Supplementary Documents

Figure 6. Data prepossessing with di- and tri-omics data generation. Uses a 4-steps process: first 3 steps (intersection, zero/missing/NA removal, and normalisation) for preprocessing, and step 4 is to generate di- and tri-omics data concatenating the corresponding mono omic datasets.

Figure 7. A basic architecture of a VAE that includes a probabilistic encoder that encodes the input x and a probabilistic decoder that decodes x' from latent vector z.

 Table 3. Cancer identification performance of the LFs learned using the unsupervised methods

Method	Omics_data	Accuracy	Precision	Recall	f1 score
PCA + SVM	methylation	99.10±1.22%	0.992±0.011	0.991±0.012	0.991±0.012
t-SNE + SVM	methylation	93.91±2.20%	0.940±0.023	0.939 ± 0.022	0.938±0.022
VAE + SVM	methylation	99.10±0.98%	0.992 ± 0.009	0.991±0.010	0.991±0.010
MMD-VAE + SVM	methylation	99.44±0.76%	0.995 ± 0.007	0.994 ± 0.008	0.994 ± 0.008

 Table 4. Ovarian cancer molecular subtypes classification performances (unsupervised LFs)

Method	Omics_data	Accuracy	Precision	Recall	f1 score
PCA + ANN	CNV	42.27±0.1%	0.393±0.01	0.423±0.01	0.358±0.01
t-SNE + ANN	CNV	36.08±0.17%	0.426±0.016	0.361±0.01	0.286±0.01
V-VAE + ANN	CNV	49.90±0.51%	0.493±0.010	0.499±0.05	0.481±0.01
MMD-VAE + ANN	CNV	52.58±0.40%	0.523±0.01	0.526±0.04	0.489±0.01
PCA + ANN	mRNA	57.73±0.20%	0.451±0.01	0.577±0.01	0.505 ± 0.01
t-SNE + ANN	mRNA	64.54±0.82%	0.698±0.01	0.645 ± 0.008	0.608 ± 0.008
V-VAE + ANN	mRNA	81.44±0.40%	0.822±0.03	0.814±0.029	0.814±0.028
MMD-VAE + ANN	mRNA	78.35±0.390%	0.785±0.03	0.784±0.026	0.781±0.027
PCA + ANN	CNV_mRNA	32.99±0.31%	0.271±0.02	0.330±0.020	0.266±0.019
t-SNE + ANN	CNV_mRNA	38.14±0.29%	0.299±0.03	0.381±0.010	0.325 ± 0.02
V-VAE + ANN	CNV_mRNA	73.20±0.22%	0.727±0.02	0.732±0.000	0.726 ± 0.000
MMD-VAE + ANN	CNV_mRNA	81.44±0.20%	0.817±0.01	0.814±0.000	0.813±0.000
PCA + ANN	CNV_mRNA_methylation	37.11±0.45%	0.413±0.02	0.371±0.000	0.342±0.000
t-SNE + ANN	CNV_mRNA_methylation	38.14±0.39%	0.561±0.03	0.381±0.000	0.344 ± 0.000
V-VAE + ANN	CNV_mRNA_methylation	78.35±0.2%	0.784±0.01	0.784±0.001	0.784 ± 0.01
MMD-VAE + ANN	CNV_mRNA_methylation	80.21±0.19%	0.808±0.03	0.802±0.02	0.802±0.02

Figure 8. Distribution of normal and cancer samples in DNA methylation data from the GDC TCGA Ovarian Cancer (OV) (44):(a) the original dataset with 613 samples is highly imbalanced with 10 normal samples compared to the 603 cancer samples (class ratio: 1.36: 98:64), (b) Re-sampled datasets with 886 samples and with class ratio 31.94:68.06 between the normal and cancer samples. Legends: 0- Normal, 1- Cancer.

Sample size	Method	Omics type	Accuracy
292	VAE	mono	93.1
292	MMD-VAE	mono	94.3
292	VAE	tri	88.5
292	MMD-VAE	tri	94.5
459	VAE	mono	93.7
459	MMD-VAE	mono	92.3
459	VAE	tri	89.3
459	MMD-VAE	tri	95.3
481	VAE	mono	95.7
481	MMD-VAE	mono	93.8
481	VAE	tri	89.4
481	MMD-VAE	tri	95.5

