Supplementary file S1:

Molecular docking, pharmacokinetic studies, and in vivo pharmacological study of indole derivative 2-(5-Methoxy-2-methyl-1H-indole-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene] acetohydrazide as a promising chemoprotective agent against Cisplatin induced organ damage

Suhail Razak^{1*, #}, Tayyaba Afsar^{1#}, Nousheen Bibi^{2#}, Mahmoud Abulmeaty¹, Wajhul Qamar³, Ali Almajwal¹, Anam Inam², Dara Al Disi^{1,} Mashooq Ahmad Bhat⁴

Candidate gene	primer
NF-кВ р65	F: 5'- ACACCTCTGCATATAGCGGC-3'
	R: 5'- GGTACCCCCAGAGACCTCAT-3'
ΤΝΓ-α	F: 5'-GCGGAGTCCGGGCAGGTCTA-3'
	R: 5'-GGGGGCTGGCTCTGTGAGGA-3'
COX-2	F: 5'-CACTCATGAGCAGTCCCCTC-3'
	R: 5'-ACCCTGGTCGGTTTGATGTT-3'
IL-1	F: 5'-ACCTGCTCCACTGCCTTGCT-3'
	R: 5'-GGTTGCCAAGCCTTATCGGA-3 [/]
STAT-3	F: 5'-CCCCCGTACCTGAAGACCAAG-3'
	R: 5'-TCCTCACATGGGGGGGGGGGGGG3'
iNOs	F: 5'-CTATGGCCGCTTTGATGTGC-3'
	R: 5'-CAACCTTGGTGTTGAAGGCG-3'

Supplementary Table 1: Primers

Supplementary Table 2: Effect of MMINA treatment on Total cholesterol, HDL, LDL and TGAs

Treatments	Total cholesterol	HDL	LDL	TGAs
	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)
Control	72.60 ± 1.71	35.50 ± 0.63	46.35 ± 0.86	71.08 ± 1.01
DMSO Vehicle	73.79 ± 1.73	35.59 ± 1.52	46.50 ± 1.03	71.79 ± 1.98
Cisplatin (12.5	$120.50 \pm 2.82^{****}$	11.18 ± 0.83****	117.17 ± 2.45****	$101.89 \pm 2.88^{****}$
mg/kg) Cisplatin + MMINA	76.54 ± 2.01++++	$30.17 \pm 0.67^{++++}$	$50.31 \pm 0.70^{++++}$	$79.99 \pm 1.24^*, ++++$
MMINA(25 mg/kg)	70.37 ± 2.44++++	$36.01 \pm 0.91^{++++}$	$42.76 \pm 0.81^{++++}$	$68.45 \pm 1.14^{++++}$

Data are mean \pm SEM, (n = 7). *, **** p<0.05 and P < 0.0001 versus Control respectively, and ⁺⁺⁺⁺P < 0.0001 versus CP. Data analyzed by One-way ANOVA followed by Tukey's multiple comparison tests.

Supplementary Table 3

Report generated by pathologist Dr. Abdul Malik Al Sheikh (Pathologist), MD, FRCPC

