SUPPORTING INFORMATION

Authors: ¹Keri A. Tallman, ^{2,4}Luke B. Allen, ²Korinne Klingelsmith, ²Allison Anderson, ²Thiago C. Genaro-Mattos, ^{2,4}Károly Mirnics, ¹Ned A. Porter, ^{3,4}Zeljka Korade*

Prescription medications alter neuronal and glial cholesterol synthesis

¹Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN.

²Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA, 68105.

³Department of Pediatrics, ⁴Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198.

*Corresponding Author:

Zeljka Korade, DVM, PhD Professor of Pediatrics and Biochemistry and Molecular Biology University of Nebraska Medical Center 982165 Nebraska Medical Center | Omaha, NE 68198 402.559.1312 | zeljka.korade@UNMC.Edu

CONTENTS

Additional Figures

Figure S1. Prescribed medications used in the study.

Figure S2. Cholesterol oxysterols included in this LC-MS/MS analysis.

Figure S3. Comparison of PTAD and DMG methods.

Figure S4. Neurons and astrocytes exposed to sertraline.

Figure S5. Profile of cholesterol oxysterols in neurons and astrocytes.

Figure S6. Ratio of 7-DHD/Des and 7-DHC/Chol for neurons and astrocytes.

Figure S7. Representative mass spectrum and fragmentations for DMG-derivatized sterols.

Synthetic procedures

Scheme S1. Synthesis of d_6 -Lan and d_7 -dHLan.

Scheme S2. Synthesis of d_6 -14d-Zym and d_7 -14d-Zyme.

Scheme S3. Synthesis of d_6 -Zym and d_7 -Zyme.

Scheme S4. Synthesis of d_6 -DHL and d_7 -Lath.

Scheme S5. Synthesis of d_6 -7-DHD.

Scheme S6. Synthesis of d_6 -8-DHD.

Scheme S7. Synthesis of d_6 -Des and d_7 -Chol.

Statistics

Table S1. Statistics for Figure 4.

Table S2. Statistics for Figure 5.

Table S3. Statistics for Figure 6A (haloperidol).

Table S4. Statistics for Figure 6B (cariprazine).

Table S5. Statistics for Figure 6C (aripiprazole).

Table S6. Statistics for Figure 6D (trazodone).

Table S7. Statistics for Figure 6E (amiodarone).

Table S8. Statistics for Figure 7.

Table S9. Statistics for Figure S3.

Table S10. Statistics for Figure S4.

Table S11. Statistics for Figure S5.

ADDITIONAL FIGURES

Figure S1. Prescribed medications used in the study. A) Chemical structures. B) Compounds used in the current study showing details about chemical ID, yearly prescription (data from ClinCalc), the use, pregnancy classification, elimination half-life and available prescription tablets.

Figure S2. Cholesterol oxysterols included in this LC-MS/MS analysis. The structures show the sites of derivatization by dimethyl glycine.

Figure S3. Comparison of PTAD and DMG methods in cortical neuronal and astrocytes cultures. (A and C) Sterols analyzed by PTAD method. (B and D) Sterols analyzed by DMG method. (A and B) Cortical neurons and (C and D) astrocytes were grown in 96-well plate in presence and absence of trazodone (10 nM – 1000 nM) for 6 days. Half plate was processed for PTAD method and half plate for DMG method. Statistical significance is marked by * p<0.01.

Figure S4. Comparison of cholesterol synthesis in neurons and astrocytes exposed to antidepressant sertraline. Neurons and astrocytes were exposed to increasing concentrations of compounds for 6 days and fourteen sterols were analyzed by DMG method. Concentrations for treatments were control (DMSO), 10, 25, 50, 100 and 500 nM. Blue=neurons; red=astrocytes; n=11 for control, n=6 for drug. Statistical significance is marked by * p<0.01.

Figure S5. Profile of cholesterol oxysterols in neurons and astrocytes exposed to trazodone, amiodarone, and sertraline. Blue = neurons; red = astrocytes. Neurons and astrocytes were exposed to increasing concentrations of compounds for 6 days and seven oxysterols were analyzed by the DMG method. n=11 for control, n=6 for drug. The major oxysterols found are shown here. Concentrations for treatments were control (DMSO), 10, 25, 50, 100 and 500 nM. Statistical significance is marked by *p<0.05.

Figure S6. Ratio of 7DHD/Des and 7DHC/Chol for neurons and astrocytes. Blue = neurons; red = astrocytes. The data from Figure 6 was used to determine the ratios for neurons and astrocytes upon exposure to haloperidol, cariprazine, aripiprazole, trazodone, amiodarone, and sertraline.

Figure S7. Representative mass spectrum and fragmentations for DMG-derivatized sterols. A) Full scan and CID at 20 eV for DMG-Chol and major ions upon CID for B) Chol, C) 7-DHC, D) Lan, and E) Zyme. Sterols containing a 5,6-double bond (Chol and 7-DHC) fragment to give the sterol as the major ion. Sterols lacking a 5,6-double bond (Lan and Zyme) fragment to give the DMG-moiety as the major ion.

SYNTHETIC PROCEDURES

Methods and materials. The synthesis of d_7 -7-DHC and d_7 -8-DHC has been reported. All sterol standards are available from Kerafast, Inc. (Boston MA). ¹H and ¹³C NMR spectra were collected on a 300, 400, or 600 MHz NMR. All reactions were carried out under an atmosphere of argon. THF and CH₂Cl₂ were dried using a solvent purification system. Commercial anhydrous solvents were used as received. Purification by column chromatography was carried out on silica gel and TLC plates were visualized by UV and stained with phosphomolybdic acid.

Scheme S1. Synthesis of d_6 -Lan and d_7 -dHLan.

Synthesis of **1**. TBSCI (2.7 g, 0.018 mol) and imidazole (1.6 g, 0.024 mol) were added to a solution of lanosterol (60 % purity, 5.1 g, 0.012 mol) in THF/DMF (60 mL, 1:1). The reaction mixture was heated to 100 °C. After overnight, the reaction mixture was cooled and diluted with hexanes/EtOAc (1:1). The organics were washed with H₂O, brine, and dried over MgSO₄. The product was purified by column chromatography (hexanes) and isolated as a white powder (3.8 g, 58%). ¹H NMR (CDCl₃) δ 5.09 (t, 1H, J = 7.1 Hz), 3.19 (dd, 1H, J = 4.8, 10.9 Hz), 2.06-1.99 (m, 6H), 1.95-1.87 (m, 3H), 1.67 (s, 3H), 1.59 (s, 3H), 1.56-1.31 (m, 8H), 1.32-1.03 (m, 6H), 0.97 (s, 3H), 0.90 (s, 3H), 0.89 (d, 3H, J = 3.7 Hz), 0.88 (s, 9H), 0.86 (s, 3H), 0.76 (s, 3H), 0.68 (s, 3H), 0.022 (s, 3H), 0.016 (s, 3H); ¹³C NMR (CDCl₃) δ 134.6, 134.2, 130.8, 125.2, 79.4, 50.4, 49.8, 44.4, 39.4, 36.9, 36.3, 36.2, 35.5, 31.0, 30.8, 28.3, 28.2, 26.5, 25.9, 25.7, 24.9, 24.2, 21.0, 19.2, 18.6, 18.6, 18.1, 17.6, 15.9, 15.7, -3.8, -5.0.