Table 5. Molecular subtypes classification accuracies for different sample sizes

Table 6. Classification accuracy of survival subgroups

Omic (s) data	Algorithm	Dataset	Classification Accuracy
mRNA (mono-omics)	MMD	Training	1
mRNA (mono-omics)	MMD	Test	0.84
mRNA_methylation (di-omics)	MMD	Training	0.99
mRNA_methylation (di-omics)	MMD	Test	0.99
CNV_mRNA_methylation (tri-omics)	MMD	Training	1
CNV_mRNA_methylation (tri-omics)	MMD	Test	1

Figure 9. Molecular subtypes clustering using PCA, t-SNE, VAE, and MMD-VAE (2D or 2 LFs): Figure (a) represents the clustering of subtypes using the original mRNA. Figures (b)-(i) respectively present the subtypes clustering using the LFs learned from the mono-omics and tri-omics data through PCA, t-SNE, VAE, and MMD-VAE. Legends: 0- Immunoreactive, 1-Differentiated, 2- Proliferative and 3- Mesenchymal.

- 1.0

(f) CM for classification using MMD-VAE (tri-omics)

Figure 10. Confusion matrices of molecular subtypes using supervised VAE & MMD-VAE: (a)-(d) for mono-omics, (e) - (f) for di-omics and (g-h) tri-omics data. Legends: 0- Immunoreactive, 1- Differentiated, 2- Proliferative and 3- Mesenchymal, and CM- confusion matrix.

Figure 11. Survival analysis of existing molecular subtypes (292 samples)

Figure 12. Predicted survival analysis using CRLFs-based subgroups: (a-f) survival analysis using the predicted subgroups show significant survival differences (p < .05) between the groups. The results in Figure (a) and (d) for 292 samples, and the rest are for 481 samples.

Omic-type	Algorithm	Co-variates	Dataset	C-index	Brier score	p-value
CNV	MMD	Clinical	Training	0.64	0.194	0.003
CNV	MMD	Clinical	Test	0.62	0.19	0.003
CNV	MMD	Clinical + subgroup	Training	0.65	0.19	0.0006
CNV	MMD	Clinical + subgroup	Test	0.63	0.192	0.0006
CNV	VAE	Clinical	Training	0.65	0.186	0.0015
CNV	VAE	Clinical	Test	0.64	0.23	0.0015
CNV	VAE	Clinical + subgroup	Training	0.68	0.18	0
CNV	VAE	Clinical + subgroup	Test	0.66	0.24	0
mRNA	MMD	Clinical	Training	0.65	0.18	0.006
mRNA	MMD	Clinical	Test	0.62	0.23	0.006
mRNA	MMD	Clinical + subgroup	Training	0.67	0.18	0.006
mRNA	MMD	Clinical + subgroup	Test	0.60	0.23	0.006
mRNA	VAE	Clinical	Training	0.64	0.19	0.015
mRNA	VAE	Clinical	Test	0.63	0.18	0.015
mRNA	VAE	Clinical + subgroup	Training	0.63	0.19	0.017
mRNA	VAE	Clinical + subgroup	Test	0.62	0.18	0.017
CNV_mRNA	MMD	Clinical	Training	0.67	0.177	0.00
CNV_mRNA	MMD	Clinical	Test	0.60	0.20	0.24
CNV_mRNA	MMD	Clinical + subgroup	Training	0.68	0.19	0.00003
CNV_mRNA	MMD	Clinical + subgroup	Test	0.64	0.20	0.09
CNV_mRNA	VAE	Clinical	Training	0.62	0.184	0.005
CNV_mRNA	VAE	Clinical	Test	0.65	0.193	0.045
CNV_mRNA	VAE	Clinical + subgroup	Training	0.63	0.183	0.0085
CNV_mRNA	VAE	Clinical + subgroup	Test	0.65	0.193	0.09
CNV_mRNA_methylation	MMD	Clinical	Training	0.61	0.20	0.038
CNV_mRNA_methylation	MMD	Clinical	Test	0.65	0.22	0.042
CNV_mRNA_methylation	MMD	Clinical + subgroup	Training	0.64	0.19	0.01
CNV_mRNA_methylation	MMD	Clinical + subgroup	Test	0.66	0.23	0.08
CNV_mRNA_methylation	VAE	Clinical	Training	0.62	0.19	0.026
CNV_mRNA_methylation	VAE	Clinical	Test	0.64	0.197	0.099
CNV_mRNA_methylation	VAE	Clinical + subgroup	Training	0.62	0.188	0.083
CNV_mRNA_methylation	VAE	Clinical + subgroup	Test	0.63	0.195	0.10

Table 7. Performance of the DL architecture for VAE and MMD-VAE in survival prediction