Supplemen	tary]	Fable 3:	Slide review:	Preliminar	y observations

Organ	Control	MMINA treated
Liver	1. Minimal randomly scattered	1. Capsular fibrosis and mild chronic
	mononuclear and supportive hepatitis	mononuclear and mildly suppurative
	2. Minimal lymphoplasmacytic and	inflammation (suggestive of peritonitis).
	histolytic portal hepatitis.	2. Minimal mononuclear portal hepatitis.
	3. Sinusoidal brown pigment	3. Mildly enhanced hepatocellular mitotic rate,
	accumulation interpreted as probable	presumptive.
	artifact of red blood cell staining.	4. Locally extensive moderate accumulation of
		pigment laden macrophages/Kupffer cells
		6. Minimal extra-medullary hematopoiesis
<u>Brain</u>	Extensive dark neuron artifact	There is fairly extensive dark neuron artifact
	interpreted as an artifact of dissection.	(presumptive secondary to dissection).
	There are extremely rare mild	
	extravasations of blood into Virchow-	
	Robbins' space. The habenular nuclei	
	have a mesh-work of cells	
	(presumptive neurons) with smudged	
	nuclear features.	
	Diagnoses:	
	1. Locally extensive nuclear smudging	
	in the habenular nuclei (a finding of	
	uncertain significance).	
	2. Minimal extravasations of blood	
	into Virchow-Robbins' space.	
TT (
<u>Heart</u>	There are rare individual cardiac	There are rare individual cardiac myocytes with
	myocytes with increased cytoplasmic	slightly more darkly eosinophilic cytoplasm
	eosinophilia and bland darkly	than heighboring cells and with more
	staining contracted nuclei.	nomogenous and darkly eosinophilic chromatin
	Diagnoses:	staining in contracted and shrunken nuclei.
	1. Minimal individual myocytes	Diagnoses:
	change, interpreted as probable	intermented on probable description shows
	degerative change.	interpreted as probable degerative change.

Kidney	No significant histological lesions are	The renal capsule is segmentally broadened
	noted.	with fibrous connective tissue that is
		occasionally infiltrated with small numbers of
		mononuclear leukocytes and neutrophils.
		Diagnoses:
		1. Capsular fibrosis and mild chronic
		mononuclear and mildly suppurative
		inflammation (suggestive of peritonitis)

Supplementary File: S2

Molecular docking, pharmacokinetic studies, and in vivo pharmacological study of indole derivative 2-(5-Methoxy-2-methyl-1H-indole-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene] acetohydrazide as a promising chemoprotective agent against Cisplatin induced organ damage

Suhail Razak^{1*, #}, Tayyaba Afsar^{1#}, Nousheen Bibi^{2#}, Mahmoud Abulmeaty¹, Wajhul Qamar³, Ali Almajwal¹, Anam Inam², Mashooq Ahmad Bhat⁴, Dara Al Disi¹,

Supplementary: Biological Characterization of MMINA

Synthesis of 2-(6-Methoxy-2-methyl-1H-indol-3-yl) acetohydrazide (1)

The methyl ester of indomethacin (0.01 mol) and hydrazine hydrate (99%) (0.2 mol) in presence of absolute ethanol (50 mL) were refluxed for 30 hours. The reaction mixture was concentrated by using rota vapor and poured in a beaker containing crushed ice in small portions while stirring and kept for 4 hours at room temperature. The solid was separated out by filtration. The product was dried and recrystallized from ethanol. The product was carefully checked by thin layer chromatography. The first compound was 2-(6-methoxy-2-methyl-1H-indol-3-yl) acetohydrazide compound (1), and was obtained as the major product. The second compound, 4-chlorobenzohydrazide (2) was obtained as minor product. Both the compounds were fully characterized by the spectral data.

2-(6-Methoxy-2-methyl-1*H*-indol-3-yl) acetohydrazide (1). Color: white; Yield: 70%; m.p.: 168–170 °C; UV λ max (Methanol) = 280 nm; ¹H NMR (500 MHz, DMSO-d₆): δ = 2.38 (3H, s, CH₃), 3.54 (2H, s, CH₂), 3.80 (3H, s, OCH₃), 4.26 (2H, s, NH₂, D₂O exchg.), 6.67 (1H, d, *J* = 8.5 Hz, Ar-H), 7.16 (2H, d, *J* = 7.5 Hz, Ar-H), 9.16 (1H, s, NH, D₂O exchg.), 10.62 (1H, s, CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.0 (CH₃), 30.2 (CH₂), 55.8 (OCH₃), 101.1, 105.1, 109.8, 110.0, 111.7, 128.0, 129.3, 129.7, 130.6, 134.3, 153.4, 170.8 (C=O); MS: *m*/*z* = 233.11 [M]⁺, 234.07 [M+1]⁺; Analysis: C₁₂H₁₅N₃O₂ for, calcd. C 61.79, H 6.48, N 18.01 %; found C 61.58, H 6.46, N 18.05 %.