Synthesis of alcohol 2. Ozone was bubbled through a solution of 1 (1.2 g, 2.3 mmol) in CH₂Cl₂/MeOH (40 mL, 3:1) at 0 °C. After 10 min, the ozone was stopped and NaBH₄ (0.30 g, 7.9 mmol) was added. The reaction mixture was stirred for 2 h, allowing it to come to room temperature, and then concentrated. The crude product was dissolved in EtOAc and washed with saturated NH₄Cl, brine, and dried over MgSO₄. Purification by column chromatography (20% EtOAc/hexanes) yielded the product as a white powder (0.37 g). ¹H NMR (CDCl₃) δ 3.59 (dt, 2H, J = 1.7, 6.5 Hz), 3.17 (dd, 1H, J = 4.9, 10.8 Hz), 2.05-1.83 (m, 5H), 1.68-1.33 (m, 12H), 1.32-0.98 (m, 6H), 0.95 (s, 3H), 0.90 (s, 3H), 0.89 (d, 3H, J = 3.7 Hz), 0.86 (s, 9H), 0.84 (s, 3H), 0.74 (s,

3H), 0.66 (s, 3H), 0.0058 (s, 3H), 0.0001 (s, 3H); ¹³C NMR (CDCl₃) δ 134.6, 134.1, 79.4, 63.6, 50.4, 50.3, 49.7, 44.4, 39.4, 36.9, 36.2, 35.5, 32.1, 31.0, 30.8, 29.5, 28.3, 28.2, 26.5, 25.9, 25.6, 24.2, 20.9, 19.1, 18.6, 18.4, 18.1, 15.9, 15.7, -3.8, -5.0.

Synthesis of mesylate **3**. MsCl (0.15 mL, 1.9 mmol) was added to a solution of the alcohol **2** (0.60 g, 1.2 mmol) in freshly distilled pyridine (6 mL). After 1 h, the reaction mixture was concentrated under vacuum. The crude product was dissolved in EtOAc and washed with 10% HCl, saturated NaHCO₃, brine, and dried over MgSO₄. The product (0.54 g, 78%) was isolated as a white powder and used without further purification. ¹H NMR (CDCl₃) δ 4.16 (dt, 2H, J = 2.2, 6.5 Hz), 3.16 (dd, 1H, J = 4.9, 10.9 Hz), 2.96 (s, 3H), 2.10-1.97 (m, 4H), 1.91-1.75 (m, 3H), 1.65-1.39 (m, 10H), 1.38-0.97 (m, 6H), 0.94 (s, 3H), 0.87 (s, 3H), 0.86 (d, 3H, J = 6.9 Hz), 0.85 (s, 9H), 0.83 (s, 3H), 0.73 (s, 3H), 0.65 (s, 3H), -0.0057 (s, 3H), -0.011 (s, 3H); ¹³C NMR (CDCl₃) δ 134.6, 134.1, 79.3, 70.6, 50.3, 50.2, 49.7, 44.4, 39.4, 37.3, 36.8, 35.9, 35.5, 31.7, 31.0, 30.7, 28.3, 28.2, 26.5, 26.0, 25.9, 24.2, 20.9, 19.1, 18.6, 18.5, 18.4, 15.9, 15.7, -3.8, -5.0.

Synthesis of d_7 -*dHLan*. A solution of d_7 -2-bromopropane (0.50 mL, 5.3 mmol) in THF (5 mL) was added in portions to Mg° (0.11 g, 4.5 mmol) in a minimal amount of THF. After 30 min, Li₂CuCl₄ (0.1 M/THF, 0.90 mL, 0.090 mmol) was added, followed by a solution of the mesylate **3** (0.54 g, 0.91 mmol) in THF (9 mL). After 1 h, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product was purified by column chromatography (hexanes) and isolated as a white powder (0.39 g, 78%). ¹H NMR (CDCl₃) δ 3.18 (dd, 1H, J = 4.8, 10.9 Hz), 1.98-1.93 (m, 4H), 1.91-1.83 (m, 1H), 1.69-1.61 (m, 4H), 1.58-1.40 (m, 10H), 1.35-1.18 (m, 6H), 0.96 (s, 3H), 0.89 (s, 3H), 0.88 (d, 3H, J = 6.4 Hz), 0.87 (s, 9H), 0.85 (s, 3H), 0.75 (s, 3H), 0.67 (s, 3H), 0.015 (s, 3H), 0.0096 (s, 3H); ¹³C NMR (CDCl₃) δ 134.6, 134.2, 79.4, 53.4, 50.5, 50.4, 49.7, 44.4, 39.4, 39.2, 36.9, 36.4, 35.5, 31.0, 30.8, 28.3, 28.2, 26.5, 25.9, 24.2, 24.0, 21.0, 19.1, 18.7, 18.4, 18.1, 15.9, 15.7, -3.8, -5.0.

TBAF (1M/THF, 2.1 mL, 2.1 mmol) was added to a solution of the d_7 -TBS-dHLan (0.39 g, 0.71 mmol) in THF (4 mL), then the reaction mixture was heated to reflux. After overnight, the reaction mixture was cooled and diluted with EtOAc. The organics were washed with brine and dried over MgSO₄. The product (0.29 g, 92%) was isolated as a white powder after purification by column chromatography (20% EtOAc/hexanes). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 3.21 (dd, 1H, J = 4.6, 11.6 Hz), 2.03-1.97 (m, 4H),

1.92-1.84 (m, 1H), 1.72-1.60 (m, 5H), 1.58-1.41 (m, 6H), 1.34-1.30 (m, 4H), 1.29-1.24 (m, 6H), 0.98 (s, 3H), 0.96 (s, 3H), 0.89 (s, 3H), 0.86 (d, 3H, J = 8.1 Hz), 0.79 (s, 3H), 0.67 (s, 3H); ¹³C NMR (CDCl₃) δ 134.4, 134.3, 78.9, 50.4, 50.3, 49.7, 44.4, 39.2, 38.8, 36.9, 36.4, 35.5, 30.9, 30.8, 28.2, 27.9, 27.8, 26.4, 25.6, 24.2, 24.0, 20.9, 19.1, 18.7, 18.2, 15.7, 15.3.

Synthesis of iodide 4. Iodine (0.22 g, 0.87 mmol) was added to a solution of the alcohol **2** (0.37 g, 0.72 mmol), imidazole (0.10 g, 1.5 mmol), and PPh₃ (0.23 g, 0.88 mmol) in CH₂Cl₂ (8 mL). After 1 h, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The product was isolated as a white powder (0.42 g, 93%) and used without further purification. ¹H NMR (CDCl₃) δ 3.22-3.07 (m, 3H), 2.01-1.96 (m, 4H), 1.92-1.84 (m, 1H), 1.71-1.61 (m, 6H), 1.59-1.41 (m, 6H), 1.36-1.13 (m, 6H), 0.95 (s, 3H), 0.89 (s, 3H), 0.87 (apparent s, 12H), 0.85 (s, 3H), 0.75 (s, 3H), 0.67 (s, 3H), 0.013 (s, 3H), 0.007 (s, 3H); ¹³C NMR (CDCl₃) δ 134.6, 134.1, 79.4, 50.4, 50.3, 49.8, 44.5, 39.4, 37.1, 36.9, 35.7, 35.5, 31.0, 30.8, 30.6, 28.3, 28.2, 26.5, 25.9, 24.2, 20.9, 19.2, 18.7, 18.4, 18.1, 15.9, 15.7, 7.9, -3.8, -5.0.

