

represent the regulatory interactions (activation/repression) among the nodes, dictating 

their states (Kauffman et al., 2003). The state of a BN is represented as a vector of the 

individual gene states, updated synchronously in discrete time-steps: the state of each 

gene at time 𝑡 + 1 is determined by a Boolean function of the states of its input genes at 

time 𝑡 (Shmulevich and Kauffman, 2004). The BNs in the Cell Collective database are 

defined using only the elementary Boolean functions, namely AND, OR and NOT, since 

any Boolean function can be expressed using some combination of these elementary 

operators. A BN is simulated by initializing it with some state, then updating it to obtain 

the next state, and so on, for a specified number of time-steps. When a BN is simulated 

for a long enough time, it reaches an attractor state. An attractor may consist of a single 

BN state, known as a “point attractor”, or may consist of a set of states that the network 

cycles through, known as a “cyclic attractor.” A BN can have multiple attractors, and 

different inputs may lead to different attractors (Graudenzi et al., 2011; Groß et al., 2019; 

Mochizuki et al., 2013; Naldi et al., 2018; Serraa et al., 2007; Shmulevich and Dougherty, 

2010; Shmulevich and Kauffman, 2004; Veliz-Cuba et al., 2014; Xiao, 2009). In this work, 

we compute the memory profile of BNs in a manner that pays attention to its attractor 

states in order to avoid the effects of the transient dynamics on the analyses. This 

imposes a limitation on the size of networks considered here because the larger the 

network, the longer it takes to reach an attractor. This transient length to reach an attractor 

depends on the Network Size (the number of nodes in the network) and the Edge Density 

defined as (Number of edges / Total number of possible edges). We found that the 

transient length (Supplement 14) rises exponentially above 500 time-steps (a practical 

limit that we chose for this work) for networks of size larger than 25 with a biologically 

realistic edge density of 10% (Supplement 15). As a result, we restricted ourselves to 

analysis of BNs of size <=25 to be able to exhaustively analyze all our networks.  

 

Synthetic GRN models for comparison 

To evaluate the significance of the memory profiles of the biological GRN models, 

we generated synthetic Null models for comparison: 1) a set of 3500 BNs obtained by 

randomizing each GRN 100 times, known as “configuration models”; and 2) a set of 500 

random Boolean networks (RBN).  
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We generated a set of 100 configuration models for each one of the 35 biological 

GRN models. There are many ways to generate the configuration (Null) models, 

depending on the null hypothesis that one wishes to consider (Zhai et al., 2018). Since 

our principal motivation is the idea that memory in GRNs may be mediated by the dynamic 

relationships among the node’s mechanisms, our null hypothesis is therefore that those 

dynamic relationships don’t play a role in mediating memory-related phenomena but are 

entirely governed by things like edge degree. Therefore, in generating each configuration 

model we kept the number of nodes and the indegree distribution the same as the original 

GRN, while randomizing only the inputs to the nodes and the associated Boolean 

functions. That is, each node in the configuration model has the same number of inputs, 

but the actual input nodes will be different compared to the original model. Similarly, each 

Boolean function in the configuration model has the same number of inputs as the original 

but the Boolean operators are randomly chosen from the set of elementary operators 

(AND, OR, NOT). 

To determine how the memory properties of networks vary with network size in 

general, we generated five sets of 100 RBNs each, of size 5, 10, 15, 20 and 25 nodes 

respectively. The edge density was set to 𝑚𝑎𝑥(10% 𝑜𝑓 𝑁2, 𝑁 − 1), as the average edge 

density of the biological GRNs was found to be ~10%. Unlike the configuration models, 

we generated an RBN by first randomly choosing unique source-target node pairs and 

assigning a directed edge between them such that the total number of edges satisfied the 

specified edge density, and then assigning random Boolean functions to each node. We 

generated a random Boolean function for a given node as follows. First, we considered 

the inputs of the node X that may consist of just one input (X itself or some other node,) 

or more than one input. In the case of the former, the Boolean function may take one of 

the following forms: ‘X =X’, ‘X = Y’ or ‘X=~Y’, where ‘~’ represents logical NOT (invert) 

operation. If there are two or more inputs, such as (Y, Z), the Boolean function may take 

one of the following forms: (Y⊗Z), (~Y⊗Z), (Y⊗~Z) or (~Y⊗~Z), where ⊗ represents a 

Boolean operator randomly chosen from the list of Boolean operators (AND, OR and 

XOR). For more than two inputs, the Boolean functions would simply be larger 

compositions of the above. We then randomly applied NOT operation in the final or 

intermediate stages of the equation so that 50% of the nodes were affected.  