4-Chlorobenzohydrazide (2). Color: white; Yield: 20%; M.p.: 148–150 °C; UV λ max (Methanol) = 230 nm; ¹H NMR (500 MHz, DMSO-d₆): δ = 4.53 (2H, s, NH₂, D₂O exchg.), 7.52 (2H, d, *J* = 8.5 Hz, Ar-H), 7.84 (2H, d, *J* = 8.5 Hz, Ar-H), 9.87 (1H, s, CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 128.86, 129.32, 132.50, 136.25, 165.29; MS: *m*/*z* = 170.45 [M]⁺; Analysis: C₇H₇N₂OCl for, calcd. C 49.28, H 4.14, N 16.42%; found C 49.37, H 4.12, N 16.46%.

3.3. *General procedure for the synthesis of 2-(5-methoxy-2-methyl-1-indol-3yl)-N-[(E)-substituted phenyl methylidine] aceto hydrazide derivatives* **(S1-S18)**. A solution of indole hydrazide **(1)** (371 mg, 1.0 mmol) in EtOH (15 mL) containing an appropriate substituted benzaldehyde (1.1 mmol) and a catalytic amount of Glacial acetic acid was heated under reflux for 3 hours. After cooling, 5 mL of water was added to the mixture and kept in a refrigerator for 12 hours. The product was obtained by filtration. The compound was washed several times with cold water. The compound obtained was recrystallized from ethanol.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-N'-[(*E*)-*phenylmethylidene*] acetohydrazide **(S1)**: Yield: 70%; m.p.: 170–172 °C; IR (KBr) cm⁻¹: 3412 (NH), 3024 (C-H), 1654 (C=O), 1637 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.55 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 6.65-8.00 (8H, m, Ar-H), 10.62 (1H, s, =CH), 11.26 (1H, s, -NH, D₂O exchg.), 11.9 (1H, s, CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.2 (CH₃), 28.2 (CH₂), 55.5 (OCH₃), 100.7, 104.7, 110.0, 111.3, 127.2, 127.4, 127.6, 129.0, 129.2, 129.3, 130.0, 134.3, 134.8,

