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1 Appendix A: hexahedral FEM validation 
In this work we used a hexahedral finite element model (HexaFEM) to compute the forward 

problem of EEG. In fact, we computed the transcranial electrical stimulation (TES) forward 

problem which consists of applying an electric current on the scalp. Then, the EEG lead field 

matrix is obtained from the TES solutions by using the reciprocity principle. In this appendix, 

we show the validation against the analytic solutions in a spherical model and against the finite 

difference method (FDM) solver of Geo Source 3 Philips system in a realistic head model. The 

analytic formulation can be found elsewhere (Fernández-Corazza et al., 2011). 

1.1 Comparison on a three-layer sphere 

We built a three-layer sphere with radii of 9.2, 8.5 and 7.5 centimeters and conductivities 0.33, 

0.01 and 0.33 S/m respectively. The electrode layout used is the spherical 256-channel Geodesic 

sensor-net, with electrode 257 being the reference Cz. A unitary electrical current source was 

applied to each electrode pair with Cz being fixed. Approximately 2500 dipoles were placed at 

the internal compartment (separated approximately 10mm from the layer) with normal 

orientation pointing outwards.  

Fig. A.1 shows examples of the lead fields for comparison. The normalized relative difference 

measure (NRDM) (Mejis et al 1989) and the magnitude error (MAG) metrics were computed to 
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quantify the differences. The NRDM is a metric that compares two vectors of the same size 

based only on the shape of them and not on their strength: it is zero if vectors are colinear, the 

squared root of 2 if the vectors are orthogonal, and 2 if the vectors are colinear but opposite. The 

MAG metric compares two vectors of the same size based only on their magnitude: it is 1 if both 

vectors have equal ℓ2-norm, < 1 if the ℓ2-norm of the first vector is lower than the ℓ2-norm of the 

second vector, and >1 vice versa. 

 

Figure A.1: Lead field matrix comparison. Left: potential at the electrodes generated by one 

dipole (as an example) computed by analytics and HexaFEM. The comparison metrics between 

HexaFEM and analytics are NRDM=0.013 and MAG=1.02. Right: electric potential at 

electrode 1 (example) as a function of the oriented dipolar sources (zoomed). The comparison 

metrics between HexaFEM and analytics are NRDM=0.011 and MAG=1.02.  

1.2 Comparison on a realistic head model.  

Similarly to the three layer sphere, we compared the HexaFEM and FDM solutions for one 

realistic head model using the same conductivity values. Fig. A.2 shows this comparison. 

 

Figure A.2: Examples of the EEG lead field matrix for three different dipoles (first, intermediate, 

and last dipoles) computed with HexaFEM and FDM. The resulting metrics are: NRDM=0.048, 

NRDM=0.016, and NRDM=0.09; and MAG=1.13, MAG=1.12, and MAG=0.96 respectively 

for the three dipoles. 
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2 Appendix B: Details of MSP 

The typical signal model 𝐘 for 𝐿 electrodes, 𝐷 dipoles and a time window with 𝑇 samples is: 

𝐘𝐿×𝑇 = 𝐋𝐿×𝐷 ⋅ 𝚯𝐷×𝑇 + 𝐗 ⋅ 𝛃 + 𝐍𝐿×𝑇 ,        (𝐵. 1) 

where 𝐋  is the lead field matrix, 𝚯  are the sources, 𝐗 ⋅ 𝛃  accounts for “fixed effects” or 

“confounds” and 𝐍  is the noise matrix. 𝚯  and 𝐍  are modeled as matrix normal random 

variables: 

𝚯 ∼ 𝒩(0, 𝐕, 𝚺𝜖);  𝐍 ∼ 𝒩(0, 𝐕, 𝚺𝑛),         (𝐵. 2) 

where 𝐕 is the temporal covariance matrix and 𝚺 is the spatial covariance matrix. Note that the 

sample covariance estimators are: �̂� ≈ 𝐘𝑇𝐘, and �̂� ≈ 𝐘𝐘𝑇. 

The first step is to project the data to eliminate the 𝐗 ⋅ 𝛃 term (model reduction). This is typically 

done assuming one confound that accounts for the constant shift of the potential reference: 

𝐗𝐿×1 = 𝑜𝑛𝑒𝑠(𝐿, 1). Thus, the spatial projector is: 

𝐔𝐿×𝐿 = (𝐈 − 𝐗𝐗−)            (𝐵. 3) 

There is also a spatial projection matrix 𝐒 that is built as described in Friston et al. (2008) as the 

principal eigenvectors of the sample covariance matrix over time. After the projection: 

𝐘 = �̃� ⋅ �̃� + �̃�; �̃� ∼ 𝒩(0, �̃�, 𝚺𝜖); �̃� ∼ 𝒩(0, �̃�, 𝚺�̃�),       (𝐵. 4) 

where �̃� and 𝚺�̃� are the projected covariance matrices in the signal space, �̃� = 𝐔𝑇𝐋, �̃� = 𝚯𝐒 and 

𝐘 = 𝐔𝑇𝐘𝐒. 𝚺𝜖 = ∑ exp(𝜆𝑖) 𝐐𝑖𝑚
𝑖=1 , where 𝐐𝑖 are different empirical source covariance priors with 

unknown hyperparameters 𝜆𝑖 . They are typically “sparse” priors such as some small 

subnetworks, or patches. As 𝚺𝜖 is in the source space, there is no projection needed. Lastly, 𝚺𝑛 =

𝜆𝑛𝐈 models uncorrelated sensor noise. 

Both noise and source models are merged into one stochastic model by performing a projection 

to the signal space:  

𝐘 = �̃� ⋅ �̃� + �̃�                            (𝐵. 5) 

𝐘 ∼ 𝒩(0, �̃�, �̃�𝚺𝜖�̃�𝑇 + 𝚺�̃�)      (𝐵. 6) 

The second step is the estimation of the hyperparameters (𝜆𝑖) from data (or “evidence”). For this 

purpose, Friston et al. (2008) propose two methods: “greedy search” and automatic relevance 

determination (ARD). The latter is sparse in nature and it starts with a maximum number of 

non-zero hyperparameters and it attempts to reduce them. The ARD approach is the one used 

in both Friston et al. (2008) and here. The hyperparameters 𝜆𝑖 are estimated with an expectation-

maximization method, where the M-step estimates the 𝜆𝑖 hyperparameters and the E-step 

computes the expected value of the 𝚯 estimates.  
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Once the hyperparameters corresponding to each prior are computed using the expectation-

maximization method, the spatial covariance matrix in the source space is built as: 

𝚺𝑆𝑜𝑢𝑟𝑐𝑒 𝑆𝑝𝑎𝑐𝑒
𝜖 = ∑ ℎ(𝑖 + 1)𝐐𝑖 

𝑚

𝑖=1

             (𝐵. 7) 

And then projected to the signal space by doing: 

𝚺Electrode space (𝐿×𝐿) = ℎ(1)𝐔𝑇𝐂𝑛𝑛𝐔 + ∑ ℎ(𝑖 + 1)�̃� 𝐐𝑖  �̃�𝑇

𝑚

𝑖=1

        (𝐵. 8) 


