
Fitting COVID-19 case data with covidseir

The covidseir R package can be installed from https://github.com/seananderson/covidseir.
library(covidseir)
library(dplyr)
library(ggplot2)
ymd <- lubridate::ymd

Data
First, we will read in the British Columbia, Canada COVID-19 reported-case data. This comes from
http://www.bccdc.ca/Health-Info-Site/Documents/BCCDC_COVID19_Dashboard_Case_Details.csv.
dat <- structure(list(value = c(1, 1, 4, 6, 4, 6, 1, 3, 5, 11, 20, 12,
25, 12, 27, 46, 41, 60, 47, 62, 46, 43, 88, 59, 91, 62, 62, 37,
30, 82, 56, 47, 55, 31, 21, 13, 51, 40, 33, 34, 41, 28, 15, 30,
44, 14, 51, 25, 30, 15, 34, 63, 33, 37, 72, 61, 15, 58, 41, 26,
29, 23, 33, 21, 16, 24, 29, 21, 14, 8, 17, 10, 13, 16, 14, 21,
8, 11, 5, 19, 11, 22, 12, 4, 9, 8, 7, 10, 5, 11, 9, 16, 4, 23,
2, 4, 12, 7, 9, 10, 14, 12, 17, 14, 14, 9, 11, 19, 9, 5, 9, 6,
17, 11, 12, 21, 12, 9, 13, 3, 12, 17, 10, 9, 12, 16, 7, 10, 19,
18, 22, 25, 23, 20, 13, 19, 24, 33, 44, 19, 29, 33, 34, 32, 30,
30, 21, 21, 24, 47, 26, 39, 52, 29, 48, 28, 43, 46, 47, 51, 38,
42, 46, 86, 73, 90, 100, 86, 51, 77, 65, 84, 90, 115, 79, 81),

day = 1:176), row.names = c(NA, -176L),
class = "data.frame")

dat <- dplyr::as_tibble(dat)
dat$date <- ymd("2020-03-01") + dat$day - 1

dat
#> # A tibble: 176 x 3
#> value day date
#> <dbl> <int> <date>
#> 1 1 1 2020-03-01
#> 2 1 2 2020-03-02
#> 3 4 3 2020-03-03
#> 4 6 4 2020-03-04
#> 5 4 5 2020-03-05
#> 6 6 6 2020-03-06
#> 7 1 7 2020-03-07
#> 8 3 8 2020-03-08
#> 9 5 9 2020-03-09
#> 10 11 10 2020-03-10
#> # ... with 166 more rows

ggplot(dat, aes(date, value)) + geom_line()
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Model setup
Sampling fraction
We need an estimate of the fraction of positive cases that are sampled/detected. This could be based on
serology testing and known changes in testing policy. In this case, we are basing the sampled fractions
on known dates of changes in testing policy combined with numbers of hospitalizations and an assumed
hospitalization rate from a model fit elsewhere.

We will set up a vector of assumed sampling fractions with one value per day and changes on the appropriate
days:
# Based on estimation with hospital data in other model:
samp_frac <- c(rep(0.14, 13), rep(0.21, 38))
samp_frac <- c(samp_frac, rep(0.37, nrow(dat) - length(samp_frac)))

Contact rate breakpoints
We then need to set up a vector of ‘f’ (contact rate fraction) segment IDs. These start at 0 (before any social
distancing) and increment by 1 every time we want to estimate a new contact rate, say because of known
social distancing policy changes. Here we will estimate new ‘f’ segments starting May 1 and June 1. Note
that the vector needs to switch from 0 to 1 before the first estimated date of the social distancing ramp. The
start and end of the ramp are estimated parameters. It is simplest to start the value 1 on the 2nd day.
f_seg <- c(0, rep(1, nrow(dat) - 1))
day_new_f <- which(dat$date == ymd("2020-05-01"))
f_seg[seq(day_new_f, length(f_seg))] <- 2
day_ch <- which(dat$date == ymd("2020-06-01"))
f_seg[seq(day_ch, length(f_seg))] <- 3
f_seg
#> [1] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [149] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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Fitting the model
Now we can fit the SEIR model. This requires specifying a prior on ‘i0’ (people infected at initial point in time),
the starting and ending of the ramp-in of social distancing (start_decline_prior and end_decline_prior),
‘R0’, and ‘f’. The f prior by default is mean 0.4 and SD 0.2 from a beta distribution and applies to all f
segments. You can extend this prior to be different for each ‘f’ segment by using a matrix, which likely makes
sense if you think that social distancing has relaxed over time. See ?fit_seir for details and default values.