153.3, 167.7 (C=O); MS: *m*/*z* = 321.37 [M]⁺; Analysis: for C₁₉H₁₉N₃O₂, calcd. C 71.01, H 5.96, N 13.08 %; found C 71.25, H 5.94, N 13.11%.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-*N*'-[(*E*)-(4-*nitrophenyl*)*methylidene*] *acetohydrazide* (S2): Yield: 75%; m.p.: 220–222 °C; IR (KBr) cm⁻¹: 3411 (NH), 3000 (C-H), 1654 (C=O), 1617 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.58 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 6.97-8.26 (7H, m, Ar-H), 10.63 (1H, s, =CH), 11.70 (1H, s, -NH, D₂O exchg.), 12.2 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 11.6 (CH₃), 28.2 (CH₂), 55.0 (OCH₃), 100.2, 110.8, 123.9, 124.0, 127.6, 128.0, 128.6, 129.6, 140.4, 142.0, 143.0, 144.0, 145.5, 151.0, 163.0, 175.0; MS: *m/z* = 366.37 [M]⁺; Analysis: for C₁₉H₁₈N₄O₄, calcd. C 62.29, H 4.95, N 15.29 %; found C 62.14, H 4.97, N 15.25 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-*N'*-[(*E*)-(3-*nitrophenyl*)*methylidene*] acetohydrazide **(S3):** Yield: 68%; m.p.: 200–202°C; IR (KBr) cm⁻¹: 3412 (NH), 3237 (C-H), 1654 (C=O), 1617 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.58 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 6.99-8.57 (7H, m, Ar-H), 10.63 (1H, s, =CH), 11.5 (1H, s, NH, D₂O exchg.), 12.18 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 11.5 (CH₃), 27.9 (CH₂), 55.0, 100.2, 103.9, 109.4, 123.8, 124.2, 128.5, 130.3, 131.7, 133.3, 136.0, 140.33, 145.5, 148.1, 152.8, 162.2, 170.0; MS: *m/z* = 366.37 [M]+; Analysis: for C₁₉H₁₈N₄O₄, calcd. C 62.29, H 4.95, N 15.29 %; found C 62.36, H 4.93, N 15.24 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-*N'*-[(*E*)-(2-*nitrophenyl*)*methylidene*] acetohydrazide **(S4)**: Yield: 70%; m.p.: 210–212°C; IR (KBr) cm⁻¹: 3407 (NH), 3063 (C-H), 1654 (C=O), 1617 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.58 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 6.98-8.25 (7H, m, Ar-H), 10.63 (1H, s, =CH), 11.90 (1H, s, -NH, D₂O exchg.), 12.10 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 11.60 (CH₃), 27.8 (CH₂), 54.9 (OCH₃), 100.0, 103.8, 109.4, 110.6, 124.5, 127.8, 129.6, 133.4, 134.0, 141.4, 143.2, 147.9, 148.2, 152.0; 167.0, 170.0; MS: *m*/*z* = 366.37 [M]+; Analysis: for C₁₉H₁₈N₄O₄, calcd. C 62.29, H 4.95, N 15.29 %; found C 62.15, H 4.97, N 15.24 %

N'-[(*E*)-(4-*chlorophenyl*)*methylidene*]-2-(5-*methoxy*-2-*methyl*-1*H*-*indo*]-3-*y*]*acetohydrazide* (**S5**): Yield: 80%; m.p.: 180–182 °C; IR (KBr) cm⁻¹: 3411 (NH), 3071 (C-H), 1654 (C=O), 1597 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.36 (3H, s, -CH₃), 3.55 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 6.60-8.45 (7H, m, Ar-H), 10.63 (1H, s, =CH), 11.3 (1H, s, NH, D₂O exchg.), 12.00 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 11.6 (CH₃), 28.2 (CH₂), 55.1 (OCH₃), 101.0, 128.5, 128.7, 128.8, 128.9, 129.5, 136.6, 146.7, 148.0, 149.0, 150.0, 151.0, 152.1,162.7, 172.0; MS: *m/z* = 355.81 [M]⁺; Analysis: for C₁₉H₁₈N₃O₂Cl, calcd. C 64.13, H 5.10, N 11.81 %; found C 64.33, H 5.12, N 11.83 %.