 

Synthetic GRN models for illustration 

To illustrate the phenomenon of memory formation in BNs, we generated 10000 

minimal RBNs consisting of 2 and 3 nodes (Figure 5). The process of making the minimal 

models was same as that of making RBNs except the fact that here we selected a higher 

edge density randomly in [50, 100]. As we are interested here finding memory in the small 

networks where the number of nodes is few (2/3), a denser topology is required to 

produce memory. We first investigated the minimum number of nodes required to form a 

certain type of memory. In the case of UCS based memory, the minimum requirement 

was 2 (UCS and R); for all other types of memory it was 3 (UCS, NS/CS, and R). We then 
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fixed the edge density at a random percentage between 50 and 100. We evaluated 

memory and took as minimal the one which had the fewest edges. 

 

Memory detection 

We defined different types of memories, characterized by a specific number and 

timing of the stimuli, as described below. For each network, we looked for possible 

memories by considering all possible choices of nodes to serve as inputs or outputs in a 

training assay. We exhaustively considered all choices of nodes subject to the 

requirement that any node can only be a valid UCS if it triggers R prior to training, and 

any node can serve as a NS if it does not trigger R prior to training. In 3 cases, 

(Arabidopsis thaliana Cell Cycle, Iron acquisition and oxidative stress response in 

aspergillus fumigatus and Budding Yeast Cell Cycle 2009), we could not find any 

combinations matching this feasibility condition and thus considered the amount of “no 

memory” to be 100%. The set of all feasible stimulus-response combinations is a subset 

of all possible combinations, the cardinality of which is given by 𝑃(𝑁, 3) =
𝑁!

(𝑁−3)!
. We 

compute a memory profile for each feasible combination by passing it through a series of 

detection steps (Figure 3). We first let the BN settle on an attractor by initiating it with a 

state consisting of all “off” and simulating it for 500 time-steps.  

Then, we evaluated the memory of each network, given a choice of nodes as CS, 

UCS, and R via a sequence of steps picked from the following general recipe (the specific 

steps followed depends on the type of the memory being evaluated): 1) choose a stimulus 

set; 2) flip the state of the stimuli and fix them in that state, referred to as clamping (we 

did not let other genes to alter the state of UCS and all equations associated with different 

genes and UCS get the clamped value of UCS); 3) simulate the BN for M time-steps; 4) 

record the state of R compared to its state prior to the clamping step; 5) unclamp the 

stimuli (allow them to update states), referred to as relaxation; 6) simulate the BN for M 

time-steps; 7) record the state of R compared to its state prior to relaxation; 8) choose a 

different stimulus set; 9) flip and clamp the stimuli; 10) simulate the BN for M time-steps; 

11) record the state of R compared to its state prior to the clamping step 9; 12) relax the 

network; and 13) record the state of R. We deemed a given stimulus-response 

combination as having elicited a specific type of memory if it satisfies the associated set 

of conditions: 

i) UCS Based Memory (UM): choose the stimulus set consisting of in step 1, verify 
that R has flipped in step 3, and finally verify that R has not flipped in step 7. UM 
captures the idea that R may permanently remember changes in the activity of 
UCS. 

ii) Pairing Memory (PM): choose the stimulus set consisting of {UCS, NS} in step 1, 
verify that R has flipped in step 3, and finally verify that R has not flipped in step 
7. PM captures the idea that R may permanently remember changes in the joint 



ISCI_102131 

 4 

activities of UCS and NS. Even though the detection of PM is like AM, there are 
crucial differences (see AM definition below).     

iii) Transfer Memory (TM): choose the stimulus set consisting of {UCS} in step 1, 
verify that R has flipped in step 3, choose the stimulus set consisting of {NS} in 
step 8, and finally verify that R has flipped in step 11. TM captures the possibility 
that even though NS could not flip R initially, it may be able to do so after 
activating UCS, effectively transforming NS into CS.   

iv) Associative Memory (AM): choose the stimulus set consisting of {UCS, NS} in 
step 1, verify that R has flipped in step 3, choose the stimulus set consisting of 
{NS} in step 8, and finally verify that R has flipped in step 11. AM describes 
classical conditioning: after successful pairing of UCS and current NS, the NS is 
conditioned to become CS. This causes the NS to become CS and can be able 
to trigger R. In other words, we call it an AM if after successful pairing, NS can 
flip R.  

a. Long Recall Associative Memory (LRAM): Following the AM steps, verify 
that R has not flipped in step 13 compared to its state prior to the relaxation 
step 12. LRAM captures the idea that R may permanently remember 
changes to the activity of CS. 

b. Short Recall Associative Memory (SRAM): Following the AM steps, verify 
that R has flipped in step 13 compared to its state prior to the relaxation 
step 12. SRAM captures the idea that R may only transiently remember 
changes to the activity of CS. 

v) Consolidation Memory (CM): choose the stimulus set consisting of {UCS, NS} in 
step 1, verify that R has flipped in step 3, choose the stimulus set consisting of 
{NS} in step 8, verify that R has not flipped in step 11, and finally verify that R has 
flipped compared to its state prior to the clamping step 9. CM captures the idea 
that even though associative conditioning may not immediately turn NS into CS, 
it may do so after relaxing the BN. 