Synthesis of **5**. PPh₃ (0.21 g, 0.80 mmol) was added to a solution of the iodide **4** (0.42 g, 0.67 mmol) and iPr₂EtN (0.35 mL, 2.0 mmol) in anhydrous toluene (3 mL). The reaction mixture was heated to 100 °C. After allowing to react overnight, the reaction mixture was cooled and concentrated. The product (0.36 g) was purified by column chromatography (5% MeOH/CH₂Cl₂) and isolated in 60% yield. ¹H NMR (CDCl₃) δ 7.80-7.74 (m 9H), 7.69-7.58 (m, 6H), 3.59-3.52 (m, 2H), 3.17-3.12 (m, 1H), 1.95-1.93 (m, 4H), 1.84-1.68 (m, 4H), 1.64-1.42 (m, 10H), 1.40-1.18 (m, 6H), 1.14-1.03 (m, 2H), 0.90 (s, 3H), 0.86-0.82 (m, 15H), 0.75 (s, 3H), 0.71 (s, 3H), -0.025 (s, 3H), -0.029 (s, 3H).

Synthesis of d_6 -Lan. BuLi (2.5 M/hexanes, 0.30 mL, 0.75 mmol) was added to a solution of **5** (0.36 g, 0.40 mmol) in THF (4 mL), followed by d_6 -acetone (60 uL, 0.82 mmol) after 15 min. After overnight, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product was isolated as a white powder (49 mg) after purification by column chromatography (hexanes). ¹H NMR (CDCl₃) δ 5.08 (t, 1H, J = 7.1 Hz), 3.18 (dd, 1H, J = 4.8, 11.2 Hz), 2.02-1.97 (m, 4H), 1.92-1.80 (m, 1H), 169-1.63 (m, 4H), 1.60-1.36 (m, 8H), 1.30-1.12 (m, 4H), 1.02-0.98 (m, 2H), 0.96 (s, 3H), 0.89 (s, 3H), 0.89 (d, 3H, J = 6.2 Hz), 0.87 (s, 9H), 0.85 (s, 3H), 0.75 (s, 3H), 0.67 (s, 3H), 0.014 (s, 3H), 0.008 (s, 3H);

¹³C NMR (CDCl₃) δ 134.6, 134.2, 125.2, 79.4, 50.4, 49.7, 44.4, 39.4, 36.8, 36.3, 36.2, 35.5, 31.0, 30.8, 28.3, 28.2, 26.5, 25.9, 24.8, 24.2, 20.9, 19.1, 18.6, 18.4, 18.1, 15.8, 15.7, -3.9, -5.0.

TBAF (1 M/THF, 0.30 mL, 0.30 mmol) was added to a solution of the d_6 -TBS-Lan (49 mg, 0.090 mmol) in THF (1 mL), then the reaction was heated to reflux. After overnight, the reaction mixture was cooled. It was diluted with EtOAc, washed with brine, and dried over MgSO₄. Purification by column chromatography (20% EtOAc/hexanes) yielded the product as a white powder (34 mg, 87%). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.08 (t, 1H, J = 7.1 Hz), 3.21 (dd, 1H, J = 4.6, 11.6 Hz), 2.03-1.95 (m, 4H), 1.93-1.80 (m, 2H), 1.73-1.63 (m, 4H), 1.61-1.12 (m, 12H), 1.05-1.01 (m, 2H), 0.98 (s, 3H), 0.96 (s, 3H), 0.89 (d, 3H, J = 6.3 Hz), 0.85 (s, 3H), 0.79 (s, 3H), 0.67 (s, 3H); ¹³C NMR (CDCl₃) δ 134.3, 131.0, 125.2, 78.9, 50.3, 49.7, 44.4, 38.8, 37.0, 36.3, 36.2, 35.5, 30.9, 30.8, 28.1, 27.9, 27.8, 26.4, 24.8, 24.2, 20.9, 19.1, 18.6, 18.2, 15.7, 15.3.

Scheme S2. Synthesis of d_6 -14d-Zym and d_7 -14d-Zyme.

Synthesis of **6**. TBSCI (6.1 g, 0.040 mol) and imidazole (3.5 g, 0.051 mol) were added to a solution of ergosterol (10 g, 0.026 mol) in DMF/THF (60 mL, 1:1). A precipitate formed immediately. After overnight, the reaction mixture was diluted with hexanes/EtOAc (1:1) and washed with H₂O, brine, and dried over MgSO₄. The product (11 g, 86%) was isolated as a pale yellow powder after column chromatography (10% EtOAc/hexanes).

Pb(OAc)₄ (15 g, 0.033 mol) was added to a solution of the TBS-ergosterol (11 g, 0.022 mol) and phthalhydrazide (5.4 g, 0.033 mol) in CH₂Cl₂ (200 mL) and HOAc (20 mL). After 1 h, the reaction mixture was washed with H₂O, saturated NaHCO₃, brine, and dried over MgSO₄. After purification by column chromatography (10% EtOAc/hexanes), the product was isolated as a yellow foam (13 g, 88%). ¹H NMR (CDCl₃) δ 8.13-8.07 (m, 2H), 7.67-7.65 (m, 2H), 6.62 (d, 1H, J = 8.2 Hz), 6.23

(d, 1H, J = 8.3 Hz), 5.23-5.09 (m, 2H), 3.94-3.84 (m, 2H), 3.60-3.52 (m, 1H), 2.10-1.94 (m, 4H), 1.86-1.79 (m, 2H), 1.73-1.50 (m, 4H), 1.48-1.18 (m, 8H), 0.99 (s, 3H), 0.99 (d, 3H, J = 6.4 Hz), 0.90-0.78 (m, 12H), 0.84 (s, 9H), -0.026 (s, 6H); ¹³C NMR (CDCl₃) δ 161.8, 159.5, 138.4, 135.2, 132.5, 132.4, 132.0, 130.5, 130.2, 128.6, 126.9, 126.4, 68.4, 67.4, 67.0, 56.5, 50.5, 48.9, 44.1, 42.6, 40.3, 39.8, 39.2, 35.5, 34.6, 33.0, 30.5, 28.1, 25.9, 24.4, 21.8, 20.8, 19.8, 19.6, 18.5, 17.9, 17.4, 13.2, -4.4, -5.0.

Synthesis of 7. Ozone was bubbled through a solution of 6 (13 g, 0.020 mol) in CH_2Cl_2 (200 mL) and MeOH (100 mL) at 0 °C. After 1 h, the ozone was stopped and NaBH₄ (2.3g, 0.061 mol) was added. The reaction was warmed to room temperature and stirred for 1 h, then concentrated. The crude product was dissolved in EtOAc and washed with saturated NH₄Cl, brine, and dried over MgSO₄. The product (12 g, 100 %) was isolated as a yellow foam and used without purification.