N'-[(*E*)-(2,4-*dichlorophenyl*)*methylidene*]-2-(5-*methoxy*-2-*methyl*-1H-*indo*]-3-*y*]*acetohydrazide* (**S6**): Yield: 65%; m.p.: 238–240 °C; IR (KBr) cm⁻¹: 3411 (NH), 2940 (C-H), 1654 (C=O), 1617 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.36 (3H, s, -CH₃), 3.59 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 6.59-8.61 (6H, m, Ar-H), 10.62 (1H, s, =CH), 11.51 (1H, s, -NH, D₂O exchg.); 11.7 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 11.5 (CH₃), 27.8 (CH₂), 55.0 (OCH₃), 100.2, 103.7, 109.4, 110.8, 127.8, 128.7, 129.2, 130.0, 133.4, 133.6, 134.0, 137.5, 140.9, 154.0, 168.0, 172.0S; MS: *m*/*z* = 390.26 [M]⁺; Analysis: for C₁₉H₁₇N₃O₂Cl₂, calcd. C 58.47, H 4.35, N 10.77 %; found C 58.25, H 4.33, N 10.74 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-N'-[(*E*)-(3,4-*dimethoxyphenyl*)*methylidene*] acetohydrazide **(S7)**: Yield: 70%; m.p.: 210–212°C; IR (KBr) cm⁻¹: 3299 (NH), 3011 (C-H), 1654 (C=O), 1599 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.40 (3H, s, -CH₃), 3.70 (2H, s, CH₂), 3.84 (3H, s, -OCH₃), 6.50-8.40 (6H, m, Ar-H), 10.50 (1H, s, =CH), 11.20 (1H, s, -NH, D₂O exchg.), 11.5 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 12.2 (CH₂), 55.6 (OCH₃), 55.8 (OCH₃), 56.0 (OCH₃), 101.0, 121.4, 122.0, 127.5, 143.1, 151.0, 175.0; MS: *m/z* = 381.42 [M]⁺; Analysis: for C₂₁H₂₃N₃O₄, calcd. C 66.13, H 6.08, N 11.02 %; found C 66.31, H 6.10, N 11.05 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-*N*'-[(*E*)-(2-*methoxyphenyl*)*methylidene*] *acetohydrazide* **(S8)**: Yield: 60%; m.p.: 220–222°C; IR (KBr) cm⁻¹: 3315 (NH), 3017 (C-H), 1664 (C=O), 1601 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.36 (3H, s, -CH₃), 3.56 (2H, s, CH₂), 3.87 (3H, s, -OCH₃), 7.00-8.82 (11H, m, Ar-H), 10.61 (1H, s, =CH), 11.23(1H, s, NH, D₂O exchg.), 11.92 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 28.1 (CH₂), 56.1 (OCH₃), 63.4 (OCH₃), 111.2, 112.2, 112.3, 121.2, 122.7, 125.8, 126.0, 129.0, 130.0, 132.1, 137.0, 144.0, 158.2, 162.3; MS: *m*/*z* = 351.39 [M]⁺; Analysis: for C₂₀H₂₁N₃O₃, calcd. C 68.36, H 6.02, N 11.96 %; found C 68.50, H 6.00, N 11.93 %.

N'-[(*E*)-(4-hydroxyphenyl)methylidene]-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide **(S9):** Yield: 70%; m.p.: 230–232 °C; IR (KBr) cm⁻¹: 3411 (OH), 3411 (NH), 3300 (C-H), 1654 (C=O), 1609 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.58 (2H, s, CH₂), 3.75 (3H, s, -OCH₃), 6.59-8.36 (7H, m, Ar-H), 9.88 (1H, s, OH, D₂O exchg.), 10.60 (1H, s, =CH), 11.0 (1H, s, -CONH, D₂O exchg.), 11.73 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 28.2 (CH₂), 55.5 (OCH₃), 100.8, 104.9, 109.8, 110.0, 116.1, 128.9, 129.4, 130.5, 134.2, 143.4, 153.3, 159.5, 162.2, 167.4, 170.7, 172.9; MS: *m/z* = 337.37 [M]⁺; Analysis: for C₁₉H₁₉N₃O₃, calcd. C 67.64, H 5.68, N 12.46 %; found C 67.43, H 5.70, N 12.43 %.

