GigaScience

The GenTree Platform: growth traits and tree-level environmental data in twelve European forest tree species --Manuscript Draft--

Manuscript Number:	GIGA-D-20-00189R2	
Full Title:	The GenTree Platform: growth traits and tree-level environmental data in twelve European forest tree species	
Article Type:	Data Note	
Funding Information:	Horizon 2020 Framework Programme (676876)	Mr. Bruno Fady
	Staatssekretariat für Bildung, Forschung und Innovation (6.0032)	Mr. Felix Gugerli
Abstract:	Background: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information. Findings: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from twelve ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). Phenotypic (height, diameter at breast height, crown-size, bark-thickness, biomass, straightness, forking, branch angle, fructification), regeneration, environmental in-situ measurements (soil depth, vegetation cover, competition indices), and environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species' geographic ranges and reflecting local environmental gradients. Conclusion: The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allows for a wide range of analyses from forest ecologists, conservationists and macro-ecologists. In addition, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, that together build the largest evolutionary forest ecology data collection	
Corresponding Author:	Lars Opgenoorth Philipps-Universität Marburg Marburg, Hessen GERMANY	
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	Philipps-Universität Marburg	
Corresponding Author's Secondary Institution:		
First Author:	Lars Opgenoorth	
First Author Secondary Information:		
Order of Authors:	Lars Opgenoorth	
	Benjamin Dauphin	

Ra	quel Benavides
Kat	rin Heer
Par	askevi Alizoti
Elis	abet Martínez-Sancho
Ric	ardo Alía
Oliv	vier Ambrosio
Alb	et Audrey
Ca	milla Avanzi
Eva	angelia Avramidou
Fra	ncesca Bagnoli
Eva	angelos Barbas
Cris	stina C. Bastias
Cat	therine Bastien
Edu	uardo Ballesteros
Gio	rgia Beffa
Fré	déric Bernier
Hei	nri Bignalet
Gu	illaume Bodineau
Dai	mien Bouic
Sal	bine Brodbeck
Wil	liam Brunetto
Jur	ata Buchovska
Me	lanie Buy
Ana	a M. Cabanillas-Saldaña
Bár	bara Carvalho
Nic	olas Cheval
Jos	é M. Climent
Ма	rianne Correard
Eva	a Cremer
Dai	rius Danusevičius
Fer	nando Del Caño
Jea	an-Luc Denou
Nic	olas di Gerardi
Ber	nard Dokhelar
Ale	xis Ducousso
Esł	kild Nilsen
Anr	na-Maria Farsakoglou
Pat	rick Fonti
loa	nnis Ganopoulos
Jos	é M. García del Barrio

René Graf	
Alan Gray	
Delphine Grivet	
Felix Gugerli	
Christoph Hartleitner	
Enja Hollenbach	
Agathe Hurel	
Bernard Issehut	
Florence Jean	
Veronique Jorge	
Arnaud Jouineau	
Jan-Philipp Kappner	
Katri Kärkkäinen	
Robert Kesälahti	
Florian Knutzen	
Sonja Kujala	
Timo Kumpula	
Mariaceleste Labriola	
Celine Lalanne	
Johannes Lambertz	
Martin Lascoux	
Vincent Lejeune	
Gregoire Le-Provost	
Joseph Levillain	
Mirko Liesebach	
David López-Quiroga	
Benjamin Meier	
Ermioni Malliarou	
Jérémy Marchon	
Nicolas Mariotte	
Antonio Mas	
Silvia Matesanz	
Helge Meischner	
Célia Michotey	
Pascal Milesi	
Sandro Morganti	
Daniel Nievergelt	
Eduardo Notivol	
Geir Ostreng	

	Annika Perry
	Andrea Piotti
	Christophe Plomion
	Nicolas Poinot
	Mehdi Pringarbe
	Luc Puzos
	Tanja Pyhäjärvi
	Annie Raffin
	José A. Ramírez-Valiente
	Christian Rellstab
	Dourthe Remi
	Sebastian Richter
	Juan J. Robledo-Arnuncio
	Sergio San Segundo
	Outi Savolainen
	Volker Schneck
	Ivan Scotti
	Vladimir Semerikov
	Lenka Slámová
	Jørn Henrik Sønstebø
	Ilaria Spanu
	Jean Thevenet
	Mari Mette Tollefsrud
	Norbert Turion
	Giovanni Giuseppe Vendramin
	Marc Villar
	Georg Von Arx
	Johan Westin
	Bruno Fady
	Tor Myking
	Fernando Valladares
	Filippos A. Aravanopoulos
	Stephen Cavers
Order of Authors Secondary Information:	
Response to Reviewers:	 I have included the corrected author list I citing the GigaDB repository. However, since the doi is not yet availabl, I followed this advise by Chris Hunter: "Thank you, I will process the dataset as soon as possible. If that is the only bit of information you require to complete the manuscript submission then there is no need for you to wait, the handling editor (CC'd) can insert the dataset citation on your behalf during the copy editing stage." I send a brief explanation via email regarding the additional author.
	4. The additional author fits under the contribution listed as was in place.

Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> <u>Identifiers</u> (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	

Have you have met the above requirement as detailed in our Minimum Standards Reporting Checklist?

The GenTree Platform: growth traits and tree-level environmental data in twelve European forest tree

3 species

Opgenoorth, Lars^{1,2}, Dauphin, Benjamin², Benavides, Raquel³, Heer, Katrin¹, Alizoti, Paraskevi⁴,
 Martínez-Sancho, Elisabet², Alía, Ricardo⁵, Ambrosio, Olivier⁶, Audrey, Albet⁷, Auñón, Francisco⁵,

6 Avanzi, Camilla⁸, Avramidou, Evangelia⁴, Bagnoli, Francesca⁸, Barbas, Evangelos⁴, Bastias, Cristina

7 C.⁹, Bastien, Catherine¹⁰, Ballesteros, Eduardo⁵, Beffa, Giorgia², Bernier, Frédéric⁷, Bignalet, Henri⁷,

8 Bodineau, Guillaume¹¹, Bouic, Damien⁷, Brodbeck, Sabine², Brunetto, William⁶, Buchovska, Jurata¹²,

9 Buy, Melanie⁶, Cabanillas-Saldaña, Ana M.¹³, Carvalho, Bárbara³, Cheval, Nicolas⁷, Climent, José

M.⁵, Correard, Marianne⁶, Cremer, Eva¹⁴, Danusevičius, Darius¹², Del Caño, Fernando⁵, Denou, Jean Luc⁷, di Gerardi, Nicolas², Dokhelar, Bernard⁷, Ducousso, Alexis¹⁵, Eskild Nilsen, Anne¹⁶,

12 Farsakoglou, Anna-Maria⁴, Fonti, Patrick², Ganopoulos, Ioannis¹⁷, García del Barrio, José M.⁵, Gilg,

Olivier⁶, González-Martínez, Santiago C.⁷, Graf, René², Gray, Alan¹⁸, Grivet, Delphine⁵, Gugerli,