Note that UM and PM are mutually exclusive, as are TM and {AM, CM} (see Figures 2,3 

for details). 

After confirmation of each case of Transfer, Associative and Consolidation 

memory, we checked whether the change in the property of NS in inducing R is 

permanent. We deactivated the CS to check if R is also deactivated; again we activated 

CS to see if R is triggered back, and continued the activation/deactivation process 20 

times to see if causality between NS and R is stable. If stable, we called it second order 

memory. 

Mathematically, in an 𝑁 node GRN, there may be 𝑃𝑁
3 such combinations.  Here, 

we considered the current node as 𝑅 if the 𝑅 is stable over a certain period called 

Constancy Length during the relaxation phase of the network (see Supplement 16). We 

coded the methodology in MATLAB 2019a.  
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Supplements 

 

Supplemental Figure 1: Definition of and functional relationship among the different 

memory types [ This item relates to Figure 2 ] 

 

Legend: The definition and abbreviations of the defined memory types are as follows. 
UCS Based Memory UM: R retains the activation by UCS after UCS deactivated. Pairing 
Memory (PM): R retains the repetitive activation by {UCS, NS} pair even after their 
deactivation. Transfer Memory (TM): activation by UCS alone (not pairing) converts NS 
to CS. Associative Memory (AM): paired activation of {UCS, NS}, converts NS to CS. 
Long Recall AM (LRAM): this conversion of NS to CS is permanent. Short Recall AM 
(SRAM): the conversion is temporary (the association is lost). Consolidation Memory 
(CM): the pairing of {UCS, NS} does not immediately turn NS into CS but eventually does 
so after an elapsed time. The overlap/hierarchy of the ovals represents the relationship 
between the different types and subtypes of memory.  
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Supplemental Figure 2: Flowchart of Memory Evaluation [ This item relates to Figure 2 

] 

 

Legend: The computational procedures for our evaluation of five kinds of memories are 
shown here, namely, UM, PM, TM, AM and CM. We consider each of the two sub-
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categories of AM, LRAM and SRAM, as individual memory types. (A) Input of a GRN with 
a R-UCS pair and a probable list of NS. (B) The memory detection process. At the top of 
the figure we define the different modules frequently used in the section B. The process 
works as follows. 1) choose a stimulus set; 2) flip the state of the stimuli and fix them in 
that state, referred to as clamping; 3) simulate the BN for M time-steps; 4) record the state 
of R compared to its state prior to the clamping step; 5) unclamp the stimuli (allow them 
to update states), referred to as relaxation; 6) simulate the BN for M time-steps; 7) record 
the state of R compared to its state prior to relaxation; 8) choose a different stimulus set; 
9) flip and clamp the stimuli; 10) simulate the BN for M time-steps; 11) record the state of 
R compared to its state prior to the clamping step 9; 12) relax the network; and 13) record 
the state of R. We deem a given stimulus-response combination as having elicited a 
specific type of memory if it satisfies a number of specific conditions described fully in the 
Methods.  
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Supplemental Table 1: GRNs analyzed from cell collective [ This item relates to Figure 

3 ] 