N'-[(*E*)-(3-hydroxyphenyl)methylidene]-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (**S10**): Yield: 60%; m.p.: 145–147 °C; IR (KBr) cm⁻¹: 3500 (OH), 3413 (NH), 3023 (C-H), 1654 (C=O), 1617 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.57 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 6.58-8.17 (7H, m, Ar-H), 9.59 (1H, s, OH, D₂O exchg.), 10.62 (1H, s, =CH), 11.21 (1H, s, -NH, D₂O exchg.), 11.39 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 11.6 (CH₃), 27.6 (CH₂), 54.9 (OCH₃), 100.1, 104.0, 109.3, 110.8, 112.4, 117.2, 118.2, 128.5, 129.5, 130.0, 133.8, 135.5, 146.2, 152.8, 157.5, 175.0; MS: *m/z* = 337.37 [M]+; Analysis: for C₁₉H₁₉N₃O₃, calcd. C 67.64, H 5.68, N 12.46 %; found C 67.41, H 5.70, N 12.42 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-N'-{(*E*)-[4-(*dimethylamino*) *phenyl*]*methylidene*}*acetohydrazide* (S11): Yield: 65%; m.p.: 200–202 °C; IR (KBr) cm⁻¹: 3351 (NH), 2909 (C-H), 1654 (C=O), 1609 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.00 (6H, s, 2×NCH₃) 3.59 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 6.59-8.32 (7H, m, Ar-H), 10.60 (1H, s, =CH), 10.97 (1H, s, -NH, D₂O exchg.), 11.62 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 28.0 (CH₂), 30.0 (NCH₃), 31.0 (NCH₃), 55.5 (OCH₃), 100.9, 105.0, 110.0, 111.2, 112.27, 112.3, 122.2, 128.4, 128.7, 128.9, 129.8, 130.5, 143.9, 151.7, 153.3, 172.7; ms: *m*/*z* = 364.44 [M]⁺; Analysis: for C₂₁H₂₄N₄O₂, calcd. C 69.21, H 6.64, N 15.37 %; found C 69.37, H 6.66, N 15.33 %.

2-(5-*methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-N'-[(*E*)-(3-*methoxyphenyl*)*methylidene*] acetohydrazide (**S12**): Yield: 65%; m.p.: 195–197 °C; IR (KBr) cm⁻¹: 3412 (NH), 3000 (C-H), 1654 (C=O), 1636 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.58 (2H, s, CH₂), 3.80 (3H, s, -OCH₃), 6.59-8.44 (7H, m, Ar-H), 10.67 (1H, s, =CH), 11.28 (1H, s, -NH, D₂O exchg.), 11.46 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 28.3 (CH₂), 55.5 (OCH₃), 55.35 (OCH₃), 100.8, 104.5, 104.7, 109.8, 110.0, 111.6, 120.3, 129.3, 130.3, 134.3, 134.3, 136.2, 142.9, 146.5, 153.3, 159.9, 173.3; MS: *m/z* = 351.39 [M]⁺; Analysis: for C₂₀H₂₁N₃O₃, calcd. C 68.36, H 6.02, N 11.96 %; found C 68.15, H 6.00, N 11.99 %.