Synthesis of **8**. LiAlH₄ (2.3 g, 0.061 mol) was added to a solution of **7** (12 g, 0.020 mol) in THF (100 mL), then heated to reflux. After 1 h, the reaction mixture was cooled and quenched with 10% HCl. The reaction mixture was extracted with EtOAc, washed with brine, and dried over MgSO₄. Purification by column chromatography (20% EtOAc/hexanes) yielded the product as a white powder (6.6 g, 72%). ¹H NMR (CDCl₃) δ 5.53 (d, 1H, J = 5.5 Hz), 5.38-5.35 (m, 1H), 3.63 (dd, 1H, J = 3.2, 10.5 Hz), 3.59-3.41 (m, 1H), 3.37 (dd, 1H, J = 6.8, 10.5 Hz), 2.32-2.30 (m, 2H), 2.08-2.03 (m, 1H), 1.97-1.81 (m, 4H), 1.77-1.65 (m, 4H), 1.60-1.31 (m, 8H), 1.06 (d, 3H, J = 6.6 Hz), 0.92 (s, 3H), 0.87 (s, 9H), 0.62 (s, 3H), 0.046 (s, 6H) ; ¹³C NMR (CDCl₃) δ 140.8, 140.7, 119.1, 116.4, 71.2, 67.8, 54.1, 52.1, 46.2, 43.0, 41.3, 39.0, 38.5, 37.0, 32.3, 27.5, 25.9, 23.0, 21.0, 18.2, 16.8, 16.3, 11.8, -4.7.

Synthesis of aldehyde 9. Oxalyl chloride (1.9 mL, 0.022 mol) was added slowly to a solution of DMSO (1.6 mL, 0.023 mol) in CH₂Cl₂ (40 mL) at -78 °C. After 30 min, a solution of the alcohol 8 (6.6 g, 0.015 mol) in THF (50 mL) was added. After another 30 min, Et₃N (6.3 mL, 0.045 mol) was added and the reaction mixture was stirred for 1 h, allowing it to come to room temperature. The reaction mixture was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product was purified by column chromatography (10% EtOAc/hexanes) and isolated as a white powder (4.9 g, 74%). ¹H NMR (CDCl₃) δ 9.57 (d, 1H, J = 3.2 Hz), 5.53 (d, 1H, J = 5.5 Hz), 5.39-5.36 (m, 1H), 3.58-3.55 (m, 1H), 2.38-2.30 (m, 1H), 2.30-2.29 (m, 2H), 2.05-1.90 (m, 4H), 1.88-1.83 (apparent dt, 1H, J = 3.5, 13.4

Hz), 1.81-1.70 (m, 3H), 1.67-1.59 (m, 3H), 1.55-1.42 (m, 2H), 1.36-1.25 (m, 2H), 1.13 (d, 3H, J = 6.9 Hz), 0.91 (s, 3H), 0.87 (s, 9H), 0.64 (s, 3H), -0.042 (s, 6H); ¹³C NMR (CDCl₃) δ 204.8, 141.0, 139.9, 119.0, 116.8, 71.1, 53.6, 50.7, 49.7, 46.2, 43.4, 41.3, 38.8, 38.5, 37.0, 32.3, 26.9, 25.8, 23.3, 21.0, 18.2, 16.3, 13.5, 12.1, -4.7.

Synthesis of **10**. Methyl(triphenylphosphoranylidene)acetate (7.4 g, 0.022 mol) was added to a solution of the aldehyde **9** (4.9 g, 0.011 mol) in CH₂Cl₂ (55 mL). The reaction mixture was allowed to stir overnight, then concentrated. After purification by column chromatography (10% EtOAc/hexanes), the product was isolated as a white powder (5.3 g, 96%). ¹H NMR (CDCl₃) δ 6.83 (dd, 1H, J = 9.0, 15.6 Hz), 5.74 (dd, 1H, J = 0.5, 15.6 Hz), 5.52 (d, 1H, J = 5.4 Hz), 5.37-5.34 (m, 1H), 3.70 (s, 3H), 3.61-3.53 (m, 1H), 2.32-2.24 (m, 3H), 2.05-2.02 (m, 1H), 1.97-1.65 (m, 6H), 1.62-1.20 (m, 8H), 1.09 (d, 3H, J = 6.4 Hz), 0.91 (s, 3H), 0.87 (s, 9H), 0.63 (s, 3H), 0.044 (s, 6H); ¹³C NMR (CDCl₃) δ 167.4, 154.7, 140.8, 140.4, 119.1, 118.7, 116.6, 71.1, 54.6, 54.2, 51.3, 46.2, 43.2, 41.3, 39.9, 39.0, 38.4, 37.0, 32.3, 27.8, 25.9, 22.9, 21.0, 19.3, 18.2, 16.3, 12.0, -4.7.

Synthesis of **11**. HCl (1.6 mL, 0.019 mol) was added to a solution of **10** (6.6 g, 0.013 mol) in CHCl₃ (52 mL) and HOAc (13 mL), then the reaction mixture was heated to reflux. After 3 h, the reaction mixture was cooled and diluted with EtOAc. The organic layer was cautiously washed with saturated NaHCO₃, brine, and dried over MgSO₄. The product (2.6 g, 51%) was isolated as an orange foam after purification by column chromatography (20% EtOAc/hexanes). ¹H NMR (CDCl₃) δ 6.84 (dd, 1H, J = 9.0, 15.6 Hz), 5.77 (d, 1H, J = 15.6 Hz), 5.29 (br s, 1H), 3.70 (s, 3H), 3.65-3.56 (m, 1H(, 2.50-2.40 (m, 1H), 2.32-2.22 (m, 2H), 2.21-2.15 (m, 2H), 2.10-1.95 (m, 2H), 1.87-1.58 (m, 6H), 1.55-1.21 (m, 7H), 1.09 (d, 3H, J = 6.6 Hz), 0.96 (s, 3H), 0.82 (s, 3H); ¹³C NMR (CDCl₃) δ 167.4, 154.7, 150.5, 140.9, 123.0, 118.8, 117.2, 70.9, 55.8, 51.3, 45.2, 40.8, 38.5, 38.2, 36.8, 36.5, 36.1, 35.2, 31.6, 26.5, 25.2, 21.8, 19.4, 18.3, 15.7.

Synthesis of ester 12. Raney Nickel (~1 mL) was added to a solution of 11 (2.6 g, 6.7 mmol) in THF (60 mL). The reaction mixture was sparged with H_2 for 10 min, then left under an atmosphere of H_2 . After 1 h, the reaction mixture was filtered through Celite and concentrated. Caution: the catalyst should not be allowed to go dry. The product (2.5 g, 95%) was isolated as a yellow foam and was used without purification.

TBSCl (1.6 g, 11 mmol) and imidazole (0.95 g, 14 mmol) were added to a solution of the alcohol (2.7 g, 7.0 mmol) in DMF (35 mL). After overnight, the reaction mixture was diluted with hexanes/EtOAc (1:1) and washed with H₂O, brine, and dried over MgSO₄. After purification by column chromatography (10% EtOAc/hexanes), the product was isolated as a yellow oil, which solidified upon standing (3.2 g, 93%). ¹H NMR (CDCl₃) δ 5.31 (br s, 1H), 3.64 (s, 3H), 3.59-3.52 (m, 1H), 2.38-2.30 (m, 2H), 2.26-2.18 (m, 3H), 2.10-1.95 (m, 3H), 1.82-1.57 (m, 5H), 1.54-1.44 (m, 4H), 1.42-1.16 (m, 6H), 0.95 (s, 3H), 0.92 (d, 3H, J = 6.5 Hz), 0.86 (s, 9H), 0.78 (s, 3H), 0.029 (s, 6H); ¹³C NMR (CDCl₃) δ 174.6, 151.0, 141.1, 122.9, 116.9, 71.7, 56.8, 51.4, 45.0, 41.0, 38.7, 36.8, 36.6, 36.5, 35.7, 35.4, 33.9, 32.1, 26.5, 25.9, 25.8, 25.3, 21.8, 18.6, 18.4, 15.6, -4.6.