IDs GRNs 

#1 Arabidopsis thaliana Cell Cycle 

#2 Aurora Kinase A in Neuroblastoma 

#3 B cell differentiation 

#4 BT474 Breast Cell Line Long-term ErbB Network 

#5 BT474 Breast Cell Line Short-term ErbB Network 

#6 Body Segmentation in Drosophila 2013 

#7 Budding Yeast Cell Cycle 

#8 Budding Yeast Cell Cycle 2009 

#9 CD4+ T Cell Differentiation and Plasticity 

#10 Cardiac development 

#11 
Cell Cycle Transcription by Coupled CDK and Network 
Oscillators 

#12 Cortical Area Development 

#13 FGF pathway of Drosophila Signaling Pathways 

#14 Fanconi anemia and checkpoint recovery 

#15 HCC1954 Breast Cell Line Long-term ErbB Network 

#16 HCC1954 Breast Cell Line Short-term ErbB Network 

#17 HH Pathway of Drosophila Signaling Pathways 

#18 Human Gonadal Sex Determination 

#19 
Iron acquisition and oxidative stress response in aspergillus 
fumigatus 

#20 Lac Operon 

#21 Mammalian Cell Cycle 

#22 Mammalian Cell Cycle 2006 

#23 Metabolic Interactions in the Gut Microbiome 

#24 Neurotransmitter Signaling Pathway 

#25 Oxidative Stress Pathway 

#26 Predicting Variabilities in Cardiac Gene 

#27 
Processing of Spz Network from the Drosophila Signaling 
Pathway 

#28 Regulation of the L-arabinose operon of Escherichia coli 

#29 SKBR3 Breast Cell Line Long-term ErbB Network 

#30 SKBR3 Breast Cell Line Short-term ErbB Network 

#31 T cell differentiation 

#32 T-LGL Survival Network 2011 Reduced Network 

#33 TOL Regulatory Network 

#34 Toll Pathway of Drosophila Signaling Pathway 

#35 VEGF Pathway of Drosophila Signaling Pathway 

 

Legend: GRNs from Cell Collective that were analyzed, all having 25 of fewer nodes. 
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Supplemental Figure 3: Time series data from the evaluation of a sample UCS Based 

Memory [ This item relates to Figure 4 ] 

 

 
Legend: These node traces show the timeseries data for an example of UCS Based 

memory evaluation in the CD4+ T Cell Differentiation and Plasticity GRN. Here, the 

memory is established between FOXP3 gene as UCS and IL2 gene as response. A) The 

network with specified stimulus-response combination. B) The pre-requisite before 

learning that UCS has the capability of triggering R. C) The training of R by inducing UCS 

repeatedly. D) Testing of R making UCS off. 
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Supplemental Figure 4: Time series data from the evaluation of a sample Pairing 

Memory [ This item relates to Figure 4 ] 

 

Legend: These node traces show the timeseries data for an example of Pairing memory 

evaluation in the CD4+ T Cell Differentiation and Plasticity GRN. Here, the memory is 

established among IL4e gene as UCS, IL2e as NS and IL4 gene as response. A) The 

network with specified stimulus-response combination. B) The pre-requisite before 

learning that UCS has the capability of triggering R and that NS should not trigger R. C) 

The training by inducing {UCS, NS} together repeatedly. D) testing of R making the stimuli 

off.  
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Supplemental Figure 5: Time series data from an evaluation of a sample Transfer 

Memory [ This item relates to Figure 4 ] 

 

Legend: These node traces show the timeseries data for an example the evaluation of 

Transfer memory in Mammalian Cell Cycle 2006 GRN. Here, the memory is established 

among CycD gene as UCS, P27 as NS/CS and E2F gene as response. A) The network 

with specified stimulus-response combination. B) The pre-requisite before learning that 

UCS has the capability of triggering R and that NS should not trigger R. C) The training 

by inducing {UCS, NS} together repeatedly. D) Testing of R to check if NS has converted 

to CS through training. Here, when the CS was turned off after learning, the R is not totally 

off but exhibits some ripples; during the on phase of CS response of R is consistent. E) 

As further confirmation of stable causality established between CS and R by training, we 

first deactivated CS, to see R get deactivated, and then reactivated the CS to ensure that 

it can activate R again.  
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Supplemental Figure 6: Time series data from the evaluation of a sample Consolidation 

Memory  [ This item relates to Figure 4 ] 

 

 

Legend: These node traces show the timeseries data for a Consolidation memory in T 
cell differentiation GRN. Here, the memory is established among IL4R gene as UCS, 
IFNG as NS/CS and STAT6 gene as response. A) The network with specified stimulus-
response combination. B) The pre-requisite of learning, stated as before learning shows 
that UCS has the capability of triggering R and that NS should not trigger R. C) Sows The 
training by inducing {UCS, NS} together repeatedly and D) testing that NS is converted 
to CS, i.e. it alone can induce R. Here, CS has an inverse relation with R, i.e. when CS is 
on makes R off and when CS goes off triggers R. The CS being on does not make R 
totally off but exhibits some ripples in R. But when CS is off, R lately becomes fully ON. 
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E) As further confirmation of stable causality established between CS and R by training, 
we first deactivate CS, to see R get deactivated, and then reactivated the CS to ensure 
that it can activate R again. 

 

 

 

Data S1: Set of Boolean Expressions for each of the GRNs.  [ This item relates to Figure 

3 ] 

 

Legend: See file Expressions.zip – This file provides Boolean equations required to 

simulate each of the 35 GRNs used here from Cell Collective database 

(https://cellcollective.org/). The equation associated with a gene of a GRN comprises its 

regulators related by Boolean operators like AND, OR and NOT. We evaluate the 

equation during GRN simulation and assigns the result as the state of the current gene. 

We assign 0 to an external component during simulation. 

