
Supplementary material

Photoacoustic microscopy with sparse data by
convolutional neural networks

Jiasheng Zhou, Da He, Xiaoyu Shang, Zhendong Guo, Sung-Liang Chen,
Jiajia Luo

Study of training and inference time of the CNN models

In our experiment, we trained 40000 iterations with a batch size of 8 for
Residual U-Net and our network and batch size of 6 for EDSR. During training,
the intermediate models were evaluated every 200 iterations using the validation
set. The intermediate model with the best validation performance was selected
and used as the final model in this work.

The actual training time after 40000 iterations of the three CNNs using the
leaf vein dataset is listed in Table S1. The values were calculated using the
platform with Intel Xeon Silver 4110 CPU and a single Nvidia 2080Ti GPU.
Note that the validation time is included during the training.

Table S1: Training time of the three CNN methods (mins/40K iterations).

Method EDSR Residual U-Net Ours

Training time for 2× scaling 1350.00 214.83 437.97
Training time for 4× scaling 480.97 246.87 403.20

The average inference/evaluation time of the three CNNs using the leaf vein
test set is listed in Table S2. The values were also calculated using the platform
with Intel Xeon Silver 4110 CPU and a single Nvidia 2080Ti GPU.

Table S2: Inference time of the three CNN methods (s/image).

Method EDSR Residual U-Net Ours

Inference time for 2× scaling 0.2022 0.0806 0.1078
Inference time for 4× scaling 0.0963 0.0829 0.1065

According to the above two tables, Residual U-Net is the fastest for both
training and inference. The proposed method is slower than Residual U-Net
for training time and comparable for inference time. EDSR requires the longest
training time and takes much more time for the 2× scaling case than the 4×
scaling case, while the other two CNN methods take comparable time for the
2× and 4× scaling cases.
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Study using a quantitative perceptual metric

As indicated in Section 3.3 and Fig. 6 in the main text, there are some limits
for PSNR and SSIM metrics as they give high scores to the over-smoothed im-
ages. Despite the perceptual comparison without quantitative metrics mainly
described in Section 3.3 and Fig. 6 in the main text, some quantitative metrics
were proposed before for perceptual evaluation. Therefore, a quantitative per-
ceptual metric was used for comparison, and the results are shown in Table S3.
Specifically, we applied Fréchet Inception Distance (FID) [S 1] to measure the
perceptual quality of the results obtained with different loss functions (i.e., MSE,
MAE, and the perceptual loss) for the ablation study. Smaller FID values indi-
cate higher quality.

Table S3: Comparison among the models trained with different loss functions on 4× leaf vein
test set.

Loss function PSNR (dB) SSIM FID

MSE 23.4113 0.6930 222.8991
MAE 23.8995 0.7512 173.0127

Perceptual loss 23.1760 0.7159 43.6614

According to Table S3, although the model trained with MAE achieves the
highest mean PSNR and mean SSIM values, the model trained with perceptual
loss shows the best performance with respect to the FID metric, which is con-
sistent with the qualitative results in Fig. 6. Therefore, although not a gold
standard, FID can be used for perceptual evaluation to some extent.

To our understanding, it is a challenge for the research community about
how to guarantee that “more qualitatively similar images represent a more ac-
curate recreation of the ground truth”, which may be out of the scope of this
study. Instead, we followed the convention in previous studies [S 2][S 3] to con-
sider the trade-off between PSNR (or SSIM) and the visual performance in our
demonstrations in the main text.

Study of asymmetric low-sampling PAM data

In the main text, the same downsampling rates along the two scanning
axes were studied and presented. We further conducted experiments using the
leaf vein dataset to study “asymmetric” low-sampling PAM data (i.e., differ-
ent downsampling rates along the two scanning axes). By changing the scaling
arguments in the “Upconv” module in the proposed CNN, our method can be
applied to the case of asymmetric low-sampling PAM data.

Without loss of generality, two asymmetric low-sampling operations were
applied in our experiments. First, we used the low-sampling rates of 1/2 along
the vertical direction (or y direction) and of 1/4 along the horizontal direction
(or x direction) of the PAM image. This case is denoted as “2×—4×”. On the
other hand, the case of “4×—2×” was also studied. The sparse sampling density
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of the two cases is thus 1/8. Other training settings for these two new cases
were kept the same, as described in the main text. After training, the statistical
performance on the test set is included in Table S4. One representative result
is shown in Fig. S1 for qualitative evaluation.

Table S4: Statistical results for experiments with different low-sampling PAM data.

Scaling
Sampling
density

Bicubic Our method

PSNR (dB) SSIM PSNR (dB) SSIM

2×—2× 1/4 23.4936±1.8718 0.7721±0.0457 26.1431±1.7022 0.8183±0.0599

2×—4× 1/8 21.7742±2.0937 0.6547±0.0575 24.1429±1.6319 0.7870±0.0718

4×—2× 1/8 22.0679±2.0713 0.6756±0.0541 24.1399±2.0457 0.7913±0.0501

4×—4× 1/16 19.9941±1.9204 0.5773±0.0683 23.1760±1.9290 0.7159±0.0602

Full-scanning
Bicubic 

interpolated
Recovered by 

oursLow-sampling

23.9519
0.8171

20.8701
0.6503

23.9673
0.8186

21.3324
0.6748

Fig. S1: Results of the leaf vein experiment with asymmetric low-sampling PAM data. The
first row (except the image of “full-scanning”) indicates the case of “2×—4×”, and the second
row corresponds to the case of “4×—2×.” The numbers below the images indicate the PSNR
(dB) and SSIM values (by comparing the entire image with the corresponding ground truth).
The sample comes from a magnolia leaf. Scale bar: 500 µm. All images, excluding zoom
images, share the same scale bar.

According to Table S4 and Fig. S1, the proposed method can still well recover
the low-sampling PAM images in these two asymmetric cases. From Table S4,
the mean PSNR and SSIM values of the two asymmetric cases (sampling density
of 1/8) are between those of the symmetric cases (sampling density of 1/4 and
1/16), which is reasonable. Besides, the improvement in PSNR and SSIM of
the asymmetric cases keeps the same trend as in the main text (i.e., more
improvements for the case of lower sparse sampling density by our method
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compared with bicubic interpolation). In Fig. S1, issues like blurring, over
smoothing, and discontinuity are not observed with our method. Therefore, our
method is suitable for the recovery of asymmetric low-sampling sparse PAM
data as well.
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