Synthesis of alcohol **13**. DIBAL-H (1 M/THF, 20 mL, 20 mmol) was added to a solution of the ester **12** (3.2 g, 6.5 mmol) in THF (30 mL). After 1 h, the reaction mixture was quenched with 10% HCl. The reaction mixture was extracted with EtOAc, then washed with brine and dried over MgSO₄. Purification by column chromatography (20% EtOAc/hexanes) yielded the product as a white powder (1.5 g, 50%). ¹H NMR (CDCl₃) δ 5.31 (br s, 1H), 3.62-3.53 (m, 3H), 2.38-2.29 (m, 2H), 2.22-2.15 (m, 2H), 2.10-1.89 (m, 2H), 1.80-1.58 (m, 6H), 1.54-1.08 (m, 12H), 0.96 (s, 3H), 0.93 (d, 3H, J = 8.0 Hz), 0.86 (s, 9H), 0.79 (s, 3H), 0.033 (s, 6H); ¹³C NMR (CDCl₃) δ 151.1, 141.1, 122.9, 117.0, 71.8, 63.5, 57.0, 45.0, 41.0, 38.7, 36.9, 36.5, 35.8, 35.4, 33.8, 32.1, 31.8, 29.3, 26.6, 25.9, 25.3, 21.8, 18.8, 18.4, 18.2, 15.6, -4.6.

Synthesis of mesylate **14**. MsCl (0.26 mL, 3.4 mmol) was added to a solution of the alcohol **13** (1.0 g, 2.2 mmol) in freshly distilled pyridine (11 mL). After 1 h, the reaction mixture was concentrated under vacuum. The crude product was dissolved in EtOAc and washed with 10% HCl, saturated NaHCO₃, brine, and dried over MgSO₄. The product (1.1 g, 91%) was isolated as a pale yellow powder and used without further purification. ¹H NMR (CDCl₃) δ 5.31 (br s, 1H), 4.22-4.16 (m, 2H), 3.59-3.52 (m, 1H), 2.98 (s, 3H), 2.35-2.29 (m, 2H), 2.19-1.96 (m, 3H), 1.81-1.57 (m, 6H), 1.53-1.47 (m, 4H), 1.44-1.07 (m, 8H), 0.95 (s, 3H), 0.94 (d, 3H, J = 6.6 Hz), 0.86 (s, 9H), 0.79 (s, 3H), 0.028 (s, 6H); ¹³C NMR (CDCl₃) δ 151.1, 141.2, 122.8, 116.8, 71.7, 70.6, 56.8, 45.0, 41.0, 37.3, 37.2, 36.8, 36.6, 35.8, 35.4, 33.5, 32.1, 31.3, 26.5, 25.9, 25.3, 21.8, 18.7, 18.4, 18.2, 15.6, -4.6.

Synthesis of *d*₇-14*d*-Zyme. A solution of *d*₇-2-bromopropane (0.43 mL, 4.6 mmol) in THF (5 mL) was added in portions to Mg° (0.11 g, 4.5 mmol) in a minimal amount of THF. After 30 min, Li₂CuCl₄ (0.1 M/THF, 0.90 mL, 0.090 mmol) was added, followed by a solution of the mesylate **14** (0.50 g, 0.91 mmol) in THF (9 mL). After 1 h, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product was purified by column chromatography (10% EtOAc/hexanes) and isolated as a white powder (0.32 g, 70%). ¹H NMR (CDCl₃) δ 5.33 (br s, 1H), 3.60-3.54 (m, 1H), 2.36-2.30 (m, 2H), 2.19-2.16 (m, 2H), 2.11-1.98 (m, 2H), 1.95-1.69 (m, 3H), 1.68-1.49 (m, 6H), 1.43-1.05 (m, 10H), 0.97 (s, 3H), 0.92 (d, 3H, J = 6.6 Hz), 0.88 (s, 9H), 0.80 (s, 3H), 0.044 (s, 6H); ¹³C NMR (CDCl₃) δ 151.1, 141.0, 123.0, 117.1, 71.8, 57.2, 44.9, 41.0, 39.2, 38.8, 36.9, 36.5, 36.1, 35.9, 35.5, 34.0, 32.1, 31.5, 26.6, 25.9, 25.3, 23.7, 22.6, 21.8, 18.8, 18.4, 18.2, 15.6, 14.1, -4.6.

TBAF (1 M/THF, 1.3 mL, 1.3 mmol) was added to a solution of the d_7 -TBS-dHLan (0.32 g, 0.63 mmol) in THF (3 mL). After overnight, the reaction mixture was diluted with EtOAc, washed with brine, and dried over MgSO₄. The product (0.18 g, 72%) was isolated as a white powder after purification by column chromatography (20% EtOAc/hexanes). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.33 (br s, 1H), 3.64-3.56 (m, 1H), 2.36-2.30 (m, 2H), 2.18-2.10 (m, 2H), 2.09-1.97 (m, 3H), 1.86-1.80 (m, 2H), 1.67-1.30 (m, 11H), 1.30-1.01 (m, 6H), 0.97 (s, 3H), 0.91 (d, 3H, J = 6.4 Hz), 0.79 (s, 3H); ¹³C NMR (CDCl₃) δ 151.0, 140.8, 123.0, 117.4, 70.9, 57.2, 45.0, 40.9, 39.2, 38.3, 36.9, 36.5, 36.1, 35.9, 35.3, 34.0, 31.6, 26.5, 25.2, 23.6, 21.8, 18.8, 18.3, 15.6.

Synthesis of iodide **15**. Iodine (1.3 g, 5.1 mmol) was added to a solution of the alcohol **13** (2.0 g, 4.3 mmol), imidazole (0.6 g, 8.8 mmol), and PPh₃ (1.4 g, 5.3 mmol) in CH₂Cl₂ (20 mL). After 30 min, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The product was isolated as a white sticky powder (2.4 g, 94%) and used without further purification. ¹H NMR (CDCl₃) δ 5.32 (br s, 1H), 3.57-3.54 (m, 1H), 3.20-3.10 (m, 2H), 2.37-2.31 (m, 2H), 2.22-2.14 (m, 2H), 2.08-2.04 (m, 2H), 1.98 (dd, 1H, J = 4.3, 12.7 Hz), 1.91-1.86 (m, 2H), 1.79-1.70 (m, 2H), 1.67-1.61 (m, 2H), 1.58-1.47 (m, 4H), 1.46-1.34 (m, 4H), 1.22-1.08 (m, 2H), 0.96 (s, 3H), 0.93 (d, 3H, J = 6.5 Hz), 0.87 (s, 9H), 0.79 (s, 3H), 0.035 (s, 6H); ¹³C NMR (CDCl₃) δ 151.1, 141.2, 122.9, 117.0, 71.8, 56.9, 45.1, 41.1, 38.8, 36.9, 36.8, 36.6, 35.9, 35.5, 33.4, 32.2, 30.3, 26.6, 25.9, 25.4, 21.9, 18.9, 18.5, 15.7, 7.9, -4.5.