 

 

Supplemental Table 2: Memory Evaluation of GRNs   [ This item relates to Figure 7 ] 

UM PM TM AM LRAM SRAM CM NM 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

29.79 0.51 6.98 2.64 2.47 0.17 0.00 60.09 

46.82 0.74 11.12 0.11 0.11 0.00 0.00 41.21 

95.25 0.00 4.75 0.00 0.00 0.00 0.00 0.00 

96.02 0.00 3.98 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

59.94 2.21 29.02 0.95 0.95 0.00 0.00 7.89 

47.58 0.00 3.86 0.00 0.00 0.00 0.00 48.55 

0.00 0.00 0.00 2.33 2.33 0.00 0.00 97.67 

42.11 0.00 21.05 0.00 0.00 0.00 0.00 36.84 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 2.84 97.16 

95.22 0.00 4.78 0.00 0.00 0.00 0.00 0.00 

90.76 0.00 9.24 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

81.19 0.30 16.45 0.00 0.00 0.00 0.00 2.06 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

76.63 0.00 10.02 0.00 0.00 0.00 0.00 13.36 

12.04 0.00 4.63 2.78 0.93 1.85 0.00 80.56 
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80.41 0.00 9.28 0.00 0.00 0.00 0.00 10.31 

0.00 1.16 0.58 1.16 1.16 0.00 0.00 97.09 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

47.58 0.00 3.86 0.00 0.00 0.00 0.00 48.55 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

93.20 0.00 6.80 0.00 0.00 0.00 0.00 0.00 

97.60 0.00 2.40 0.00 0.00 0.00 0.00 0.00 

64.48 0.00 15.51 0.00 0.00 0.00 0.07 19.94 

93.71 0.00 0.00 0.00 0.00 0.00 0.00 6.29 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

 

Legend: For each GRN, the proportion of each memory type out of the total memory 

(within the available feasible combinations) has been calculated and put in the table. For 

those networks where no feasible combinations of stimulus/response were available, the 

proportion of no memory (NM) was considered as 100%. 
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Supplemental Table 3: p-value Test: comparing incidence of memories within GRNs vs. 

RBNs. [ This item relates to Figure 8 ] 

GRNs UM PM TM AM LRAM SRAM CM NM 

#1 0.85 0.99 0.96 1 1 1 0.99 0.85 

#2 0.1 0.15 0.08 0.03 0.03 0.09 0.7 0.08 

#3 0.02 0.12 0.06 0.76 0.81 0.9 0.7 0.03 

#4 0 0.8 0.15 0.73 0.81 0.86 0.58 0 

#5 0 0.86 0.11 0.84 0.89 0.93 0.88 0 

#6 0.62 0.86 0.74 0.84 0.89 0.93 0.88 0.52 

#7 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#8 0.62 0.86 0.74 0.84 0.89 0.93 0.88 0.52 

#9 0.02 0.03 0 0.1 0.05 0.93 0.88 0 

#10 0.05 0.86 0.11 0.84 0.89 0.93 0.88 0.06 

#11 0.92 1 0.98 0 0 1 1 0.92 

#12 0.06 1 0.02 1 1 1 1 0.06 

#13 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#14 0.62 0.86 0.74 0.84 0.89 0.93 0.03 0.58 

#15 0 0.8 0.15 0.73 0.81 0.86 0.58 0 

#16 0 0.86 0.02 0.84 0.89 0.93 0.88 0 

#17 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#18 0 0.14 0.01 0.84 0.89 0.93 0.88 0 

#19 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#20 0.85 0.99 0.96 1 1 1 0.99 0.85 

#21 0 0.81 0.07 0.76 0.81 0.9 0.7 0.01 

#22 0.13 0.99 0 0 0 0 0.99 0.1 

#23 0 0.99 0 1 1 1 0.99 0 

#24 0.62 0.04 0.74 0.07 0.04 0.93 0.88 0.58 

#25 0.62 0.86 0.74 0.84 0.89 0.93 0.88 0.52 

#26 0.05 0.86 0.11 0.84 0.89 0.93 0.88 0.06 

#27 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#28 0.85 0.99 0.96 1 1 1 0.99 0.85 

#29 0 0.8 0.1 0.73 0.81 0.86 0.58 0 

#30 0 0.86 0.2 0.84 0.89 0.93 0.88 0 

#31 0 0.81 0.03 0.76 0.81 0.9 0.7 0.01 

#32 0 0.86 0.74 0.84 0.89 0.93 0.88 0 

#33 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#34 0.85 0.99 0.96 1 1 1 0.99 0.85 

#35 0.62 0.86 0.74 0.84 0.89 0.93 0.88 0.52 

(%) 37.142 5.714 20 5.571 11.428 2.857 2.857 37.142 

Legend: For each GRN, we calculated a p-value for the position of the incidence of each 

type of memory within the probability distribution of 100 similar size RBNs. If the p-value 
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is less than or equal to 0.05, the statistical test rejects the null hypothesis that the 

incidence of that type of memory in the GRN is not an outlier amongst similar sized RBN 

memories. 
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Supplemental Table 4: Outlier Test: comparing incidence of memories within GRNs vs. 