N'-[(E)-(4-ethoxyphenyl)methylidene]-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (**S13**): Yield: 75%; m.p.: 213–215 °C; IR (KBr) cm⁻¹: 3322 (NH), 3042 (C-H), 1654 (C=O), 1571 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 1.33 (3H, t, *J* = 7.5 Hz, CH₂CH₃), 2.37 (3H, s, -CH₃), 3.57 (2H, s, CH₂), 3.74 (3H, s, -OCH₃), 4.06 (2H, q, *J* = 7.5 Hz, OCH₂), 6.58-8.20 (7H, m, Ar-H), 10.61 (1H, s, =CH), 11.12 (1H, s, -NH, D₂O exchg.), 11.30 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.2 (CH₃), 15.0 (CH₂), 28.2 (CH₃), 55.5 (OCH₃), 55.88 (OCH₂), 63.7, 100.8, 104.8, 109.8, 111.2, 115.1, 127.2, 129.2, 129.3, 130.5, 134.3, 143.0, 146.5, 153.3, 160.2, 167.5, 173.0; ms: *m/z* = 365.42 [M]⁺; Analysis: for C₂₁H₂₃N₃O₃, calcd. C 69.02, H 6.34, N 11.50 %; found C 69.22, H 6.36, N 11.53 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-*N'*-[(*E*)-(2,4,5-*trimethoxyphenyl*) *methylidene*]*acetohydrazide* (**S14**): Yield: 60%; m.p.: 238–240 °C; IR (KBr) cm⁻¹: 3412 (NH), 2943 (C-H), 1654 (C=O), 1617 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.36 (3H, s, -CH₃), 3.51 (2H, s, CH₂), 3.78 (12H, s, -4×OCH₃), 6.91-8.42 (5H, m, Ar-H), 10.61 (1H, s, =CH), 11.14 (1H, s, -NH, D₂O exchg.), 11.42 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 30.1 (CH₂), 55.5 (OCH₃), 56.4 (OCH₃), 60.9 (OCH₃), 62.1 (OCH₃), 100.8, 104.8, 109.1, 109.8, 110.0, 111.2, 120.8, 130.5, 134.4, 138.9, 142.0, 152.8, 153.3, 155.2, 172.9; ms: *m*/*z* = 411.45 [M]+; Analysis: for C₂₂H₂₅N₃O₅, calcd. C 64.22, H 6.12, N 10.21 %; found C 64.35, H 6.14, N 10.24 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-*N*'-[(*E*)-(2,3,4-*trimethoxyphenyl*) *methylidene*]*acetohydrazide* (S15): Yield: 55%; m.p.: 250–252 °C; IR (KBr) cm⁻¹: 3310 (NH), 3048 (C-H), 1654 (C=O), 1595 (C=N); ¹H NMR (500 MHz,

DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.59 (2H, s, CH₂), 3.84 (12H, s, 4×-OCH₃), 6.59-8.74 (5H, m, Ar-H), 10.60 (1H, s, =CH), 11.08 (1H, s, -NH, D₂O exchg.), 11.33 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 28.5 (CH₂), 55.6 (OCH₃), 56.2 (OCH₃), 56.4 (OCH₃), 56.9 (OCH₃), 98.3, 101.1, 104.8, 108.4, 109.8, 111.2, 114.1, 129.2, 130.6, 134.4, 138.8, 143.6, 152.1, 153.6, 167.3, 172.9; ms: *m*/*z* = 411.45 [M]+; Analysis: for C₂₂H₂₅N₃O₅, calcd. C 64.22, H 6.12, N 10.21 %; found C 64.36, H 6.10, N 10.23 %.

2-(5-Methoxy-2-methyl-1H-indol-3-yl)-N'-[(E)-(3,4,5-trimethoxyphenyl) methylidene]acetohydrazide (S16): Yield: 58%; m.p.: 233–235 °C; IR (KBr) cm⁻¹: 3309 (NH), 3015 (C-H), 1654 (C=O), 1577 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.59 (2H, s, CH₂), 3.83 (12H, s, 4× -OCH₃), 6.97-8.20 (5H, m, Ar-H), 10.61 (1H, s, =CH), 11.28 (1H, s, -NH, D₂O exchg.), 11.40 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 28.4 (CH₂), 55.6 (OCH₃), 55.8 (OCH₃), 56.3 (OCH₃), 60.5 (OCH₃), 60.5, 101.1, 104.4, 104.6, 104.7, 109.8, 111.2, 130.3, 130.6, 134.2, 139.3, 142.9, 153.3, 153.6, 173.2; ms: *m*/*z* = 411.45 [M]+; Analysis: for C₂₂H₂₅N₃O₅, calcd. C 64.22, H 6.12, N 10.21 %; found C 64.37, H 6.10, N 10.24 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-N'-[(*E*)-(2,4,6-*trimethoxyphenyl*) *methylidene*]*acetohydrazide* (**S17**): Yield: 55%; m.p.: 230–232 °C; IR (KBr) cm⁻¹: 3412 (NH), 3056 (C-H), 1654 (C=O), 1612 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.37 (3H, s, -CH₃), 3.59 (2H, s, CH₂), 3.82 (12H, s, 4× -OCH₃), 6.57-8.74 (5H, m, Ar-H), 10.61 (1H, s, =CH), 11.10 (1H, s, NH, D₂O exchg.), 11.80 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 12.1 (CH₃), 28.4 (CH₂), 55.5 (OCH₃), 55.7 (OCH₃), 56.3 (OCH₃), 60.5 (OCH₃), 98.6, 106.7, 111.2, 115.6, 129.9, 142.2, 144.1, 153.3, 159.3, 159.6 162.1, 167.3, 172.9; ms: *m*/*z* = 411.45 [M]+; Analysis: for C₂₂H₂₅N₃O₅, calcd. C 64.22, H 6.12, N 10.21 %; found C 64.38, H 6.13, N 10.17 %.