14 Felix², Hartleitner, Christoph¹⁹, Hollenbach, Enja¹, Hurel, Agathe⁷, Issehut, Bernard⁷, Jean, Florence⁶,

15 Jorge, Veronique²⁰, Jouineau, Arnaud⁶, Kappner, Jan-Philipp¹, Kärkkäinen, Katri²¹, Kesälahti,

16 Robert²², Knutzen, Florian¹⁴, Kujala, Sonja T²¹, Kumpula, Timo A²², Labriola, Mariaceleste⁸, Lalanne,

17 Celine¹⁵, Lambertz, Johannes¹, Lascoux, Martin²³, Lejeune, Vincent¹¹, Le-Provost, Gregoire¹⁵,

18 Levillain, Joseph²⁴, Liesebach, Mirko²⁵, López-Quiroga, David³, Meier, Benjamin², Malliarou, Ermioni⁴,

19 Marchon, Jérémy², Mariotte, Nicolas⁶, Mas, Antonio³, Matesanz, Silvia²⁶, Meischner, Helge¹,

20 Michotey, Célia²⁷, Milesi, Pascal²⁸, Morganti, Sandro², Nievergelt, Daniel², Notivol, Eduardo²⁹,

21 Ostreng, Geir¹⁶, Pakull, Birte²⁵, Perry, Annika¹⁸, Piotti, Andrea⁸, Plomion, Christophe¹⁵, Poinot,

22 Nicolas⁷, Pringarbe, Mehdi⁶, Puzos, Luc⁷, Pyhäjärvi, Tanja²², Raffin, Annie⁷, Ramírez-Valiente, José

23 A.⁵, Rellstab, Christian², Remi, Dourthe⁷, Richter, Sebastian¹, Robledo-Arnuncio, Juan J.⁵, San

24 Segundo, Sergio⁵, Savolainen, Outi²², Schueler, Silvio³⁰, Schneck, Volker³¹, Scotti, Ivan⁶, Semerikov,

25 Vladimir³², Slámová, Lenka², Sønstebø, Jørn Henrik¹⁶, Spanu, Ilaria⁸, Thevenet, Jean⁶, Tollefsrud,

26 Mari Mette¹⁶, Turion, Norbert⁶, Vendramin, Giovanni Giuseppe⁸, Villar, Marc²⁰, von Arx, Georg²,

27 Westin, Johan³³, Fady,Bruno⁶, Myking, Tor¹⁶, Valladares, Fernando³, Aravanopoulos, Filippos A.⁴,

28 Cavers, Stephen¹⁸

¹Philipps University Marburg, Faculty of Biology, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany

30 ²Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland

31 ³LINCGlobal, Department of Biogeography and Global Change, Museo Nacional de Ciencias

32 Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain

33 ⁴Aristotle University of Thessaloniki, School of Forestry and Natural Environment, Laboratory of

34 Forest Genetics and Tree Improvement, 54124 Thessaloniki, Greece

³⁵Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de Investigación

36 Forestal (INIA-CIFOR), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain

⁶Institut National de Recherche en Agriculture, Alimentation et Environment (INRAE), Domaine Saint
 Paul, Site Agroparc, 84914, Avignon, France

⁷Institut National de Recherche en Agriculture, Alimentation et Environment (INRAE), UEFP, 33610
 Cestas, France

41 ⁸Institute of Biosciences and BioResources, National Research Council (CNR), via Madonna del

42 Piano 10, 50019, Sesto, Fiorentino, Italy

43 ⁹Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, UMR 5175, Montpellier, France

¹⁰Institut National de Recherche en Agriculture, Alimentation et Environment (INRAE), Dept ECOFA,
 F-45075 Orléans, France

¹¹Institut National de Recherche en Agriculture, Alimentation et Environment (INRAE), GBFOR, 45075
 Orléans, France

48 ¹²Vytautas Magnus University, Studentu Street 11, 53361, Akademija, Lithuania.

49 ¹³Departamento de Agricultura, Ganadería y Medio Ambiente, Gobierno de Aragón, P. Mª Agustín 36,

50 50071 Zaragoza, Spain

- 51 ¹⁴Bavarian Institute for Forest Genetics, Forstamtsplatz 1, 83317 Teisendorf, Germany
- 52 ¹⁵INRAE, Univ. Bordeaux, BIOGECO, F-33770 Cestas, France
- 53 ¹⁶Division of Forestry and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO),
- 54 P.O. Box 115, 1431, Ås, Norway
- 55 ¹⁷Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex 56 NAGREF), Thermi, 57001, Greece
- 57 ¹⁸UK Centre for Ecology and Hydrology, Bush Estate Penicuik, EH26 0QB, United Kingdom
- 58 ¹⁹LIECO GmbH & Co KG
- 59 ²⁰Institut National de Recherche en Agriculture, Alimentation et Environment (INRAE), ONF,
- 60 BIOFORA, 45075 Orléans, France
- 61 ²¹Natural Resources Institute Finland, Paavo Havaksentie 3, 90014, University of Oulu, Finland
- 62 ²²University of Oulu, Pentti Kaiteran katu 1, 90014, University of Oulu, Finland
- 63 ²³Department of Ecology & Genetics, EBC, Uppsala University, Norbyvägen 18D, 75236, Uppsala,
- 64 Sweden
- 65 ²⁴Université de Lorraine, AgroParisTech, INRAE, SILVA, 54000 Nancy, France
- 66 ²⁵Thünen Institute of Forest Genetics, Sieker Landstr. 2, Grosshansdorf, 22927, Germany
- 67 ²⁶Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933,
- 68 Móstoles, Spain
- 69 ²⁷Institut National de Recherche en Agriculture, Alimentation et Environment (INRAE), URGI,
- 70 Versailles, France
- 71 ²⁸Department of Ecology & Genetics, EBC, Science for Life Laboratory, Uppsala University, Uppsala,
- 72 Sweden
- 73 ²⁹Centro de Investigación y Tecnología Agroalimentaria de Aragón - Unidad de Recursos Forestales 74 (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
- 75 ³⁰Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, 1131, Wien, Austria
- 76 ³¹Thünen Institute of Forest Genetics, Eberswalder Chaussee 3a, Waldsieversdorf, 15377, Germany
- 77 ³²Institute of Plant and Animal Ecology, Ural branch of RAS, 8 Marta St. 202, 620144, Ekaterinburg,
- 78 Russia
- 79 ³³Skogforsk, Tomterna 1, 918 21 Sävar, Sweden
- 80
- 81 opgenoorth@uni-marburg.de; lars.opgenoorth@wsl.ch
- 82 beniamin.dauphin@wsl.ch
- 83 rbenavidescalvo@gmail.com
- 84 katrin.heer@uni-marburg.de
- 85 alizotp@for.auth.gr
- 86 elisabet.martinez@wsl.ch
- 87 alia@inia.es
- olivier.ambrosio@inrae.fr 88
- 89 audrey.albet.1@inrae.fr
- 90 aunon.francisco@inia.es
- 91 camilla.avanzi@ibbr.cnr.it
- 92 aevaggelia@yahoo.com
- 93 francesca.bagnoli@ibbr.cnr.it
- 94 vbarbas@for.auth.gr
- 95 crbasc@gmail.com
- 96 catherine.bastien@inrae.fr
- 97 eduardo.ballesteros@inia.es
- 98 giorgia.beffa@gmail.com
- 99 frederic.bernier@inrae.fr
- 100 henri.bignalet@inrae.fr
- 101 guillaume.bodineau@inrae.fr
- 102 damien.bouic@inrae.fr

