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S1 Dataset statistics

Dataset Label Sex Count Mean Age SD of Age Age Range Number of
Age Records

Training set

Fracture

Male 252 48.23 18.51 15 - 89 206

Female 696 60.51 17.04 15 - 94 585

Unknown 5 47.50 13.94 27 - 66 4

Normal

Male 399 42.21 17.89 16 - 88 300

Female 588 45.23 17.37 15 - 96 465

Unknown 6 35.50 20.52 22 - 71 4

Test set #1

Fracture

Male 22 50.45 21.43 18 - 84 22

Female 105 64.21 16.58 22 - 93 104

Unknown 2 62.50 7.50 55 - 70 2

Normal

Male 35 43.51 19.96 19 - 92 35

Female 42 56.07 23.19 19 - 96 42

Unknown 1 20.00 0.00 20 - 20 1

Test set #2

Fracture

Male 13 48.75 15.71 23 - 72 8

Female 7 53.80 17.42 20 - 70 5

Unknown 0 0.00 0.00 0 - 0 0

Normal

Male 48 36.24 18.02 17 - 80 33

Female 32 55.19 16.46 23 - 88 26

Unknown 5 53.00 2.00 51 - 55 2

Table S1. Dataset Statistics. SD stands for Standard Deviation. The ‘Number of Age Records’ column indicates the number
of cases for which the age data is recorded.

S2 Landmark Localization
Annotations for the landmark localization were annotated by the first author. For each radiographs three anatomical landmarks
were annotated. These landmarks are: top of distal ulna, top of distal radius and assumed center of the wrist for PA view and
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Figure S1. Structure of Both view ensemble of Fracture Detector Block. TTA stands for Test-Time Augmentation, PA for
Posterioanterior, LAT for Lateral

two distinguishable landmarks on top part of distal radio-ulna and the assumed center of wrist for LAT view. Since these
landmarks are not exact points we did intra-rater repeatability analysis. To that end, we randomly chose 100 radiographs from
fracture and normal category for both PA and LAT view totaling 400 radiographs. Then we re-annotated them without assessing
how they are annotated in the first annotation. Since it is not classification, we cannot compute the Cohen’s Quadratic Kappa,
instead, we calculated the recall at certain precision. With respect to first annotations, the second annotations scored recall of
0.16(0.12−0.19) at 2mm precision, 0.55(0.50−0.60) at 4mm precision, 0.70(0.65−0.74) at 5mm precision. If we calculate
recall for X-coordinates only, we got a recall of 0.98(0.97−0.99) at 5mm precision and for Y-coordinates we got a recall of
0.87(0.84−0.90) at 5mm precision.We visualize the Precision-Recall curve for the landmark localizer in Figure S2.

S3 Inter-Rater Agreement Analysis
Test Set #1 Figure S3 shows inter-rater analysis using Cohen’s Quadratic Kappa against the ground truth and the PCP1.
Figure S4 and Figure S5 shows all against all agreement.

S4 Out-of-Distribution Experiment
Initially, we assumed that there is a distribution shift between general population cases and challenging cases of wrist fracture.
If true, this could indicate that the general population cases are in-distribution or in-domain data and challenging cases are
out-of-distribution (OOD) data. Thereby, the performance could be improved if we would add the data from Test Set #2 to the
train set.
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Figure S2. Precision-Recall Curve for Landmark Localizer

Recent works on uncertainty estimation (for example by Lakshminarayanan et al. work1) show that it is possible to detect
OOD data samples using uncertainty estimates. To that end, we set up four Ensembles with 3, 5, 7, and 9 models, respectively.
We did not use any cross validation for training Deep Ensemble, rather we split the whole training set into training and validation
set and trained the Fracture Detection Block of our DeepWrist pipeline with different random initialization. Because of this, the
approach Deep Ensemble lacked the ability to make use of transfer learning (as was done for the main model in the paper).
We note that sole purpose of this experiment was to show that the challenging cases are not OOD data. The models for the
ensembles were trained similarly to the main model shown in the paper, except, we did not use mixup.

We used Entropy and Predictive Variance as the estimated uncertainty of the corresponding prediction and used them to
detect OOD samples. To obtain well calibrated uncertainty estimate, we calibrated the temperature of the models using the
work of Guo et al.2. In Figure S6, we show AUROC and AUPR performance of OOD detection with Entropy and in Figure S7,
we show the same with Predictive Variance. It is evident from AUROC and AUPR that the OOD detection performance is poor.
Table S2 shows OOD detection AUROC with 95% confidence interval for different ensemble settings. Figure S8 shows the
entropy distribution of in-domain (general population cases) vs OOD (challenging cases) data. Clearly, there is no noticeable
shift in these entropy distribution. Considering, all the AUROCs, AUPRs and the entropy distribution, we can conclude that the
Deep Ensemble cannot differentiate between general population data and challenging data well.

# models
AUROC for OOD Detection

(95% CI)

Entropy based Predictive Variance based

3
0.67

(0.61 - 0.73)
0.61

(0.55 - 0.68)

5
0.67

(0.61 - 0.73)
0.60

(0.54 - 0.66)

7
0.67

(0.61 - 0.73)
0.61

(0.55 - 0.67)

9
0.67

(0.61 - 0.73)
0.62

(0.56 - 0.68)

Table S2. AUROC of Deep Ensemble for OOD detection
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Figure S3. Inter-rater analysis using Cohen’s Quadratic Kappa. (a) Agreement of Radiologist 1 (R1), Radiologist 2 (R2),
Radiology Resident (RES), Primary Care Physician 1 (PCP1) and Primary Care Physician 2 (PCP2) with respect to the Ground
Truth (GT) derived from consensus of two radiologists for the Test Set #1 (b) Agreement of R1, R2, PCP1 and PCP2 with
respect to GT derived from CT report for Test Set #2. (c) Agreement of R1, R2, RES, PCP2 and GT with respect to PCP1 for
Test Set #1. (d) Agreement of R1, R2, PCP2 and GT with respect to PCP1 for Test Set #2.

Model LR Momentum Weight Decay Nesterov

SeresNet50 1e−1, 1e−2, 1e−3, 0.0, 0.5, 0.9 0.0, 1e−3, 1e−4, 3e−4, Yes, No

Hourglass Net 1e−1, 1e−2, 1e−3, 0.0, 0.5, 0.9 0.0, 1e−4, Yes, No

Table S3. Hyperparameters search space. We kept the optimizer fixed to SGD. Batch size was 32 for SeresNet50 and 24 for
the hourglass model (KNEEL3)
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0.76 0.73 0.76 0.75 1.0 0.67
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0.67
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0.76
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0.88
0.91
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Figure S4. Cohen’s Quadratic Kappa: all against all raters for Test Set #1
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Figure S5. Cohen’s Quadratic Kappa: all against all raters for Test Set #2
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Figure S6. a) AUROC performance of OOD detection (by Entropy as uncertainty) using Deep Ensemble of 3,5,7 and 9
models respectively. b) AUPR performance of OOD detection for the same Deep Ensemble.
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Figure S7. a) AUROC performance of OOD detection (by Predictive Variance as uncertainty) using Deep Ensemble of 3,5,7
and 9 models respectively. b) AUPR performance of OOD detection for the same Deep Ensemble.
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Figure S8. Entropy distribution of In-domain (general population cases) and Out-of-domain (challenging cases) data
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