In the following example, we will use rstan::optimizing() to find the MAP (maximum a posteriori
probability) estimate combined with sampling from the covariance matrix to generate samples. Alternatives
are variational Bayes ("VB") and full Bayesian NUTS MCMC sampling ("NUTS"). We strongly recommend
NUTS sampling for final inference; however, the MAP estimate can be useful for model experimentation and
is what we will use here in this vignette for speed:
fit <- covidseir::fit_seir(

daily_cases = dat$value,
samp_frac_fixed = samp_frac,
f_seg = f_seg,
i0_prior = c(log(8), 1),
e_prior = c(0.8, 0.05),
start_decline_prior = c(log(15), 0.1),
end_decline_prior = c(log(22), 0.1),
f_prior = cbind(c(0.4, 0.5, 0.6), c(0.2, 0.2, 0.2)),
R0_prior = c(log(2.6), 0.2),
N_pop = 5.1e6, # BC population
iter = 500, # number of posterior samples
fit_type = "optimizing" # for speed only

)
#> Finding the MAP estimate.

print(fit)
#> MAP estimate:
#> i0 R0 start_decline end_decline f_s[1]
#> 6.63 3.19 13.60 19.14 0.34
#> f_s[2] f_s[3] phi[1] e
#> 0.42 0.63 9.59 0.82
#> Mean in constrained space of MVN samples:
#> i0 R0 start_decline end_decline f_s[1]
#> 7.34 3.20 13.62 19.13 0.35
#> f_s[2] f_s[3] phi[1] e
#> 0.42 0.63 9.72 0.82
#> SD in constrained space of MVN samples:
#> i0 R0 start_decline end_decline f_s[1]
#> 3.85 0.24 1.18 1.50 0.05
#> f_s[2] f_s[3] phi[1] e
#> 0.05 0.04 1.61 0.05

Visualizing the model fit
If you would like, you can choose to use parallel processing for the projections:
future::plan(future::multisession)

Now we will take the fitted model and calculate the corresponding model predictions. This can be slow,
especially with future projections, and so we only use the first 50 posterior samples for this quick vignette
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example:
proj <- covidseir::project_seir(fit, iter = 1:50)
proj
#> # A tibble: 8,800 x 7
#> day data_type mu y_rep phi .iteration forecast
#> <int> <int> <dbl> <dbl> <dbl> <int> <lgl>
#> 1 1 1 2.22 3 9.39 1 FALSE
#> 2 2 1 2.55 1 9.39 1 FALSE
#> 3 3 1 2.93 2 9.39 1 FALSE
#> 4 4 1 3.38 2 9.39 1 FALSE
#> 5 5 1 3.89 2 9.39 1 FALSE
#> 6 6 1 4.48 3 9.39 1 FALSE
#> 7 7 1 5.15 3 9.39 1 FALSE
#> 8 8 1 5.93 14 9.39 1 FALSE
#> 9 9 1 6.83 3 9.39 1 FALSE
#> 10 10 1 7.86 4 9.39 1 FALSE
#> # ... with 8,790 more rows

Then we will take the posterior samples, re-sample 20 times from the negative binomial observation model to
generate smoother predictions, and transform the output into a tidy data frame for plotting:
tidy_proj <- covidseir::tidy_seir(proj, resample_y_rep = 20)
tidy_proj
#> # A tibble: 176 x 15
#> # Groups: data_type [1]
#> data_type day y_rep_0.05 y_rep_0.25 y_rep_mean y_rep_0.50 y_rep_0.75
#> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0 1 2.68 2 4
#> 2 1 2 0 2 3.04 3 4
#> 3 1 3 0 2 3.58 3 5
#> 4 1 4 1 2 4.03 4 5
#> 5 1 5 1 3 4.60 4 6
#> 6 1 6 1 3 5.30 5 7
#> 7 1 7 2 4 6.17 6 8
#> 8 1 8 2 4 6.99 6 9
#> 9 1 9 2 5 7.93 7 10
#> 10 1 10 3 6 9.04 8 12
#> # ... with 166 more rows, and 8 more variables: y_rep_0.95 <dbl>,
#> # mu_0.05 <dbl>, mu_0.25 <dbl>, mu_mean <dbl>, mu_0.50 <dbl>, mu_0.75 <dbl>,
#> # mu_0.95 <dbl>, mu_0.5 <dbl>

For plotting, we need to join a date column back on, since our projections only have a column for a numeric
day. Here, we do that by making a look-up-table (lut).
first_day <- min(dat$date)
last_day <- 300 # how many days to create dates for
lut <- dplyr::tibble(

day = seq_len(last_day),
date = seq(first_day, first_day + length(day) - 1, by = "1 day")