Synthesis of 16. PPh₃ (1.0 g, 3.8 mmol) was added to a solution of the iodide 15 (1.7 g, 3.0 mmol) and iPr₂EtN (0.80 mL, 4.6 mmol) in anhydrous toluene (15 mL). The reaction mixture was heated to 100 °C. After allowing to react overnight, the reaction mixture was cooled and concentrated. The product (2.5 g) was purified by column chromatography (10% MeOH/CH₂Cl₂) and isolated in 99% yield.

Synthesis of d_6 -14d-Zym. BuLi (2.5 M/hexanes, 1.0 mL, 2.5 mmol) was added to a solution of 16 (1.4 g, 1.6 mmol) in THF (8 mL) at -78 °C. After 20 min, d_6 -acetone (0.24 mL, 3.2 mmol) and the reaction was allowed to warm to room temperature. After 3 h, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product was deprotected without purification.

TBAF (1 M/THF, 3.3 mL, 3.3 mmol) was added to a solution of the crude d_6 -TBS-14d-Zym (1.6 mmol theoretical) in THF (8 mL). After overnight, the reaction was diluted with EtOAc, washed with brine, and dried over MgSO₄. Purification by column chromatography (20 to 30% EtOAc/hexanes) yielded the product as a white foam (0.31 g, 49% two steps). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.34 (br s, 1H), 5.09 (t, 1H, J = 7.1 Hz), 3.64-3.58 (m, 1H), 2.38-2.31 (m, 2H), 2.19-2.11 (m, 2H), 2.09-1.98 (m, 4H), 1.89-1.81 (m, 2H), 1.68-1.30 (m, 12H), 1.28-1.08 (m, 2H), 0.97 (s, 3H), 0.94 (d, 3H, J = 6.4 Hz), 0.80 (s, 3H); ¹³C NMR (CDCl₃) δ 151.0, 140.8, 125.1, 123.0, 117.4, 71.0, 57.1, 45.0, 40.9, 38.3, 36.9, 36.5, 36.0, 35.8, 35.3, 33.8, 31.7, 26.5, 25.2, 24.6, 21.8, 18.7, 18.3, 15.6.

Scheme S3. Synthesis of d_6 -Zym and d_7 -Zyme.

Synthesis of **17**. TBSCl (1.0 g, 6.6 mmol) and imidazole (0.70 g, 10 mmol) were added to a solution of **11** in DMF (24 mL). After overnight, the reaction mixture was diluted with hexanes/EtOAc (1:1), washed with H₂O and brine, then dried over MgSO₄. The product was purified by column chromatography (10% EtOAc/hexanes) and isolated as a yellow powder (2.4 g, 100 %). ¹H NMR (CDCl₃) δ 6.85 (dd, 1H, J = 9.0, 15.6 Hz), 5.77 (d, 1H, J = 15.6 Hz), 5.28 (br s, 1H), 3.70 (s, 3H), 3.59-3.52 (m, 1H), 2.49-2.43 (m, 1H), 2.35-2.24 (m, 1H), 2.21-2.15 (m, 2H), 2.07-1.95 (m, 3H), 1.80-1.71 (m, 2H), 1.66-1.58 (m, 2H), 1.53-1.17 (m, 8H), 1.09 (d, 3H, J = 6.6 Hz), 0.96 (s, 3H), 0.86 (s, 9H), 0.82 (s, 3H), 0.032 (s, 6H); ¹³C NMR (CDCl₃) δ 167.4, 154.7, 150.6, 141.2, 122.8, 118.7, 117.0, 71.7, 55.8, 51.3, 45.2, 41.0, 38.7, 38.5, 36.9, 36.6, 36.1, 35.4, 32.1, 26.5, 25.9, 25.6, 25.2, 21.8, 19.2, 18.4, 18.2, 15.7, -4.6.

Synthesis of ester 18. Raney Nickel (~1 mL) was added to a solution of 17 (2.4 g, 4.9 mmol) in THF (50 mL). The reaction mixture was sparged with H₂ for 20 min, then left under an atmosphere of H₂. After 8 h, the reaction mixture was filtered through Celite and concentrated. Caution: the catalyst should not be allowed to go dry. The product (2.0 g, 80%) was isolated as a white powder and was used without purification. ¹H NMR (CDCl₃) δ 3.64 (s, 3H), 3.58-3.52 (m, 1H), 2.37-2.30 (m, 2H), 2.25-2.15 (m, 2H), 2.08-1.99 (m, 2H), 1.95-1.75 (m, 4H), 1.70-1.57 (m, 4H), 1.55-1.07

(m, 12H), 0.91 (s, 3H), 0.89 (d, 3H, J = 6.6 Hz), 0.86 (s, 9H), 0.58 (s, 3H), 0.029 (s, 6H); ¹³C NMR (CDCl₃) δ 174.7, 135.2, 127.9, 72.0, 54.4, 51.8, 51.4, 42.1, 40.8, 38.8, 36.9, 35.8, 35.7, 35.3, 33.9, 32.0, 31.0, 28.6, 27.2, 25.9, 25.5, 23.7, 22.7, 18.2, 17.8, 11.1, -4.6.

Synthesis of alcohol **19**. DIBAL-H (1 M/THF, 12 mL, 12 mmol) was added to a solution of **18** (2.0 g, 3.9 mmol) in THF (20 mL). After 30 min, the reaction was quenched with 10% HCl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product (1.8 g, 96%) was isolated as a white powder and pure enough for the next reaction. ¹H NMR (CDCl₃) δ 3.62-3.52 (m, 3H), 2.36-2.13 (m, 2H), 2.08-2.00 (m, 2H), 1.97-1.74 (m, 3H), 1.70-1.54 (m, 4H), 1.49-1.22 (m, 12H), 1.19-1.03 (m, 4H), 0.92 (s, 3H), 0.92 (d, 3H, J = 6.6 Hz), 0.86 (s, 9H), 0.58 (s, 3H), 0.032 (s, 6H); ¹³C NMR (CDCl₃) δ 135.2, 127.9, 72.0, 63.5, 54.6, 51.8, 42.1, 40.9, 38.8, 36.9, 36.0, 35.7, 35.3, 32.1, 31.7, 29.4, 28.7, 27.2, 25.7, 25.5, 23.7, 22.7, 18.8, 18.4, 17.8, 11.1, -4.6.

Synthesis of mesylate **20**. MsCl (0.12 mL, 1.6 mmol) was added to a solution of the alcohol **19** (0.47 g, 0.99 mmol) in freshly distilled pyridine (5 mL). After 1 h, the reaction mixture was concentrated under vacuum. The crude product was dissolved in EtOAc and washed with saturated NH₄Cl, brine, and dried over MgSO₄. The product (0.49 g, 89%) was isolated as a white powder and used without further purification. ¹H NMR (CDCl₃) δ 4.18-4.17 (m, 2H), 3.60-3.46 (m, 1H), 2.97 (s, 3H), 2.34-2.18 (m, 2H), 2.17-2.02 (m, 2H), 2.01-1.88 (m, 2H), 1.84-1.76 (m, 3H), 1.75-1.57 (m, 5H), 1.57-1.07 (m, 12H), 0.91 (s, 3H), 0.91 (d, 3H, J = 6.6 Hz), 0.86 (s, 9H), 0.58 (s, 3H), 0.023 (s, 6H); ¹³C NMR (CDCl₃) δ 135.2, 127.5, 72.0, 70.6, 54.5, 51.8, 42.1, 40.8, 38.7, 37.3, 36.9, 35.7, 35.3, 32.0, 31.4, 28.7, 27.1, 25.9, 25.5, 23.7, 22.7, 18.5, 18.2, 17.8, 11.1, -4.6.