- 103 sabine.brodbeck@wsl.ch
- 104 william.brunetto@inrae.fr
- 105 jurata.buchovska@vdu.lt
- 106 Melanie.Buy@inrae.fr
- 107 acabanillas@aragon.es
- 108 babic.barbosa@gmail.com
- 109 nicolas.cheval@inrae.fr
- 110 climent@inia.es
- 111 marianne.correard@inrae.fr
- 112 Eva.Cremer@awg.bayern.de
- 113 darius.danusevicius@vdu.lt
- 114 umgf@inia.es
- 115 jean-luc.denou@inrae.fr
- 116 nicolas.degirardi@gmail.com
- 117 bernard.dokhelar@inrae.fr
- 118 alexis.ducousso@inrae.fr
- 119 anne.eskild.nilsen@nibio.no
- 120 amfarsakoglou@gmail.com
- 121 patrick.fonti@wsl.ch
- 122 giannis.ganopoulos@gmail.com
- 123 jmgarcia@inia.es
- 124 olivier.gilg@inrae.fr
- 125 santiago.gonzalez-martinez@inrae.fr
- 126 rene.graf@wsl.ch
- 127 alangray@ceh.ac.uk
- 128 dgrivet@inia.es
- 129 felix.gugerli@wsl.ch
- 130 hartleitner@sfl.at
- 131 Hollenb4@students.uni-marburg.de
- 132 agathe.hurel@inrae.fr
- 133 bernard.issenhuth@inrae.fr
- 134 florence.jean@inrae.fr
- 135 veronique.jorge@inrae.fr
- 136 arnaud.jouineau@inrae.fr
- 137 kappnerj@students.uni-marburg.de
- 138 katri.karkkainen@luke.fi
- 139 robert.kesalahti@oulu.fi
- 140 FAKnutzen@gmail.com
- 141 sonja.kujala@luke.fi
- 142 timo.kumpula@oulu.fi
- 143 mclabriola@gmail.com
- 144 celine.lalanne@inrae.fr
- 145 Lambertj@students.uni-marburg.de
- 146 martin.lascoux@ebc.uu.se
- 147 vincent.lejeune@inrae.fr
- 148 gregoire.le-provost@inrae.fr
- 149 joseph.levillain@inrae.fr
- 150 mirko.liesebach@thuenen.de
- 151 david.quiroga@csic.es
- 152 meier.benjamin@outlook.com
- 153 ermionimalliarou@yahoo.gr
- 154 jeremy.marchon@romandie.ch

- 155 nicolas.mariotte@inrae.fr
- 156 antonio.mas@mncn.csic.es
- 157 silvia.matesanzgarcia@gmail.com
- 158 helgem@posteo.de
- 159 celia.michotey@inrae.fr
- 160 pascal.milesi@scilifelab.uu.se
- 161 msandro@posteo.ch
- 162 daniel.nievergelt@wsl.ch
- 163 enotivol@cita-aragon.es
- 164 geir.ostreng@nibio.no
- 165 birte.pakull@thuenen.de
- 166 annt@ceh.ac.uk
- 167 andrea.piotti@ibbr.cnr.it
- 168 christophe.plomion@inrae.fr
- 169 nicolas.poinot@inrae.fr
- 170 mehdi.pringarbe@inrae.fr
- 171 luc.puzos@inrae.fr
- 172 tanja.pyhajarvi@oulu.fi
- 173 annie.raffin@inrae.fr
- 174 josealberto.ramirezvaliente@gmail.com
- 175 christian.rellstab@wsl.ch
- 176 remi.dourthe@inrae.fr
- 177 richte3d@staff.uni-marburg.de
- 178 jjrobledo@gmail.com
- 179 sergio.sansegundo@inia.es
- 180 outi.savolainen@oulu.fi
- 181 silvio.schueler@bfw.gv.at
- 182 volker.schneck@thuenen.de
- 183 ivan.scotti@inrae.fr
- 184 semerikov@ipae.uran.ru
- 185 lenka.mateju@wsl.ch
- 186 jorn.sonstebo@nmbu.no
- 187 ilaria.spanu@ibbr.cnr.it
- 188 jean.thevenet@inrae.fr
- 189 Mari.Mette.Tollefsrud@nibio.no
- 190 Norbert.Turion@inrae.fr
- 191 giovanni.vendramin@ibbr.cnr.it
- 192 marc.villar@inrae.fr
- 193 georg.vonarx@wsl.ch
- 194 johan.westin@skogforsk.se
- 195 bruno.fady@inrae.fr
- 196 tor.myking@nibio.no
- 197 valladares@ccma.csic.es
- 198 aravanop@auth.gr
- 199 scav@ceh.ac.uk
- 200
- 201 Corresponding authors: opgenoorth@uni-marburg.de, benjamin.dauphin@wsl.ch, scav@ceh.ac.uk

202 Abstract

203 Background:

Progress in the field of evolutionary forest ecology has been hampered by the huge
challenge of phenotyping trees across their ranges in their natural environments, and the
limitation in high-resolution environmental information.

207 Findings:

208 The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 209 twelve ecologically and economically important European forest tree species: Abies alba 210 Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), 211 Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus 212 halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster 213 Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black 214 poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). 215 Phenotypic (height, diameter at breast height, crown-size, bark-thickness, biomass, 216 straightness, forking, branch angle, fructification), regeneration, environmental in-situ 217 measurements (soil depth, vegetation cover, competition indices), and environmental 218 modeling data extracted by using bilinear interpolation accounting for surrounding conditions 219 of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees 220 in 194 sites covering the species' geographic ranges and reflecting local environmental 221 gradients.

222 Conclusion:

The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists, conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build the largest evolutionary forest ecology data collection available.

Measurements	vegetation cover • rock cover • soil depth • competition index • regeneration • diameter at breast height • height • crown size • bark thickness • number of fruits • stem straightness • branch angle • forking index
Technology Type(s)	bark gauges • calculations • caliper • clinometer •
	GPS device • Increment corer • laser distance
	measurement • telescopic measuring pole
Factor Type(s)	tree species
Sample Characteristic Organism	Abies alba • Betula pendula • Fagus sylvatica •
	Picea abies • Pinus cembra • Pinus halepensis •
	Pinus nigra • Pinus pinaster • Pinus sylvestris •
	Populus nigra • Taxus baccata • Quercus petraea
Sample Characteristic Location	Europe
Maahina aaaaaaihla matadata fila daa	aribing the reported data:

231 Machine-accessible metadata file describing the reported data:

232 Keywords

- 233 Regeneration, DBH, height, crown-size, bark-thickness, fruit-number, stem-straightness,
- branch-angle, forking-index, soil-depth

235 Context

- 236 The impacts of climate change and land-use change on forests are already severe, as
- 237 observed, for example, following the extreme summer drought of 2018 that triggered a
- 238 massive increase in mortality in Central European forests¹. Furthermore, changes are
- expected to be acute in the future, altering distribution ranges and ecosystem functioning, as
- 240 well as the interactions among species ². Forecasts indicate that near-surface temperature
- 241 will shift poleward at mean rates of 80-430 m yr⁻¹ for temperate forests during the 21st
- 242 century ³. This translates into northward shifts of trees' bioclimatic envelopes from 300 to
- 243 800 km within one century ³. More importantly, the frequency and intensity of drought
- 244 events, heat waves, forest fires, and pest outbreaks ⁴ are expected to increase.

In the light of these changes, species and forest ecosystem resilience will depend on the
extent and structure of phenotypic plasticity, genetic variation, and adaptive potential, as well

230

247 as dispersal ability. From the results of extensive networks of field experiments (provenance 248 trials), it has long been shown that tree species are locally adapted at multiple spatial scales. 249 In Europe, where most tree populations have established following post-glacial 250 recolonization, such patterns of local adaptation must have developed rapidly and despite 251 long generation time and extensive gene flow ⁵, a process enabled by high levels of within-252 population plasticity, genetic and epigenetic variation, and large population sizes ⁶. Recent 253 work has shown that genetic variation for stress response may be strongly structured along environmental gradients, such as water availability ⁷, temperature ⁸, or photoperiod ⁹. 254 255 However, the spatial patterns of current adaptation in particular phenotypic traits are only 256 partly informative regarding the potential for future adaptation under a changing climate. To 257 advance our understanding of the adaptive potential of trees, it is crucial to evaluate multiple 258 traits in parallel to be able to model their putative response to new environmental conditions.