)
tidy_proj <- dplyr::left_join(tidy_proj, lut, by = "day")
dplyr::glimpse(tidy_proj)
#> Rows: 176
#> Columns: 16
#> Groups: data_type [1]
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#> $ data_type <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
#> $ day <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1...
#> $ y_rep_0.05 <dbl> 0.00, 0.00, 0.00, 1.00, 1.00, 1.00, 2.00, 2.00, 2.00, 3....
#> $ y_rep_0.25 <dbl> 1.00, 2.00, 2.00, 2.00, 3.00, 3.00, 4.00, 4.00, 5.00, 6....
#> $ y_rep_mean <dbl> 2.683, 3.045, 3.582, 4.027, 4.603, 5.298, 6.170, 6.986, ...
#> $ y_rep_0.50 <dbl> 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 10, 11, 13, 22, 26, 29, 34...
#> $ y_rep_0.75 <dbl> 4, 4, 5, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 29, 33, 38, ...
#> $ y_rep_0.95 <dbl> 6.00, 7.00, 8.00, 9.00, 9.00, 11.00, 12.00, 14.00, 15.00...
#> $ mu_0.05 <dbl> 1.936847, 2.258695, 2.634007, 3.071667, 3.582032, 4.1771...
#> $ mu_0.25 <dbl> 2.390450, 2.726700, 3.110217, 3.645367, 4.253651, 4.8830...
#> $ mu_mean <dbl> 2.703382, 3.093344, 3.540019, 4.051735, 4.638050, 5.3099...
#> $ mu_0.50 <dbl> 2.733778, 3.129083, 3.579337, 4.071412, 4.658628, 5.3314...
#> $ mu_0.75 <dbl> 3.058550, 3.460075, 3.928361, 4.412826, 4.970541, 5.6329...
#> $ mu_0.95 <dbl> 3.305191, 3.765241, 4.280680, 4.886211, 5.566183, 6.3474...
#> $ mu_0.5 <dbl> 2.733778, 3.129083, 3.579337, 4.071412, 4.658628, 5.3314...
#> $ date <date> 2020-03-01, 2020-03-02, 2020-03-03, 2020-03-04, 2020-03...

You can plot the output however you would like; however, the covidseir package includes a built-in basic
plotting function. The value_column and date_column must both be columns present in the projection and
observed data.
covidseir::plot_projection(tidy_proj, obs_dat = dat,

value_column = "value", date_column = "date")
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Checking model residuals
We can check the model fit residuals (here observed minus expected value):
plot_residuals(tidy_proj, obs_dat = dat, obj = fit)
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Or randomized quantile residuals, which should be approximately normally distributed (but introduce some
randomness within each integer observed value):
set.seed(1)
plot_residuals(tidy_proj, obs_dat = dat, obj = fit, type = "quantile")
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We can extract the (randomized quantile) residuals themselves to plot them however we would like or check
their distribution:
set.seed(1)
resid <- plot_residuals(tidy_proj, obs_dat = dat, obj = fit, type = "quantile",

return_residuals = TRUE)
hist(resid)
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Histogram of resid
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Projections
If we wanted to make a projection assuming that social distancing were to change in the future, we could do
that as follows. For this example we will project 45 days into the future and change the contact ratio ‘f’ to
be two-thirds of its final estimated value (‘f’ segment 3) starting after 5 days from the last observation. We
will use only the first 50 posterior samples for speed of this example.
days_project <- 45
day_start_reduction <- 5
proj2 <- covidseir::project_seir(

fit,
iter = 1:50,
forecast_days = days_project,
f_fixed_start = max(fit$days) + day_start_reduction,
f_multi = rep(0.67, days_project - day_start_reduction + 1),
f_multi_seg = 3 # which f segment to use

)
tidy_proj2 <- covidseir::tidy_seir(proj2, resample_y_rep = 30)
tidy_proj2 <- dplyr::left_join(tidy_proj2, lut, by = "day")
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covidseir::plot_projection(tidy_proj2, obs_dat = dat,
value_column = "value", date_column = "date")
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Calculating the threshold for increase
We can also calculate the threshold for expected increases in prevalence. We estimate the threshold by
determining which ‘f’ value gives a zero rate of growth using the following procedure:

• For a sequence of fractions of normal contacts (f), project the model posterior for N days into the future.
• Fit a linear regression to determine the slope of log(prevalence) vs. time for the last X days of the

projection period for each of the f values.
• Fit a linear regression to the slopes from the previous step against the fraction of normal contacts.
• Use this fitted regression line to determine what fractional normal contacts would result in an expected

change in log prevalence of zero over time based on where the regression line crosses 0 on the y-axis.
threshold <- covidseir::get_threshold(fit, iter = 1:30,

fs = seq(0.3, 0.8, length.out = 4))
#> Projecting 0.3
#> Projecting 0.47
#> Projecting 0.63
#> Projecting 0.8
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We need to check that the above plot looks reasonable to fit a straight line through so we can extrapolate the
point at which the slope values cross zero. It is possible the upper ‘f’ values (fs) will cause the population
to reach heard immunity, resulting in prevalence decreasing over time and negative slopes. In that case, it
wouldn’t make sense to fit a straight line through the points and the upper limit of explored ‘f’ values or the
number of forecasted days should be reduced. Here, it looks reasonable.

The output is a posterior distribution of the threshold:
hist(threshold)
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Histogram of threshold
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We can calculate the ratio between the posterior ‘f’ values for each segment and the threshold:
f_ratios <- fit$post$f_s[seq_along(threshold), ] / threshold

Here is an example of visualizing the output:
reshape2::melt(f_ratios) %>%

ggplot(aes(Var2, value)) + geom_violin() +
geom_hline(yintercept = 1, lty = 2) +
xlab("f segment") + ylab("Contact threshold ratio")
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