2-(5-*Methoxy*-2-*methyl*-1*H*-*indol*-3-*yl*)-N'-[(*E*)-(2,4-*dimethoxyphenyl*) *methylidene*]*acetohydrazide* (**S18**): Yield: 60%; m.p.: 170–172 °C; IR (KBr) cm⁻¹: 3413 (NH), 3000 (C-H), 1654 (C=O), 1638 (C=N); ¹H NMR (500 MHz, DMSO-d₆): δ = 2.40 (3H, s, -CH₃), 3.60 (2H, s, CH₂), 3.82 (3H, s, -OCH₃), 6.50-8.70 (6H, m, Ar-H), 10.61 (1H, s, =CH), 11.20 (1H, s, NH, D₂O exchg.); 11.80 (1H, s, -CONH, D₂O exchg.); ¹³C NMR (125 MHz, DMSO-d₆): δ = 11.5 (CH₃), 28.4 (CH₂), 55.0 (OCH₃), 55.6 (OCH₃), 55.68 (OCH₃), 98.2, 104.4, 106.2, 109.5, 110.7, 115.2, 128.8, 130.0, 132.0, 135.8, 138.3, 143.6, 152.8, 158.9, 162.0, 162.4, 164.7, 172.0; ms: *m*/*z* = 381.42 [M]⁺; Analysis: for C₂₁H₂₃N₃O₄, calcd. C 66.13, H 6.08, N 11.02 %; found C 66.34, H 6.10, N 11.05 %.

Supplementary Figure 2: Effects of MMINA on kidney, liver, heart and brain function marker enzymes in serum. Values are Mean \pm SD (n= 6). I: kidney function test; (a) serum creatinine (mg/dl) levels and (b) serum urea content (mg/dl). II: Liver Function Test; (a) serum Alanine aminotransferase (ALT), Aspartate Aminotransferase (AST) and Alkaline phosphatase (ALP). *asterisks* *, **, **** indicate significance from the control group at p < 0.05, p < 0.01 and p < 0.0001 probability level, ++++ indicate significance from the Cisplatin group at p < 0.0001 probability level (One-way ANOVA followed by Tukey's multiple comparison tests).

Supplementary file S3:

Molecular docking, pharmacokinetic studies, and in vivo pharmacological study of indole derivative 2-(5-Methoxy-2-methyl-1H-indole-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene] acetohydrazide as a promising chemoprotective agent against Cisplatin induced organ damage

Suhail Razak^{1*, #}, Tayyaba Afsar^{1#}, Nousheen Bibi^{2#}, Mahmoud Abulmeaty¹, Wajhul Qamar³, Ali Almajwal¹, Anam Inam², Mashooq Ahmad Bhat⁴, Dara Al Disi¹.

Western blot images

Kidney Tissue Uncropped Blots

IL 1

TNF-α

TNF-α

Actin

Heart Tissue Uncropped Blots

Liver tissue uncropped Blots

Brain tissue uncropped blots

•

Supplementary Figure 3: 2D molecular docking interactions of all studied target molecules. (A) COX2 (B) GPx, (C) IL1 (D) SOD, (E) STAT3, (F) iNOS, (G) NFKB, (H) p65 and (I) TNF-α