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1. Transparent Methods

Metric and non-metric MDS in Euclidean model
Assume there sectionre n objects described by a set of measurements, the dissimilarity of the

objects can be obtained by the experimental measurements of the objects. For example, the dis-
similarities of two cells can be calculated by the Euclidean distances of the gene expression vectors.
Metric MDS approximates the geometric distances dij to the data dissimilarities δij, while non-
metric MDS approximates a monotonic transformation of dissimilarities of data. The transformed
values are known as disparities d̂ij. The loss function S in Euclidean embedding was defined as :

S =

√
S∗

T ∗
(S1)

Where S∗ = Σi,j(dij − d̂ij)2, T ∗ = Σi,jd
2
ij. In non-metric MDS, d̂ij is determined using the greatest

convex minorant method in Kruskal’s approach Kruskal (1964). In metric MDS, disparities are
equal to dissimilarities: d̂ij = δij.

1.1. Non-metric MDS in native hyperbolic model
There are many hyperbolic space representations, we will use the native representation with polar

coordinates Krioukov et al. (2010) in our hyperbolic MDS. The angular coordinates in the space are
the same as in an Euclidean ball, the radius Rmodel ∈ (0,∞) characterizes the hierarchical depth
of the structure, measures the degree of hierarchy in data, and determines how points distribute in
the space. The distance of two points dij is calculated as:

cosh(dij) = cosh(ri) cosh(rj)− sinh(ri) sinh(rj) cos(∆θij) (S2)

Where ri and rj are the radial coordinates of the two points, and ∆θij is the angle between them.
In D-dimensional HMDS, we initialize the embedding process by uniformly sampling points within
radius Rmodel in the native hyperbolic model. The points directions are uniformly sampled around
the high-dimensional sphere, and the radial coordinate r ∈ (0, Rmodel] follows :

ρ(r) ∼ sinhD−1 r (S3)

We note that there can be merits to sample the points uniformly in the angular variables. Although
this does not lead to uniform sampling of points along the sphere Koay (2011), this way of sampling
can be particularly advantageous in the situation where the angular variable maps onto periodic
variables that correspond to cell cycle or other rhytms. We have used this sampling in our previous
publication on olfactory signals produced by fruits and plants Zhou et al. (2018) where it matched
developmental processes in the fruit.

During the iteration process, we update both angular and radial coordinates according to the
gradient descent of the loss function Eq. (S1), and at the same time set Rmodel as the upper bound
of the radial coordinates. The reason of setting a bound is that the coordinates in hyperbolic model
are polar coordinates which cannot be normalized after each iteration as performed in Euclidean
MDS, so without bound the gradient descent of loss functionsection Eq. (S1) would lead to very
large ri and dij (since dij is in the denominator) and hence fail to preserve radial coordinates of
data. By setting the upper bound for radial coordinates, the HMDS embedding can well preserve
the data distances and precisely detect hyperbolic radius of data Rdata (Fig. S3).
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1.2. Fitting of Shepard diagram

The Shepard diagram is linear if the geometry of input data matches the geometry of embedding
space, and otherwise nonlinear. In both EMDS and HMDS, we use the power function below to fit
the pairwise distances:

y = a(x− x0)κ+1 (S4)

Where x0 = min(x) − ε is an offset representing the distance caused by intrinsic noise of data, a
small value ε is introduced to avoid zero inputs in the fitting. The convexity κ describes the linearity
of the fitting. κ = 0 indicates Euclidean input in EMDS and means Rdata = Rmodel in HMDS. κ > 0
means the data is more hyperbolic than the model, and vice versa.

1.3. Hyperbolic t-SNE

Given a data set containingN data points described byD dimensional vectors: {x1,x2,x3, ...,xN ; xi ∈
RD}. The t-SNE algorithm Maaten and Hinton (2008) defines the similarity of two points xi,xj as
the joint probability pij:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
, (S5)

pij =
pj|i + pi|j

2n
. (S6)

The similarity of two points yi,yj in embedding space is defined as the joint probability qij:

qij =
(1 + ‖yi − yj‖2)−1∑

m6=n (1 + ‖ym − yn‖2)−1
. (S7)

The discrepancy between the similarities of data and embedding points is the loss function, which
is defined by Kullback-Leibler (KL) divergence of the joint probability pij and qij :

L = DKL(P‖Q) =
∑
i

∑
j

pij log

(
pij
qij

)
. (S8)

Minimizing the loss function L with respect to the embedding coordinates yi by gradient descent
gives:

∂L

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1. (S9)