259 Recently, substantial effort has been made to identify specific genes and gene combinations 260 that have undergone selection, by associating mutations at candidate loci with phenotypes 261 related to stress events ^{10,11} or with environmental variables ¹². This latter example by Yeaman and co-workers ¹² is one of the first association studies in forest tree species on a 262 263 large genomic scale and the first to investigate convergent local adaptation in distantly 264 related tree species. However, progress in this field has been hampered by limited genomic 265 resources, the lack of small-scale, individual tree-level environmental information ¹³, and the huge challenge of phenotyping trees in their natural environments ^{14,15}. 266

The GenTree Platform aims to address these challenges by providing individual level, highresolution phenotypic and environmental data for a set of up to 20 sampling sites for each of twelve ecologically and economically important forest tree species across Europe. For a subset of seven species (*B. pendula*, *F. sylvatica*, *P. abies*, *P. pinaster*, *P. sylvestris*, *Populus nigra*, and *Q.petraea*), the sampling of sites was carried out in pairs, i.e. contained two stands that were close enough to be connected by gene flow but situated in contrastingenvironments.

The sampling design described here was used for collecting phenotypic traits and ecological data. Also, tree ring and wood density measurements for the same trees were assessed ¹⁶, and datasets on leaf traits, including specific leaf area (SLA) and isotopic content ¹⁷, and high-density single nucleotide polymorphism (SNP) data for each tree, were established, that will be published in GeneBank. All data and metadata information are gathered in the GnpIS repository

(https://urgi.versailles.inra.fr/ephesis/ephesis/viewer.do#dataResults/trialSetIds=27) which
 makes updates possible¹⁸.

282 We investigated the extent to which other datasets comparable to the data presented here 283 exist by screening our twelve species in the TRY Plant Trait Data Base, the ITDRB, and the 284 biomass and allometry database for woody plants (BAAD). While this is a systematic 285 approach, it leaves out a large number of tree species and therefore we cannot claim to 286 have a comprehensive overview of the existing data. However, all three databases are large 287 collections that include at least some of the tree measurements we present. Even though 288 these are tremendous resources, the major difference is that based on their nature as 289 collecting points of numerous independent datasets, there is no coherent sampling scheme 290 in these collections as such, meaning that the number of trees per site, the way of tree 291 selection, measured phenotypes, and provided environmental information vary greatly and 292 therefore do not allow for coherent comparative analyses such as those of the GenTree 293 Platform. For example, BAAD reports DBH data for only four of the species presented here, 294 namely Betula pendula with three populations, Fagus sylvatica with two populations, Picea abies with four populations, and Pinus sylvestris with ten populations. In the larger TRY 295 296 database, all of our species are represented, but the variability of sampling schemes is much 297 more heterogeneous concerning traits, number of populations per species, and metadata.

For example, DBH measurements are being reported 232 times from a total of 12 *Betula pendula* populations. Of these, the vast majority of the 170 measurements are from one population while from many other populations only one or up to five measurements are reported. Also, the measurements stem from five different original studies and thus having very different levels of additional information. We conclude that the core value of our reported data lies in the coherent sampling design and yet the large number of sampled populations and individuals per species.

305 Methods

306 All recorded parameters are listed in Table 1.

307 Sampling strategy

308 To optimize the sampling design for genome scans and association studies, we followed the 309 recent theoretical work by Lotterhos and Whitlock ^{19,20}, which indicates that a paired 310 sampling design has more power to detect the genomic signatures of local adaptation. Using 311 this framework, populations from across the natural range of a species are sampled in pairs, 312 with the two sites in each pair situated geographically close enough to be genetically similar 313 at neutral genes due to a common evolutionary history and ongoing gene flow, but in distinct 314 selective niches such that the local fitness optimum differs between the two sites. This 315 sampling confers more power to detect evidence of selection in the genome through either 316 association with environmental or phenotypic variables or the detection of outliers (e.g. for 317 genetic differentiation, F_{ST}) (ibid.). Trees are very amenable to a pairwise approach since they are known to be locally adapted, often at fine spatial scales ^{21,22} and irrespective of 318 319 gene flow distances ⁶. This strategy was followed for a subset of seven species (see above) 320 for which genomic resources were available (i.e. full or draft genome).

Such local niche contrasts are neither easy to identify nor readily available when
 environments are very homogenous. Therefore, a second principle of the sampling design

- 323 was to cover a large part of each species' natural geographic range (Fig. 1) and
- 324 environmental space (Fig. 2) to capture selective niche variation. Finally, sites with a history
- 325 of intensive management or any other intense and obvious anthropogenic or natural
- 326 disturbances were avoided. This strategy was followed for all the 12 species.

327 Selection of trees on sites

A minimum of 25 trees was sampled per site to capture the natural phenotypic and genetic variability. Trees had to be mature but not senescent, dominant or codominant and had to show no signs of significant damage due to pests and diseases or generally low vigor. Sampled trees were at least 30 meters apart and, where possible, were chosen along several parallel linear transects across each site, typically resulting in 2-4 transects per sampling site to keep the overall sampling area below 3 hectares.

334 Site and tree metadata

335 Sites were labeled by a two-letter country code (ISO 3166-1 alpha-2) followed by a two-letter 336 species code and a two-digit site number (Table 1). Individual tree-labels added another two-337 digit tree number. Every tree was permanently labeled so that future studies can resample 338 subsets or the entire GenTree collection for gaining time-series data of individual traits or to add new phenotypes to the analyses. Be aware, that permission of the respective 339 340 landowners must be obtained before sampling. Handheld GPS devices were used to record 341 the position of each tree. The precision of GPS measurements in forests is notoriously 342 challenging: regular commercial devices achieve an accuracy of about 8-15 m with good 343 satellite coverage. Given that trees were selected with a minimum distance of 30 m this 344 accuracy was sufficient for the correct positioning of trees relative to each other. An overall 345 population position was defined by taking the mean value across all the individual tree 346 measurements. Coordinates were in decimal degrees with 4 decimal units to reflect the 347 general measurement accuracy (~11.1 m) and were stored in the WGS 84 reference 348 system. GPS devices were also used to record the tree's elevation, either directly or through

post-hoc positioning in digital elevation models. The local aspect at the site of the tree was
measured by a compass in five-degree steps in the direction of the steepest slope.

The Metadata for each site consists of an ID code (see above), sampling date, location (GPS coordinates, see above), and elevation in meters above sea level (m a.s.l). Each stand was also characterized as being monospecific or mixed (in the latter case the most common co-occurring species was noted), stand structure was noted as single or multiple layered, and the age distribution as even or uneven (categorical variables).

356 Competition index at tree level

357 Competition indices were calculated following Canham et al. ²³ and Lorimer et al. ²⁴.

Specifically, the first index following Lorimer ²⁴ was calculated as $NCI = \sum_{i=1}^{5} {DBH_j / DBH_i} / dist_i$ that follows the same notation as above, and where *DBH* is the *DBH* of the subject trees *j* and *i*.

Second, the distance-dependent competition index (NCI) following Canham et al. ²³ was computed as $NCI = \sum_{i=1}^{5} (\frac{DBH_i}{dist_i})$ where DBH_i is the diameter at breast height of competitor tree *i*, and *dist_i* is the distance between the subject tree and competitor tree *i*. This index assumes that the net effects of neighboring trees vary as a direct function of the size of the neighbors and as an inverse function of the distance. For this purpose, the distance to the five nearest neighbors of each target tree was measured and their respective diameter at breast height was measured.

- 368 Moreover, it was noted whether competitor trees were conspecific to the target tree or not.
- 369 Each multi-stemmed tree was considered as a single competitor where each stem larger
- than 15 cm DBH was measured and added to the sum of means.