RBNs. [ This item relates to Figure 8 ]    

GRNs UM PM TM AM LRAM SRAM CM NM 

#1 0 0 0 0 0 0 0 0 

#2 0 0 0 1 1 0 0 0 

#3 1 0 0 0 0 0 0 1 

#4 1 0 0 0 0 0 0 1 

#5 1 0 0 0 0 0 0 1 

#6 0 0 0 0 0 0 0 0 

#7 0 0 0 0 0 0 0 0 

#8 0 0 0 0 0 0 0 0 

#9 1 1 1 0 0 0 0 1 

#10 0 0 0 0 0 0 0 0 

#11 0 0 0 1 1 0 0 0 

#12 0 0 1 0 0 0 0 0 

#13 0 0 0 0 0 0 0 0 

#14 0 0 0 0 0 0 1 0 

#15 1 0 0 0 0 0 0 1 

#16 1 0 1 0 0 0 0 1 

#17 0 0 0 0 0 0 0 0 

#18 1 0 1 0 0 0 0 1 

#19 0 0 0 0 0 0 0 0 

#20 0 0 0 0 0 0 0 0 

#21 1 0 0 0 0 0 0 1 

#22 0 0 1 1 1 1 0 0 

#23 1 0 1 0 0 0 0 1 

#24 0 1 0 0 1 0 0 0 

#25 0 0 0 0 0 0 0 0 

#26 0 0 0 0 0 0 0 0 

#27 0 0 0 0 0 0 0 0 

#28 0 0 0 0 0 0 0 0 

#29 1 0 0 0 0 0 0 1 

#30 1 0 0 0 0 0 0 1 

#31 1 0 1 0 0 0 0 1 

#32 1 0 0 0 0 0 0 1 

#33 0 0 0 0 0 0 0 0 

#34 0 0 0 0 0 0 0 0 

#35 0 0 0 0 0 0 0 0 

# Outlier 13 2 7 3 4 1 1 13 

(%) 37.142 5.714 20 5.571 11.428 2.857 2.857 37.142 

Legend: We tested whether the incidence of each type of memory of a GRN is an outlier 
in the pool of similar size of 100 RBNs: ‘1’ if outlier; ‘0’ otherwise. The last two rows show 
total number and percentage of outliers in each memory type.  
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Supplemental Table 5: p-value Test: comparing memories in GRNs vs. in Configuration 

models [ This item relates to Figure 9 ] 