The original definitions of similarities Eqs. (S5-S7) in t-SNE are sensitive to small pairwise distances
among neighboring points but not to large distances between distant points. To preserve large
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distances, Zhou et al. Zhou and Sharpee (2018) proposed global t-SNE algorithm that introduced
global similarity terms p̂ij and q̂ij which are primarily sensitive to large distance values:

p̂ij =
1 + ‖xi − xj‖2∑

m6=n (1 + ‖xm − xn‖2)

q̂ij =
1 + ‖yi − yj‖2∑

m6=n (1 + ‖ym − yn‖2)

(S10)

And they defined the global loss function L̂ as:

L̂ = DKL(P̂‖Q̂) =
∑
i

∑
j

p̂ij log

(
p̂ij
q̂ij

)
(S11)

The total loss function Ltotal was then defined by combining the two loss functions using a weight
parameter λ:

Ltotal = L+ λL̂ (S12)

The gradient of the total loss function Ltotal gives:

∂Ltotal

∂yi
= 4

∑
j

[(pij − qij)− λ(p̂ij − q̂ij)] · (yi − yj)(1 + ‖yi − yj‖2)−1, (S13)

where the weight λ of the global loss function controls the balance between the local clustering and
global organization of the data. Large λ values lead to more robust global distribution of clusters,
but less clear classifications. Small λ moves back to approximate the traditional t-SNE, and will be
exactly the same when λ = 0. In hyperbolic t-SNE, we still use native representation parametrized
by Rmodel as in HMDS, but here Rmodel is only used to determine the initial radial distribution, not
to set the upper bound. We substitute the Euclidean distances in global similarity terms Eq. (S10)
by hyperbolic distances dhij defined in Eq. (S2), and change Cartesian coordinate system to polar
one for all the distance calculations. Then the gradient of total loss function with respect to polar
coordinates would be:

∂Ltotal
∂ri

= 4
∑
j

[(pij − qij) · deij ·
∂deij
∂ri

(1 + (deij)
2)−1

− λ(p̂ij − q̂ij) · dhij ·
∂dhij
∂ri

(1 + (dhij)
2)−1]

∂Ltotal
∂θi

= 4
∑
j

[(pij − qij) · deij ·
∂deij
∂θi

(1 + (deij)
2)−1

− λ(p̂ij − q̂ij) · dhij ·
∂dhij
∂θi

(1 + (dhij)
2)−1]

(S14)
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Where deij is the Euclidean pairwise distance in polar coordinates, dhij is the hyperbolic pairwise
distance obtained from Eq. (S2). pij, qij, p̂ij and q̂ij are defined by Eqs. (S5-S7) and Eq. (S10) with
polar coordinates. When implementing the algorithm, we substitute the radial coordinates with
their exponential transformation to avoid negative radii during the iteration:

rexp = er (S15)

The derivative of distances with respect to the new variable would be:

∂

∂rexp
=

∂

∂r
· ∂r

∂rexp
=

1

rexp
· ∂
∂r

(S16)

When the iterations converge, we make logarithm transformation of rexp to get the real radial
coordinates.

1.4. Parameters in visualization algorithms
For Lukk et al. Lukk et al. (2010) data, we set λ = 8 and Rmodel = 1 in h-SNE. We select the

result that best preserves data distances from 30 repeats. After obtaining the embedded points,
we transform the points from native representation to Poincaré disk model by performing the
transformation on radial coordinates:

rPoincare = tanh(
rnative

2
) (S17)

In g-SNE, the parameter is: λ = 20. In PCA, we use the first two principal components for
visualization. In UMAP, we screen a wide range of the combination of two key parameters: number
of neighbors ∈ {5, 10, 20, 50, 100} and minimal distance ∈ {0.001, 0.01, 0.1, 0.5, 0.8}, each of the 25
combinations was repeated 30 times. The optimal combination of parameters that leads to largest
distance correlation of Shepard diagram is: number of neighbors = 100 and minimal distance = 0.5,
and the corresponding result is shown in Fig. 6.For Moignard et al. data Moignard et al. (2015),
the parameters for h-SNE are: λ = 10, Rmodel = 1. The root node index is 1800. When plotting
Poincaré map, we directly use the embedding positions provided in Klimovskaia et al. Klimovskaia
et al. (2020).

1.5. Evaluation of embedding
The Pearson correlation coefficient of Shepard diagram (embedding distances versus data dis-

tances) is used to measure the preservation of distances and global structure. For local clusters,
we apply silhouette score Rousseeuw (1987) to our embedding results. Silhouette score measures
the quality of data partitioning and clustering in graphical representation of objects, which in our
case can be used to measure the consistency of the data configuration in 2D embeddings with the
“ground truth” cluster labels. The higher score indicates better consistency with data labels. We
consider all the three types of labels available – six hematopoietic properties, four malignancy prop-
erties and fifteen subtypes, and calculate the geometric mean of silhouette scores obtained by using
these three labels:

s = 3
√
s1s2s3 (S18)