371 Environmental characteristics within subplots around each tree

372 Surrounding each target tree, slope, vegetation cover (without tree cover), and stone content

- 373 were assessed in a 10 m x 10 m plot. The slope was assessed using a clinometer.
- Vegetation and rock cover were estimated in the classes <5%, 5-20%, 20-40%, 40-60%, 60-
- 375 80%, 80-95%. Soil depth was estimated at three random points in the quadrat to a maximum
- of 60 cm with a pike and was averaged across these three values.

377 Regeneration

In the same 10 m x 10 m plots, natural regeneration of the target species was assessed according to the following four classes: absent (no recruit visible), scattered (few/scattered individuals), grouped (presence of scattered groups within the plot), and abundant (regularly spread all over the plot) and is indicated in the database with values from 1-4. As this method cannot resolve maternity, the results indicate realized fecundity at the stand level.

383 Growth traits

384 DBH (cm)

385 DBH was measured at a stem height of 1.3 m using either a caliper by measuring two 386 perpendicular diameters and subsequently taking the average of these two measurements 387 or by measuring the circumference of the tree using a tape and computing the diameter from 388 that value. Each measurement was performed to the nearest 0.1 cm. If a tree had more than 389 one trunk, all of them were measured and the average was recorded.

390 Height (m)

Height from the ground to the top of the crown was measured using a hypsometer (Nikon
forestry Pro Laser), a laser vertex (Haglof Vertex III, Langsele, Sweden), or a Laser Range
Meter (Bosch GLM 50 C, Leinfelden-Echterdingen, Germany). For short trees, a telescopic
measuring pole was used. Height was noted to the nearest 0.1 m. To forego errors
introduced by measuring height on sloping ground, height measurements on slopes were
conducted from the same elevation as the tree's base by approaching the tree sideways.
Where this was not possible, a slope correction factor was used.

398 Crown size (m²)

The crown size was measured as the circular and ellipsoid plane area of the crown. For this, we measured two perpendicular crown diameters (canopy 1 and 2) by using a measurement tape, with the first measurement being made along the longest axis of the crown, from one edge to the other, and by visually projecting the crown margin onto the ground to the nearest decimeter. For the ellipse area, we calculated $\binom{d_i}{2} * \binom{d_j}{2} * \pi$ and for the circular area $(d_i+d_j)/2^*\pi$.

405 Bark thickness (mm)

For measuring bark thickness, we used bark gauges (Haglof Barktax) or a tape after
extracting the bark with a small caliper (if bark could be detached without tree damage) or
increment borers (Haglof increment borer) in case of strong and thick bark. Five
measurements were taken for each tree at breast height and the average was calculated.
For tree species with a clear dichotomy of bark thickness (e.g. old *Populus nigra*, *T*. *baccata*), we included at least two measurements from the thinner and thicker bark areas
each.

413 Number of fruits (units)

In conifers, cones were counted by providing the average of three rounds of counting, made by an observer on the ground using binoculars. Only mature (brown) and closed cones were counted, i.e., those containing seeds, and not immature (green) or open cones, whose seeds had already been dispersed (open cones often stay on the branch for several years after seeds are dispersed). In broadleaves, the number of fruits was counted for 30 seconds, repeating the procedure three times to then average the three counts.

In the case of species with very small fruits that are hard to see individually and in locations
with a very limited view of the canopy, each tree was assigned to one of five categories,
namely 0 (no fruits), 1 (a few fruits in a small section of the crown), 2 (a few fruits in two or

423 more sections of the crown), 3 (a lot of fruits in a small section of the crown), and 4 (a lot of 424 fruits in two or more sections of the crown).

425 Straightness

426 Straightness of the stem was classified according to five levels: (1) No straight stem, (2)

427 moderate or strong bends, (3) slight to moderate bend in different directions, (4) fairly

428 straight (in one direction slightly crooked), (5) absolutely straight. This was performed on the

lower 15 m of the tree beginning from the ground with the crown not taken into account. In

the case of forked stems, only the trunk below the deepest forking point was evaluated.

431 Branch angle

Branch angle was classified at two successive whorls according to a five-scale scheme in conifers with (1) <23°, (2) 23-45°, (3) 45-67°, (4) 67°-90°, (5) > 90°, and a four-scale scheme in broadleaves omitting the >90° class. In black poplar, only the top two meters of the crown were considered.

436 Forking index

The branching of a tree in two (fork) or more (ramiform) equally thick and long stems was assessed with a forking index. The index took into account two parameters. First a score for the relative position of the fork: (4) no forking, (3) forking in the upper third of the tree, (2) forking in the middle third of the tree, (1) forking in the lower third of the tree; and second the number of axes (stems). The score of the relative position was then multiplied by ten and divided by the number of axes.

443 Modeled environmental data extracted for GenTree sites

444 Topography, soil, and climate data were compiled to characterize environmental conditions445 in each GenTree sampling site as follows.

446 **Topography**

We used the European digital elevation model to describe topographic conditions at 25 m spatial resolution with a vertical accuracy of about \pm 7 meters (EU-DEM v. 1.1 from the Copernicus program; <u>https://land.copernicus.eu/</u>). We derived 14 variables (Table 2) based on biological hypotheses and their informative power at the local scale ²⁵. We calculated morphometric, hydrologic, and radiation grids for each GenTree site and visually inspected data integrity using SAGA 6.2 ²⁶ (details in Table 2).

453 **Soil**

We collected available data on water capacity at seven soil depths using SoilGrids250m²⁷.
We estimated Pearson's correlation coefficients, *r*, between soil layers and then averaged
the four first superficial (0, 5, 15, and 30 cm) and the three deeper (60, 100, and 200 cm)
layers that were highly correlated, respectively.

458 Climate

459 We extracted climate data with a high spatial resolution (30 arcsec) using CHELSA v. 1.2²⁸. 460 CHELSA is based on a quasi-mechanistic statistical downscaling global reanalysis and 461 global circulation model that, in particular, reliably interpolates the amount of precipitation 462 using an orographic rainfall and wind effect. The dataset consisted of 48 climatic, 19 463 bioclimatic, four drought- and two frost-related variables for the reference period 1979-2013 464 (Table 2; http://chelsa-climate.org/bioclim/). We extracted all modeled environmental values for each individually geo-referenced tree using the extract function of the R package 465 RASTER (Hijmans and van Etten 2016²⁹). The surrounding conditions (i.e. adjacent pixels) 466 467 of each tree were incorporated by the bilinear interpolation method when extracting the data. Table 1 Variables names, explanations, and specifications measured for all 4,959 trees and 468

469 all 194 GenTree sites.