GRNs UM PM TM AM LRAM SRAM CM NM 

#1 0.7 0.92 0.74 0.89 0.94 0.92 0.79 0.55 

#2 0.05 0.05 0.03 0.01 0.01 0.04 0.89 0.03 

#3 0.03 0.02 0.01 0.04 0.04 1 0.93 0.02 

#4 0 0.92 0.05 0.91 0.93 0.98 0.93 0 

#5 0 0.95 0.11 0.97 0.97 1 0.96 0 

#6 0.76 0.9 0.78 0.91 0.92 0.99 0.96 0.68 

#7 0.76 0.9 0.74 0.92 0.93 0.99 0.94 0.68 

#8 0.62 0.81 0.6 0.86 0.89 0.95 0.84 0.46 

#9 0 0 0 0 0 1 0.94 0 

#10 0.11 0.83 0.2 0.85 0.87 0.97 0.84 0.13 

#11 0.7 0.9 0.71 0.08 0.07 0.98 0.94 0.6 

#12 0.19 0.98 0.1 0.98 0.98 1 0.99 0.19 

#13 0.85 0.96 0.93 0.97 0.97 1 1 0.83 

#14 0.73 0.89 0.7 0.92 0.93 0.99 0.04 0.64 

#15 0 0.92 0.08 0.92 0.93 0.98 0.91 0 

#16 0 0.95 0.06 0.95 0.95 1 0.95 0 

#17 0.94 0.99 0.94 0.99 1 0.99 1 0.93 

#18 0 0.13 0.03 0.81 0.85 0.93 0.72 0 

#19 0.64 0.87 0.62 0.86 0.88 0.97 0.93 0.52 

#20 0.75 0.96 0.78 0.93 0.95 0.98 0.98 0.68 

#21 0 0.87 0.08 0.85 0.89 0.94 0.82 0 

#22 0.25 0.9 0.25 0.07 0.1 0.01 0.89 0.24 

#23 0 0.94 0.1 0.94 0.94 1 0.96 0 

#24 0.6 0.11 0.68 0.17 0.12 0.92 0.85 0.45 

#25 0.67 0.92 0.71 0.91 0.93 0.98 0.87 0.54 

#26 0.05 0.89 0.16 0.88 0.9 0.96 0.9 0.06 

#27 0.74 0.97 0.85 0.94 0.95 0.99 0.96 0.69 

#28 0.83 0.97 0.83 0.97 0.98 0.99 0.97 0.79 

#29 0 0.89 0.03 0.9 0.9 0.97 0.89 0 

#30 0 0.96 0.11 0.96 0.96 1 0.99 0 

#31 0 0.88 0 0.87 0.88 0.98 0.06 0 

#32 0 0.81 0.6 0.78 0.8 0.93 0.7 0.01 

#33 0.82 0.98 0.87 0.98 0.98 1 0.97 0.78 

#34 0.69 0.96 0.88 0.97 0.97 1 0.98 0.64 

#35 0.86 0.98 0.91 0.98 0.98 1 0.98 0.83 

(%) 37.143 5.714 17.14 8.571 8.571 5.714 2.857 40 

 

Legend: For each GRN, the stated p-value represents the incidence of each memory 

type fit into the probability distribution of its random ensemble. If the p-value is less than 
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or equal to 0.05, the statistical test rejected the null hypothesis that the amount of the 

memory in the GRN is not an outlier in its random ensemble.  
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Supplemental Table 6: Outlier Test: comparing memory incidence in GRNs vs. 

Configuration models [ This item relates to Figure 9 ] 

GRNs UM PM TM AM LRAM SRAM CM NM 

#1 0 0 0 0 0 0 0 0 

#2 0 0 1 1 1 1 0 1 

#3 1 1 1 1 1 0 0 1 

#4 1 0 0 0 0 0 0 1 

#5 1 0 0 0 0 0 0 1 

#6 0 0 0 0 0 0 0 0 

#7 0 0 0 0 0 0 0 0 

#8 0 0 0 0 0 0 0 0 

#9 1 1 1 1 1 0 0 1 

#10 0 0 0 0 0 0 0 0 

#11 0 0 0 0 0 0 0 0 

#12 0 0 0 0 0 0 0 0 

#13 0 0 0 0 0 0 0 0 

#14 0 0 0 0 0 0 1 0 

#15 1 0 0 0 0 0 0 1 

#16 1 0 0 0 0 0 0 1 

#17 0 0 0 0 0 0 0 0 

#18 1 0 1 0 0 0 0 1 

#19 0 0 0 0 0 0 0 0 

#20 0 0 0 0 0 0 0 0 

#21 1 0 0 0 0 0 0 1 

#22 0 0 0 0 0 1 0 0 

#23 1 0 0 0 0 0 0 1 

#24 0 0 0 0 0 0 0 0 

#25 0 0 0 0 0 0 0 0 

#26 0 0 0 0 0 0 0 0 

#27 0 0 0 0 0 0 0 0 

#28 0 0 0 0 0 0 0 0 

#29 1 0 1 0 0 0 0 1 

#30 1 0 0 0 0 0 0 1 

#31 1 0 1 0 0 0 0 1 

#32 1 0 0 0 0 0 0 1 

#33 0 0 0 0 0 0 0 0 

#34 0 0 0 0 0 0 0 0 

#35 0 0 0 0 0 0 0 0 

#Outlier 13 2 6 3 3 2 1 14 

(%) 37.143 5.714 17.14 8.571 8.571 5.714 2.857 40 
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Legend: We tested whether the incidence of a certain memory type of a GRN is an outlier 

in its random ensemble (corresponding values of 100 configuration models of the GRN). 

‘1’ if outlier; ‘0’ otherwise. The last two rows show the total number and percentage of 

outlier in each memory type.  

 

 

Supplemental Table 7: The distribution of the transient length of RBNs. [ This item 

relates to Figure 8 ] 

 

 

 

 

 

 

 

Legend: The distribution of the transient length of RBNs. This table shows transient 

length data obtained from simulations of 1000 RBNs for each N (number of nodes), with 

each RBN run 1000 times starting from a different initial condition each time. Here, 

transient length indicates the number of time steps taken by a Boolean network to reach 

an attractor from a given initial state. 