Synthesis of d_7 -Zyme. A solution of d_7 -2-bromopropane (0.40 mL, 4.3 mmol) in THF (4 mL) was added in portions to Mg° (0.10 g, 4.1 mmol) in a minimal amount of THF. After 30 min, Li₂CuCl₄ (0.1 M/THF, 0.90 mL, 0.090 mmol) was added, followed by a solution of the mesylate **20** (0.49 g, 0.89 mmol) in THF (9 mL). After 30 min, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product was isolated as a yellow oil (0.40 g, 89%).

TBAF (1 M/THF, 1.6 mL, 1.6 mmol) was added to a solution of the d_7 -TBS-Zyme (0.40 g, 0.79 mmol) in THF (4 mL). After overnight, the reaction mixture was diluted with EtOAc, washed with brine, and dried over MgSO₄. The product (0.30 g, 97%) was isolated as a white powder after

purification by column chromatography (20% EtOAc/hexanes). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 3.63-3.55 (m, 1H), 2.09-1.99 (m, 2H), 1.98-1.93 (m, 3H), 1.88-1.80 (m, 2H), 1.76-1.71 (apparent dt, 1H, J = 3.5, 13.0 Hz), 1.64-1.60 (m, 1H), 1.57-1.44 (m, 5H), 1.40-1.05 (m, 15H), 0.93 (s, 3H), 0.90 (d, 3H, J = 6.5 Hz), 0.59 (s, 3H); ¹³C NMR (CDCl₃) δ 134.9, 128.2, 71.2, 54.8, 51.9, 42.0, 40.7, 38.3, 36.9, 36.2, 36.1, 35.7, 35.1, 31.6, 28.7, 27.1, 25.4, 23.8, 23.7, 22.8, 18.7, 17.8, 11.1.

Synthesis of aldehyde **21**. Dess-Martin periodinane (1.5 g, 3.5 mmol) was added to a solution of the alcohol **19** (1.3 g, 2.8 mmol) in CH₂Cl₂ (20 mL). After 1 h, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The product was purified by column chromatography (10% EtOAc/hexanes) and isolated as a white powder (0.84 g, 65%). ¹H NMR (CDCl₃) δ 9.74 (t, 1H, J = 1.9 Hz), 3.58-3.52 (m, 1H), 2.48-2.29 (m, 2H), 2.24-2.00 (m, 3H), 1.95-1.91 (m, 3H), 1.81-1.79 (m, 2H), 1.70-1.65 (m, 2H), 1.61-1.06 (m, 14H), 0.91 (s, 3H), 0.91 (d, 3H, J = 6.6 Hz), 0.86 (s, 9H), 0.58 (s, 3H), 0.025 (s, 6H); ¹³C NMR (CDCl₃) δ 203.1, 135.2, 127.9, 72.0, 54.5, 51.8, 42.1, 40.9, 40.8, 38.8, 36.9, 35.7, 35.6, 35.3, 32.1, 28.6, 27.9, 27.1, 25.8, 25.5, 23.7, 22.7, 18.4, 18.2, 17.8, 11.1, -4.6.

Synthesis of d_7 -isopropyltriphenylphosphonium bromide. d_7 -2-Bromopropane (0.50 mL, 5.3 mmol) was added to PPh₃ (1.4 g, 5.3 mmol) in a pressure tube. The tube was sealed and heated at 150 °C. After overnight, the tube was cooled and the reaction mixture concentrated. The product was dried under vacuum and isolated as white powder (1.8 g, 86%). ¹H NMR (CDCl₃) δ 7.95-7.90 (m, H), 7.74-7.67 (m, 3H), 7.67-7.62 (m, 6H).

Synthesis of d_6 -Zym. BuLi (2.5 M/hexanes, 1.0 mL, 2.5 mmol) was added to a solution of the d_7 isopropyltriphenylphosphonium bromide (1.1 g, 2.8 mmol) in THF (12 mL) at 0 °C. After 30 min,
a solution of the aldehyde **21** (0.60 g, 1.3 mmol) in THF (6 mL) was added. After an additional 2
h, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer
was washed with brine and dried over MgSO₄. The crude product was immediately deprotected.

TBAF (1 M/THF, 2.5 mL, 2.5 mmol) was added to a solution of the TBS- d_6 -Zym (1.3 mmol theoretical) in THF (6 mL). After overnight, the reaction mixture was diluted with EtOAc, washed with brine, and dried over MgSO₄. The product (0.10 g, 20% two steps) was isolated as a white powder after purification by column chromatography (20% EtOAc/hexanes). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.07 (t, 1H, J

= 7.1 Hz), 3.63-3.56 (m, 1H), 2.09-1.93 (m, 7H), 1.90-1.80 (m, 3H), 1.76-1.71 (apparent dt, 1H, J = 3.5, 13.0 Hz), 1.64-1.46 (m, 5H), 1.43-1.31 (m, 7H), 1.28-0.96 (m, 4H), 0.93 (s, 3H), 0.92 (d, 3H, J = 5.3 Hz), 0.59 (s, 3H); ¹³C NMR (CDCl₃) δ 134.9, 128.2, 125.2, 71.2, 54.7, 51.8, 42.1, 40.7, 38.3, 36.9, 36.0, 35.7, 35.1, 31.6, 28.7, 27.1, 25.4, 24.7, 23.7, 22.7, 18.6, 17.8, 11.2.

Scheme S4. Synthesis of d_6 -DHL and d_7 -Lath.

Synthesis of 22. The selective hydrogenation of 10 only worked on the free alcohol, presumably due to sterics of the TBS-protecting group. TBAF (1 M/THF, 7.0 mL, 7.0 mmol) was added to a solution of 10 (1.8 g, 3.5 mmol) in THF (18 mL). After overnight, the reaction mixture was diluted with EtOAc, washed with brine, and dried over MgSO₄. The product (0.97 g, 72%) was isolated as a white foam after purification by column chromatography (30% EtOAc/hexanes).

Raney Nickel (~1 mL) was added to a solution of the previous product (1.7 g, 4.5 mmol) in EtOAc/THF (20 mL, 1:1). The reaction mixture was sparged with H_2 for 10 min, then left under an atmosphere of H_2 . After 3 h, the reaction mixture was filtered through Celite and concentrated. Caution: the catalyst should not be allowed to go dry. The product (1.9 g, 100%) was isolated as a

white powder and was used without purification. ¹H NMR (CDCl₃) δ 5.13 (br s, 1H), 3.63 (s, 3H), 3.61-3.51 (m, 1H), 2.38-2.28 (m, 1H), 2.24-2.14 (m, 1H), 2.00-1.94 (apparent dt, 1H, J = 3.6, 12.5 Hz), 1.91-1.85 (m, 1H), 1.81-1.71 (m, 6H), 1.67-1.48 (m, 6H), 1.45-1.04 (m, 10H), 0.90 (d, 3H, J = 6.3 Hz), 0.76 (s, 3H), 0.50 (s, 3H); ¹³C NMR (CDCl₃) δ 174.7, 139.3, 117.6, 70.9, 55.7, 54.9, 51.5, 49.3, 43.3, 40.2, 39.5, 37.9, 37.1, 35.7, 34.1, 31.4, 31.0, 30.9, 29.6, 27.8, 22.9, 21.5, 18.4, 13.0, 11.8.