Variable name Variable explanation Specification GenTree Platform metadata

m01.spec	Species abbreviations	Abies Alba [AA], Betula pendula [BP], Fagus sylvatica [FS], Picea abies [PA], Pinus cembra [PC], Pinus halepensis [PH], Pinus nigra [PN], Populus nigra [PO], Pinus pinaster [PP], Pinus sylvestris [PS], Quercus petraea [QP], Taxus baccata [TB]
m02.country	Country abbreviations	Isocode 6133-2; Austria [AT], Switzerland [CH], Germany [DE], Spain [ES], Finland [FI], France [FR], Great Britain [GB], Greece [GR], Italy [IT], Lithuania [LT], Norway [NO], Sweden [SE]
m03.site.num	Site numbers	Running numbers of sites per species 01-24
m04.site.id	Complete site-ID per species	Merger of m01-m03
m05.tree.num	Tree numbers	Running numbers within sites 01-25
m06.tree.id	Complete tree ID	Merger of m01-m03, m05
m07.trial.name	Site name	
m08.lat	Latitude	Decimal degrees, WGS84
m09.lon	Longitude	Decimal degrees, WGS84
	GenTree Pl	atform phenotypes
p01.height	Height	Tree height, m
p02.dbh	DBH	Diameter at breast height, cm
p03.bark	Bark thickness mean	Mean value of bark thickness, cm
p04.trunk	Trunk straightness/flexuosity	5: absolutely straight, 4: fairly straight (in one direction slightly crooked), 3: slight to moderate bend in different directions, 2: moderate or strong bends, 1: no straight stem
p05.branch	Branch angle	1: <23° (steep), 2: 23° - 45°, 3: 45°-67°, 4: 67°-90° (plain), 5: >90°
p06.fork	Forking index	1: fork at the lower third of tree height, 2: fork at middle third, 3: fork at upper third, 4: no fork – multiplied by 10 and then divided by the number of stems
p07.canopy.1	Canopy projection REP 1	Crown diameter projection, m
p08.canopy.2	Canopy projection REP 2	Crown diameter projection, m
p09.crown.ellipse	Crown ellipse	Area of an ellipse (d1/2)*(d2/2)*π, m ²
p10.crown.round	Crown size	As some only have one diameter, round areas with the mean diameter ((D1+D2/2)/2) ^{2*} π , m ²
p11.regeneration	Natural regeneration	1: absent, 2: scattered, 3: groups, 4: abundant
p12.fruit.mean	Fruit/cone number	Number of fruits.
p13.basal.area		
•	GenTree Platform in-sit	u environmental measurements
e01.plant.cover	Total plant cover	1: none, 2: little (5-20%), 3: low (20-40%), 4: medium (40-60%), 5: high (60-80%), 6: very high (80-95%), 7: full cover (>95%)
e02.comp.index.a	Competition index A	CI assessed following Canham et al 2004, and multi-stems as the sum
e03.comp.index.b	Competition index B	CI assessed following Canham et al 2004, and multi-stems assessing the sum of basal areas and then the DBH
e04.comp.index.c	Competition index C	CI assessed following Lorimer 1983, and multi-stems as the sum
e05.comp.index.d	Competition index D	CI assessed following Lorimer 1983, multi-stems assessing the sum of basal areas and then the DBH
e06.status		Dominant, co-dominant
e07.elevation	Elevation of the tree	Meters above sea level
e08.slope	Slope at the tree level	Slope in degrees
e09.aspect	Aspect at the tree level	0-360°
e10.soil.depth	Mean soil depth	Mean of 3 measures (measurement to a max. depth of 60 cm
e11.stone.content	Mean stone content	Mean of 3 measures (1: none, 2: little (5-20%), 3: low (20-40%), 4: medium (40-60%), 5: high (60-80%), 6: very high (80-95%), 7: full cover (>95%)
e12.rock.cover	Total rock cover	1: none, 2: little (5-20%), 3: low (20-40%), 4: medium (40-60%), 5: high (60-80%), 6: very high (80-95%), 7: full cover (>95%)

472 **Table 2** Environmental variable names, explanations, and specifications modeled for all

473 4959 trees and 194 GenTree sites.

Variable name	Variable explanation	Specification
	GenTree Platform modeled envir	ronmental parameters
sample	Sample identification	unit: none; resolution [m]: none
country	Country code	unit: none; resolution [m]: none
countryspecies	Country and species code	unit: none; resolution [m]: none
species	Species code	unit: none; resolution [m]: none
population	Population identification	unit: none; resolution [m]: none
latwgs84	Latitude in WGS84	unit: degree; resolution [m]: 25
lonwgs84	Longitude in WGS84	unit: degree; resolution [m]: 25
latetrs89	Latitude in ETRS89	unit: degree; resolution [m]: 25
lonetrs89	Longitude in ETRS89	unit: degree; resolution [m]: 25
	Altitude	unit: m; resolution [m]: 25
t02slp	Slope	unit: degree; resolution [m]: 25
t03asp	Eastness	unit: degree; resolution [m]: 25
t04vcu		unit: degree/m; resolution [m]: 25
t05hCu	Downslope distance gradient	unit: degree: resolution [m]: 25
t07mpi	Morphometric protection index	unit: degree, resolution [m]: 25
tORtoj	Topographic position index	unit: none; resolution [m]: 25
toop		unit: none; resolution [m]: 25
	Topographic wetness index	unit: none; resolution [m]: 25
t11svf	Sky-view factor	unit: none; resolution [m]: 25
t12sdir	Potential direct solar radiation	unit: k l/m ² : resolution [m]: 25
t13sdif	Potential diffuse solar radiation	unit: k.l/m ² : resolution [m]: 25
t14stot	Potential total solar radiation	unit: k.l/m ² : resolution [m]: 25
awc15	Available water capacity (0-30cm)	unit: % resolution [m]: 250
awc140	Available water capacity (60-200cm)	unit: %; resolution [m]: 250
bio01	Yearly mean temperature	unit: °C/10: resolution [m]: 1000
bio02	Mean diurnal range	unit: °C/10: resolution [m]: 1000
bio03	Isothermality	unit: °C/10; resolution [m]: 1000
bio04	Temperature seasonality	unit: °C/10; resolution [m]: 1000
bio05	Max temperature of warmest month	unit: °C/10: resolution [m]: 1000
bio06	Min temperature of coldest month	unit: °C/10; resolution [m]: 1000
bio07	Temperature annual range	unit: °C/10; resolution [m]: 1000
bio08	Mean temperature of wettest quarter	unit: °C/10; resolution [m]: 1000
bio09	Mean temperature of driest quarter	unit: °C/10; resolution [m]: 1000
bio10	Mean temperature of warmest quarter	unit: °C/10; resolution [m]: 1000
bio11	Mean temperature of coldest quarter	unit: °C/10; resolution [m]: 1000
bio12	Yearly precipitation sum	unit: kg m ⁻² ; resolution [m]: 1000
bio13	Precipitation of wettest month	unit: kg m ⁻² ; resolution [m]: 1000
bio14	Precipitation of driest month	unit: kg m ⁻² ; resolution [m]: 1000
bio15	Precipitation seasonality	unit: kg m ⁻² ; resolution [m]: 1000
bio16	Precipitation of wettest quarter	unit: kg m ⁻² ; resolution [m]: 1000
bio17	Precipitation of driest quarter	unit: kg m ⁻² ; resolution [m]: 1000
bio18	Precipitation of warmest quarter	unit: kg m ⁻² ; resolution [m]: 1000
bio19	Precipitation of coldest quarter	unit: kg m ⁻² ; resolution [m]: 1000
gdd	Growing degree days	unit: °C; resolution [m]: 1000
gsp	Accumulated precipitation	unit: kg m ⁻² ; resolution [m]: 1000
shc	Hydrothermic coefficient	unit: (kg m ⁻² /10)/°C; resolution [m]: 1000
rn410	Relative humidity	unit: %; resolution [m]: 1000
tct	Frost change frequency	unit: number of events; resolution [m]: 1000
ntd	Number of frost days	unit: number of days; resolution [m]: 1000
prec01	Precipitation sum in January	unit: kg m ⁻² ; resolution [m]: 1000
precu2	Precipitation sum in February	unit: kg m ⁻² ; resolution [m]: 1000
prec03	Precipitation sum in March	unit: kg m ² ; resolution [m]: 1000
prec04	Precipitation sum in April	unit: kg m ² ; resolution [m]: 1000
precos	Precipitation sum in May	unit. kg m ⁻ ; resolution [m]: 1000
prec06	Precipitation sum in June	unit. kg m ⁻ ; resolution [m]: 1000
preco/	Precipitation sum in July	unit. kg m ⁻ , resolution [m]: 1000
prec06	Precipitation sum in Contembor	unit. kg m ⁻ , resolution [m]: 1000
prectos	Precipitation sum in October	unit. kg m ⁻ ; resolution [m]: 1000
precitu preciti	Precipitation sum in November	unit. Ny III., IESOIUIIOII [II]. 1000 unit: ka m ⁻² : resolution [m]: 1000
preciti proc12	Precipitation sum in December	unit. kg m ⁻² : resolution [m]: 1000
tmean01	Mean temperature in January	unit: °C/10: resolution [m]: 1000