Where s1, s2, s3 represent the silhouette scores by using the three types of labeling respectively. The
mean score s is used to quantify the local structure preservation for the five visualization algorithms.
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1.6. Data preprocessing and analysis

No pre-processing was done for the microarray dataset from human samples Lukk et al. (2010).
For scRNA-seq dataset from Han et al. (2018), we use Seurat packages Butler et al. (2018) to

perform normalization, feature selection and scaling for the data, and to select the top 50 principal
components for analyses. These results are reported in Figure 5.The results without pre-processing
(and keeping all 1000 principle components) were qualitatively similar but had slightly reduced
hyperbolic radii: Rmouse brain = 1.62± 0.02, Rmouse lung = 1.47± 0.03, Rmouse kidney = 1.45± 0.03, and
Rmouse embryo = 0.98± 0.02 (compare with number in Fig. 5). These obervations are consistent with
the observation that noise reduction done during pre-processing makes hyperbolic effects stronger
and more apparent.

For mouse hematopoiesis data, we use the processed data from Klimovskaia et al. Klimovskaia
et al. (2020). The Seurat analysis, violin plots and linear regression were performed using R version
3.6.2, the other analyses were performed using MATLAB R2017a.
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2. Supplemental figures
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Non-metric MDS in different geometries

Figure S1: Illustration of non-metric MDS embedding in different geometries. Related to Figure 2.
100 synthetic points in 5D hyperbolic (top), Euclidean (middle) and spherical (bottom) space are embedded into
5D hyperbolic (left), Euclidean (middle) and spherical (right) space respectively. The hyperbolic radius is R = 5 for
both data and model. The fitting methods are the same as in Figure 2 in the manuscript.
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Figure S2: Gaussianity of normalized gene expressions across the whole samples and from a single
cluster. Related to Figure 3. (A) Gene expression distributions of the six most non-Gaussian distributed
probes across all the samples, p values were given by one-sample Kolmogorov-Smirnov test for Gaussianity, the null
hypothesis is that the normalized distribution is standard normal distribution. (B) Gene expression distributions
of the same six non-Gaussian probes as in (A) across 100 samples in one of the k-means (k = 80) cluster. (C) p
value distributions of all the probes across the whole samples. (D) p value distributions of all the probes across 100
samples in one of the k-means cluster.
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Figure S3: HMDS embedding of hyperbolic data with different Rmodel. Related to Figure 5. 100 points
are sampled in hyperbolic space with D = 5, Rdata = 3. The embedding dimension is D = 5 in (A-F). The Shepard
diagram convexity κ is shown in panel (A,C,E). (A) Shepard diagram of HMDS embedding of the samples to 5D
hyperbolic space with Rmodel = 3. (B) Histogram of radial coordinates r of 100 sample points and model points after
HMDS embedding with Rmodel = 3. (C-D) Rmodel = 2. (E-F) Rmodel = 4.
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Figure S4: Robustness to changes in data sparseness on geometry detection. Related to Figure 2
and Figure 5. In Euclidean representation after EMDS, the coordinates of all the points are thresholded by fifth
percentile of all the coordinate values to simulate the sparse RNA-seq values of cells. The left column shows the plots
of thresholded embedding distances versus distances before MDS. The fitting plots and inserted convexity values in
the rest columns have same meanings as in Figure 2 in the manuscript.
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Figure S5: Screening Rdata of Lukk data with different magnitude of noise added by doing HMDS.
Related to Figure 5. The embedding dimension is D = 5. The noise ε is added as multiplicative Gaussian noise:
Mnoise = M [1 + ε ·N(0, 1)]. (A-E) Fitting of Rdata under different ε. (F) Plot Rdata as the function of ε.
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Figure S6: Comparison of two-dimensional visualizations of human expression data using g-SNE, h-
SNE, PCA and UMAP. Related to Figure 6. The samples are colored according to the 15 tissue and disease
types.
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Figure S7: Comparison of two-dimensional visualizations of human gene expression data in different
algorithms. Related to Figure 6. (A-D) g-SNE, h-SNE, PCA and UMAP embeddings of human samples
classified by hematopoietic properties, these labels also represent the six major clusters identified by Lukk et al. The
hematopoietic axes are shown in solid lines in g-SNE(A), h-SNE(B) and PCA(C). (E-H) g-SNE, h-SNE, PCA and
UMAP embeddings of human samples classified by malignancy properties. The malignancy axes are shown in solid
lines in g-SNE (E), h-SNE(F) and PCA(G). The six major clusters, the hematopoietic axis and the malignancy axis
are hard to identify in UMAP.
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Figure S8: Screening Rdata of mice hematopoiesis data in Moignard et al. by doing HMDS. Related to
Figure 7. The inset shows the fitted Rdata as the function of the embedding dimension.
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