 

 

Supplemental Table 8: Edge densities of biological GRNs. [ This item relates to Figure 

7 ] 

GRNs 

Number 
of 
Nodes 

Number 
of 
Edges 

Edge 
Density 

Arabidopsis thaliana Cell Cycle 14 66 33.673 

Aurora Kinase A in Neuroblastoma 23 43 8.129 

B cell differentiation 22 39 8.058 

BT474 Breast Cell Line Long-term ErbB Network 25 70 11.200 

BT474 Breast Cell Line Short-term ErbB Network 16 46 17.969 

Body Segmentation in Drosophila 2013 17 29 10.035 

Budding Yeast Cell Cycle 20 42 10.500 

Budding Yeast Cell Cycle 2009 18 59 18.210 

N Median Mean 99% Max 

10 3 3.414 12.01 29 

15 11 13.648 53.01 104 

20 14 19.302 86.02 142 

25 77 113.639 494.18 1180 

30 122 192.661 1070.54 2572 

35 1605 2558.796 14593.67 36478 

40 3918 6755.941 42507.43 78016 
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CD4+ T Cell Differentiation and Plasticity 18 78 24.074 

Cardiac development 15 38 16.889 

Cell Cycle Transcription by Coupled CDK and Network 
Oscillators 9 19 23.457 

Cortical Area Development 5 14 56.000 

FGF pathway of Drosophila Signalling Pathways 23 24 4.537 

Fanconi anemia and checkpoint recovery 15 66 29.333 

HCC1954 Breast Cell Line Long-term ErbB Network 25 70 11.200 

HCC1954 Breast Cell Line Short-term ErbB Network 16 46 17.969 

HH Pathway of Drosophila Signaling Pathways 24 32 5.556 

Human Gonadal Sex Determination 19 79 21.884 

Iron acquisition and oxidative stress response in 
aspergillus fumigatus 22 38 7.851 

Lac Operon 13 22 13.018 

Mammalian Cell Cycle 20 51 12.750 

Mammalian Cell Cycle 2006 10 35 35.000 

Metabolic Interactions in the Gut Microbiome 12 30 20.833 

Neurotransmitter Signaling Pathway 16 22 8.594 

Oxidative Stress Pathway 19 32 8.864 

Predicting Variabilities in Cardiac Gene 15 38 16.889 

Processing of Spz Network from the Drosophila 
Signaling Pathway 24 28 4.861 

Regulation of the L-arabinose operon of Escherichia 
coli 13 17 10.059 

SKBR3 Breast Cell Line Long-term ErbB Network 25 81 12.960 

SKBR3 Breast Cell Line Short-term ErbB Network 16 41 16.016 

T cell differentiation 23 34 6.427 

T-LGL Survival Network 2011 Reduced Network 18 43 13.272 

TOL Regulatory Network 24 48 8.333 

Toll Pathway of Drosophila Signaling Pathway 11 11 9.091 

VEGF Pathway of Drosophila Signaling Pathway 18 18 5.556 

Average edge density (%)  15.401 

 

Legend: For each biological GRN that we analyzed, we show here the number of edges 

they contain, the edge density (calculated as the proportion of the number of actual edges 

with respect to the number of possible edges which is simply (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠2). The 

average edge density of around 13% was used as a basis for the choice of the edge 

density (10%) for the RBNs that we simulated.  
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Supplemental Table 9. The distribution of the constancy length of RBNs.  [ This item 

relates to Figure 8 ] 

N Median Mean 95% 99% Max 

10 1 1.709313 4 8 31 

15 2 2.553708 7 13 183 

20 2 3.056888 8 18 94 

25 3 4.872672 13 32 489 

30 4 6.44254 18 51 1195 

35 8 17.08245 29 167.46 8598 

40 10 31.6757 36 397 27908 

 

Legend: This table shows constancy length data obtained from simulations of 1000 RBNs 

for each N (number of nodes), with each RBN run 1000 times starting from a different 

initial condition each time. Here, constancy length indicates the maximum number of 

contiguous steps during which a node preserves its state (0 or 1) in an attractor, taken as 

the maximum over all nodes. For example, consider a network with N>2 nodes, of which 

node ‘X’ goes through the following states in an attractor cycle (period length of 13 steps) 

in the same order: 0110001001111, and node ‘Y’ goes through the following states in the 

same order: 0110000001111. Here, the constancy length of ‘X’ is 4 and that of ‘Y’ is 6. 

The constancy length of the network would be the maximum of the constancy lengths of 

the individual nodes. 

 

 

Data S2: See file Violins.zip – plots comparing distribution of memories for GRNs to their 

randomized configuration models.   [ This item relates to Figure 9 ] 

Legend: This supplement provides the violin plots of the set of all 35 GRNs (Plot 1-35) 

from the Cell Collective database (https://cellcollective.org/) compared (in terms of 

memories) to their configuration models. We show the mean (black line), median (red 

line), 5th percentile (teal line) and 95th percentile (pink line). The actual frequency of 

memory of the real GRN is represented as a red star.  We calculated the conditional 

entropy among the different types of memories of GRNs and Configuration models, 

normalized these conditional entropies, applied Gaussian smoothing and visualized the 

results obtained. 
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