tmean02	Mean temperature in February	unit: °C/10; resolution [m]: 1000
tmean03	Mean temperature in March	unit: °C/10; resolution [m]: 1000
tmean04	Mean temperature in April	unit: °C/10; resolution [m]: 1000
tmean05	Mean temperature in May	unit: °C/10; resolution [m]: 1000
tmean06	Mean temperature in June	unit: °C/10; resolution [m]: 1000
tmean07	Mean temperature in July	unit: °C/10; resolution [m]: 1000
tmean08	Mean temperature in August	unit: °C/10; resolution [m]: 1000
tmean09	Mean temperature in September	unit: °C/10; resolution [m]: 1000
tmean10	Mean temperature in October	unit: °C/10; resolution [m]: 1000
tmean11	Mean temperature in November	unit: °C/10; resolution [m]: 1000
tmean12	Mean temperature in December	unit: °C/10; resolution [m]: 1000
tmin01	Minimum temperature in January	unit: °C/10; resolution [m]: 1000
tmin02	Minimum temperature in February	unit: °C/10; resolution [m]: 1000
tmin03	Minimum temperature in March	unit: °C/10; resolution [m]: 1000
tmin04	Minimum temperature in April	unit: °C/10; resolution [m]: 1000
tmin05	Minimum temperature in May	unit: °C/10; resolution [m]: 1000
tmin06	Minimum temperature in June	unit: °C/10; resolution [m]: 1000
tmin07	Minimum temperature in July	unit: °C/10; resolution [m]: 1000
tmin08	Minimum temperature in August	unit: °C/10; resolution [m]: 1000
tmin09	Minimum temperature in September	unit: °C/10; resolution [m]: 1000
tmin10	Minimum temperature in October	unit: °C/10; resolution [m]: 1000
tmin11	Minimum temperature in November	unit: °C/10; resolution [m]: 1000
tmin12	Minimum temperature in December	unit: °C/10; resolution [m]: 1000
tmax01	Maximum temperature in January	unit: °C/10; resolution [m]: 1000
tmax02	Maximum temperature in February	unit: °C/10; resolution [m]: 1000
tmax03	Maximum temperature in March	unit: °C/10; resolution [m]: 1000
tmax04	Maximum temperature in April	unit: °C/10; resolution [m]: 1000
tmax05	Maximum temperature in May	unit: °C/10; resolution [m]: 1000
tmax06	Maximum temperature in June	unit: °C/10; resolution [m]: 1000
tmax07	Maximum temperature in July	unit: °C/10; resolution [m]: 1000
tmax08	Maximum temperature in August	unit: °C/10; resolution [m]: 1000
tmax09	Maximum temperature in September	unit: °C/10; resolution [m]: 1000
tmax10	Maximum temperature in October	unit: °C/10; resolution [m]: 1000
tmax11	Maximum temperature in November	unit: °C/10; resolution [m]: 1000
tmax12	Maximum temperature in December	unit: °C/10; resolution [m]: 1000

The local environmental contrasts varied among species and population pairs, most of which

exhibited variability concerning elevation, temperature, precipitation, and water availability.

476 Other local contrasts were based on radiation, soil water capacity, and topographic wetness

index (among others). One special case is *Populus nigra*, a heliophilous pioneer species
found naturally in riverine areas. Given this specific habitat, local contrasts were largely

bound to the distance of the individual trees from the riverbed and thus for example to

480 groundwater access or exposure to variation in the intensity and frequency of floods.

Fig. 2 Climate-space diagrams for the 12 selected European tree species with annual mean
temperature on the x-axis and annual total precipitation on the y-axis. Grey points represent species
occurrences based on a comprehensive high-resolution tree occurrence dataset for Europe ³⁰ and
black dots indicate the GenTree sites.

490 491

Fig. 3 Scatterplots, distributions, and Pearson's correlation coefficients, r, of GenTree phenotype 492 measurements in the 12 selected European tree species.

493

494 Data validation and quality control

The database has been checked for consistency at different stages by various researchers between 2018-2020. Raw data were submitted by all partners to the GnpIS multispecies integrative information system (https://urgi.versailles.inra.fr/Tools/GnpIS) using preformatted Microsoft Excel templates. Data files were harmonized, merged, and subsequently verified following several steps:

- 500 1. Missing data and dubious entries were checked manually by examining the original
 501 data files obtained from the partners and by cross-checking cases with field books.
- 502 2. Descriptive statistics were calculated and plotted for all variables including minima,
- 503 maxima, means, and variances. Outliers were checked against original data records 504 and corrected when necessary.
- 505 3. Covariables were plotted determining whether relationships were reasonable and
 506 following the most complete set of similar relationships (Fig. 3).

507 Data Records

- 508 The data presented are structured in four independent csv files
- 509 (GenTree_modelled_environmental_data.csv,
- 510 GenTree_modelled_environmental_data_metadata.csv,
- 511 GenTree_phenotypes_and_insitu_environmental_data.csv, and
- 512 GenTree_phenotypes_and_insitu_environmental_data_metadata.csv) that can be merged
- using the site identifier (m04.site.id) or tree identifier (m06.tree.id). The same codes can be
- 514 used to merge additional data namely from the GenTree Dendroecological Collection ¹⁶, the
- 515 GenTree Leaf Trait Collection¹⁷, and the GenTree Genomic Collection (personal
- 516 communication). The first file contains the modeled environmental data, the second its
- 517 metadata, the third the individual phenotypic traits and the insitu environmental data, and the
- 518 fourth the metadata of the latter.

- 519 Availability of supporting data
- 520
- 521 The data files are available at the GigaDB repository [31] under a CC0 license. Excel
- 522 versions of the data are available from figshare [32]. All the data are indexed in Table 2.
- 523

524 Acknowledgements¶

- 525 We would like to thank Juri Nievergelt, Anne Verstege, Marina Fonti, Kevin Kleeb, Frederick
- 526 Reinig, Enrica Zalloni, Claudio de Sassi, Giacomo Poli for their field assistance. This work
- 527 was performed using GnpIS, one of the facilities of the URGI platform
- 528 (https://urgi.versailles.inra.fr/). We are also grateful to all the forest owners and national
- 529 administrations for providing sampling permissions.

530 Author contributions¶

- 531 LO, RB, KH, BF, TM, FV, FAA, SC coordinated sampling design.
- 532 All authors contributed to the sampling design
- 533 LO, RB, KH, BF, TM, FV, FAA, SC coordinated field sampling.
- All authors contributed to the field sampling.
- 535 CM, MB compiled and assembled in-situ measurements in the GnpIS database.
- 536 BD extracted climatic and topographic data and derived environmental indices for all the
- 537 sampling sites.¶
- 538 RB, LO, BD, PAA, CM curated data, checked quality, and prepared the data sets with
- 539 metadata descriptions for sharing and potential reuse.¶
- 540 LO, KH, BD, SC, BF wrote the manuscript.¶
- 541 BF coordinated GenTree
- 542 All authors commented on an earlier version and approved the current version of the
- 543 manuscript.

544 Competing interests¶

545 The authors declare no competing interest.

546 Funding

- 547 This publication is part of the GenTree project which was funded by the European Union's
- 548 Horizon 2020 research and innovation program under grant agreement No. 676876
- 549 (GenTree). This work was also supported by the Swiss Secretariat for Education, Research
- and Innovation (SERI) under contract No. 6.0032.

551 References

- Schuldt, B. *et al.* A first assessment of the impact of the extreme 2018 summer drought
 on Central European forests. *Basic and Applied Ecology* 45, 86–103;
 10.1016/j.baae.2020.04.003 (2020).
- Sitch, S. *et al.* Evaluation of the terrestrial carbon cycle, future plant geography and
 climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs).
 Global Change Biology 14, 2015–2039; 10.1111/j.1365-2486.2008.01626.x (2008).
- 558 3. Loarie, S. R. *et al.* The velocity of climate change. *Nature* 462, 1052–1055;
 559 10.1038/nature08649 (2009).
- 4. Pachauri, R. K. & Mayer, L. (eds.). *Climate change 2014. Synthesis report*(Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2015).
- 5. Savolainen, O., Pyhäjärvi, T. & Knürr, T. Gene Flow and Local Adaptation in Trees.
 Annu. Rev. Ecol. Evol. Syst. 38, 595–619; 10.1146/annurev.ecolsys.38.091206.095646
 (2007).
- 565 6. Kremer, A. *et al.* Long-distance gene flow and adaptation of forest trees to rapid climate
 566 change. *Ecology Letters* 15, 378–392; 10.1111/j.1461-0248.2012.01746.x (2012).
- 567 7. Eveno, E. *et al.* Contrasting patterns of selection at Pinus pinaster Ait. Drought stress
 568 candidate genes as revealed by genetic differentiation analyses. *Molecular Biology and*569 *Evolution* 25, 417–437; 10.1093/molbev/msm272 (2008).
- Holliday, J. A., Ritland, K. & Aitken, S. N. Widespread, ecologically relevant genetic
 markers developed from association mapping of climate-related traits in Sitka spruce
 (Picea sitchensis). *New Phytologist* 188, 501–514; 10.1111/j.1469-8137.2010.03380.x
 (2010).
- 574 9. Chen, J. *et al.* Clinal variation at phenology-related genes in spruce: parallel evolution in 575 FTL2 and Gigantea? *Genetics* **197**, 1025–1038; 10.1534/genetics.114.163063 (2014).
- 576 10. González-Martínez, S. C., Ersoz, E., Brown, G. R., Wheeler, N. C. & Neale, D. B. DNA
 577 sequence variation and selection of tag single-nucleotide polymorphisms at candidate
 578 genes for drought-stress response in Pinus taeda L. *Genetics* 172, 1915–1926;
 579 10.1534/genetics.105.047126 (2006).
- 580 11. González-Martínez, S. C., Krutovsky, K. V. & Neale, D. B. Forest-tree population
 581 genomics and adaptive evolution. *New Phytologist* 170, 227–238; 10.1111/j.1469582 8137.2006.01686.x (2006).
- 583 12. Yeaman, S. *et al.* Convergent local adaptation to climate in distantly related conifers.
 584 *Science (New York, N.Y.)* **353,** 1431–1433; 10.1126/science.aaf7812 (2016).
- 585 13. Scotti, I., González-Martínez, S. C., Budde, K. B. & Lalagüe, H. Fifty years of genetic
 586 studies: what to make of the large amounts of variation found within populations? *Annals*587 of Forest Science **73**, 69–75; 10.1007/s13595-015-0471-z (2016).
- 588 14. Alexandre, H. et al. In situ estimation of genetic variation of functional and ecological
 589 traits in Quercus petraea and Q.robur (2018).
- 590 15. Dungey, H. S. *et al.* Phenotyping Whole Forests Will Help to Track Genetic Performance.
 591 *Trends in Plant Science* 23, 854–864; 10.1016/j.tplants.2018.08.005 (2018).

- 592 16. Martínez-Sancho, E. *et al.* The GenTree Dendroecological Collection, tree-ring and wood
 593 density data from seven tree species across Europe. *Scientific Data* 7, 1;
 594 10.1038/s41597-019-0340-y (2020).
- 595 17. Raquel Benavides *et al.* The GenTree Leaf Collection: inter- and intraspecific leaf
 596 variation in seven forest tree species in Europe. *Global Ecology and Biogeography*;
 597 10.1111/geb.13239.
- 598 18. Steinbach, D. *et al.* GnpIS: an information system to integrate genetic and genomic data
 599 from plants and fungi. *Database : the journal of biological databases and curation* 2013,
 600 bat058; 10.1093/database/bat058 (2013).
- 19. Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral
 parameterization on the performance of FST outlier tests. *Molecular Ecology* 23, 2178–
 2192; 10.1111/mec.12725 (2014).
- 20. Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local
 adaptation depends on sampling design and statistical method. *Molecular Ecology* 24,
 1031–1046; 10.1111/mec.13100 (2015).
- 21. Eckert, A. J. *et al.* Back to nature: ecological genomics of loblolly pine (Pinus taeda,
 Pinaceae). *Molecular Ecology* 19, 3789–3805; 10.1111/j.1365-294X.2010.04698.x
 (2010).
- 22. Lind, B. M. *et al.* Water availability drives signatures of local adaptation in whitebark pine
 (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. *Molecular Ecology* 26, 3168–3185; 10.1111/mec.14106 (2017).
- 613 23. Canham, C. D., LePage, P. T. & Coates, K. D. A neighborhood analysis of canopy tree
 614 competition: effects of shading versus crowding. *Can. J. For. Res.* 34, 778–787;
 615 10.1139/x03-232 (2004).
- 24. Lorimer, C. G. Tests of age-independent competition indices for individual trees in natural
 hardwood stands. *Forest Ecology and Management* 6, 343–360 (1983).
- 618 25. Leempoel, K. *et al.* Very high-resolution digital elevation models: are multi-scale derived
 619 variables ecologically relevant? *Methods Ecol Evol* 6, 1373–1383; 10.1111/2041620 210X.12427 (2015).
- 621 26. Conrad, O. *et al.* System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. *Geosci.* 622 *Model Dev. Discuss.* 8, 2271–2312; 10.5194/gmdd-8-2271-2015 (2015).
- 623 27. Hengl, T. *et al.* Mapping Soil Properties of Africa at 250 m Resolution: Random Forests
 624 Significantly Improve Current Predictions. *PLoS ONE* 10, e0125814;
 625 10.1371/journal.pone.0125814 (2015).
- 626 28. Karger, D. N. *et al.* Climatologies at high resolution for the earth's land surface areas.
 627 *Scientific Data* 4, 170122; 10.1038/sdata.2017.122 (2017).
- 628 29. Hijmans, R. & van Etten, J. *raster: Geographic data analysis and modeling. R package*629 (2016).
- 30. Mauri, A., Strona, G. & San-Miguel-Ayanz, J. EU-Forest, a high-resolution tree
 occurrence dataset for Europe. *Scientific Data* 4, 160123; 10.1038/sdata.2016.123
 (2017).

- 31. Opgenoorth L, Dauphin B, Benavides R, Heer K; Alizoti P; Martínez-Sancho E et al.
 Supporting data for "The GenTree Platform: growth traits and tree-level environmental
 data in twelve European forest tree species" GigaScience Database. 2021
 http://dx.doi.org/10.5524/100855
- 637 32. Opgenoorth L, Dauphin B, Benavides R, Heer K; Alizoti P; Martínez-Sancho E et al. Data
 638 for "The GenTree Platform". Figshare database.
- 639 https://figshare.com/s/4d57474fd63864a6dfd8