TBSCl (0.82 g, 5.4 mmol) and imidazole (0.62 g, 9.1 mmol) were added to a solution of the previous product (1.8 g, 4.5 mmol) in THF/DMF (20 mL, 1:1). After overnight, the reaction mixture was diluted with hexanes/EtOAc (1:1), washed with H₂O and brine, then dried over MgSO₄. The product was purified by column chromatography (10% EtOAc/hexanes) and isolated as a white powder (1.8 g, 80%). ¹H NMR (CDCl₃) δ 5.12 (br s, 1H), 3.63 (s, 3H), 3.56-3.48 (m, 1H), 2.38-2.28 (m, 1H), 2.24-2.13 (m, 1H), 2.00-1.94 (apparent dt, 1H, J = 3.5, 12.4 Hz), 1.91-1.84 (m, 1H), 1.78-1.72 (m, 5H), 1.62-1.48 (m, 6H), 1.41-1.00 (m, 10H), 0.90 (d, 3H, J = 6.2 Hz), 0.85 (s, 9H), 0.75 (s, 3H), 0.49 (s, 3H), 0.018 (s, 6H); ¹³C NMR (CDCl₃) δ 174.6, 139.2, 117.7, 71.8, 56.5, 55.7, 54.9, 51.6, 49.4, 43.3, 40.3, 39.5, 38.4, 37.3, 35.7, 34.2, 31.8, 31.0, 30.9, 29.6, 27.8, 25.9, 22.9, 21.4, 18.4, 18.2, 13.0, 11.8, -4.6.

Synthesis of alcohol **23**. DIBAL-H (1 M/toluene, 11 mL, 11 mmol) was added to a solution of the ester **22** (1.8 g, 3.6 mmol) in THF (18 mL) at 0 °C. After 1 h, the reaction was quenched with 10% HCl and extracted with EtOAc. The organics were washed with brine and dried over MgSO₄. After purification by column chromatography (20% EtOAc/hexanes), the product was isolated as a white powder (1.6 g, 92%). ¹H NMR (CDCl₃) δ 5.13 (br s, 1H), 3.59 (dt, 2H, J = 1.8, 6.8 Hz), 3.55-3.49 (m, 1H), 2.02-1.97 (m, 1H), 1.94-1.81 (m, 1H), 1.77-1.50 (m, 9H), 1.48-1.00 (m, 12H), 0.92 (d, 3H, J = 6.4 Hz), 0.86 (s, 9H), 0.76 (s, 3H), 0.51 (s, 3H), 0.027 (s, 6H); ¹³C NMR (CDCl₃) δ 139.4, 117.6, 71.8, 63.5, 55.9, 55.0, 49.5, 43.3, 40.3, 39.5, 38.4, 37.3, 35.9, 34.2, 31.8, 31.7, 29.7, 29.4, 27.9, 25.9, 22.9, 21.5, 18.8, 18.2, 13.0, 11.8, -4.6.

Synthesis of mesylate 24. MsCl (0.12 mL, 1.6 mmol) was added to a solution of the alcohol 23 (0.50 g, 1.1 mmol) in freshly distilled pyridine (5 mL). After 30 min, the reaction mixture was concentrated under vacuum. The crude product was dissolved in EtOAc and washed with 10% HCl, saturated NaHCO₃, brine, and dried over MgSO₄. The product (0.43 g, 74%) was isolated as a white powder and used without further purification. ¹H NMR (CDCl₃) δ 5.11 (br s, 1H), 4.16 (dt,

2H, J = 1.9, 6.5 Hz), 3.55-3.47 (m, 1H), 2.96 (s, 3H), 1.99-1.94 (m, 1H), 1.89-1.63 (m, 6H), 1.61-1.28 (m, 12H), 1.24-0.99 (m, 6H), 0.90 (d, 3H, J = 6.4 Hz), 0.84 (s, 9H), 0.74 (s, 3H), 0.49 (s, 3H), 0.0088 (s, 6H); ¹³C NMR (CDCl₃) δ 139.2, 117.7, 71.8, 70.6, 55.7, 54.9, 49.4, 43.3, 40.3, 39.5, 38.4, 37.3, 35.7, 34.1, 31.8, 31.4, 29.6, 27.9, 25.9, 22.9, 21.4, 18.6, 18.2, 13.0, 11.8, -4.6.

Synthesis of d_7 -*Lath*. A solution of d_7 -2-bromopropane (0.40 mL, 4.3 mmol) in THF (4 mL) was added in portions to Mg° (0.10 g, 4.1 mmol) in a minimal amount of THF. After 20 min, Li₂CuCl₄ (0.1 M/THF, 0.80 mL, 0.080 mmol) was added, followed by a solution of the mesylate **24** (0.43 g, 0.78 mmol) in THF (8 mL). After 2 h, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product was purified by column chromatography (10% EtOAc/hexanes) and isolated as a white powder (0.27 g, 69%). ¹H NMR (CDCl₃) δ 5.13 (br s, 1H), 3.58-3.48 (m, 1H), 2.03-1.98 (m, 1H), 1.90-1.71 (m, 6H), 1.64-1.27 (m, 12H), 1.27-0.98 (m, 8H), 0.90 (d, 3H, J = 6.5 Hz), 0.87 (s, 9H), 0.77 (s, 3H), 0.51 (s, 3H), 0.035 (s, 6H); ¹³C NMR (CDCl₃) δ 139.5, 117.5, 71.9, 56.1, 55.0, 49.5, 43.3, 40.4, 39.6, 39.2, 38.4, 37.3, 36.2, 36.1, 34.2, 31.8, 29.7, 27.9, 25.9, 23.8, 22.9, 21.5, 18.8, 18.2, 13.0, 11.8, -4.6.

TBAF (1 M/THF, 1.1 mL, 1.1 mmol) was added to a solution of the d_7 -TBS-Lath (0.27 g, 0.53 mmol) in THF (3 mL). After overnight, the reaction mixture was diluted with EtOAc, washed with brine, and dried over MgSO₄. The product (0.18 g, 86%) was isolated as a white powder after purification by column chromatography (20% EtOAc/hexanes). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.13 (br s, 1H), 3.62-3.52 (m, 1H), 2.03-1.97 (apparent dt, 1H, J = 3.3, 12.4 Hz), 1.90-1.65 (m, 7H), 1.62-1.44 (m, 6H), 1.40-1.30 (m, 6H), 1.27-0.95 (m, 8H), 0.89 (d, 3H, J = 6.5 Hz), 0.77 (s, 3H), 0.51 (s, 3H); ¹³C NMR (CDCl₃) δ 139.6, 117.4, 71.0, 56.1, 55.0, 49.4, 43.3, 40.2, 39.5, 39.2, 37.9, 37.1, 36.2, 36.1, 34.1, 31.4, 29.6, 27.9, 23.8, 22.9, 21.5, 18.8, 13.0, 11.8.

Synthesis of iodide 25. Iodine (1.0 g, 3.9 mmol) was added to a solution of the alcohol 23 (1.6 g, 3.3 mmol), imidazole (0.45 g, 6.6 mmol), and PPh₃ (1.0 g, 3.8 mmol) in CH₂Cl₂ (16 mL). After 1 h, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The product was isolated as a white powder (1.8 g, 94%) after purification by column chromatography (10% EtOAc/hexanes). ¹H NMR (CDCl₃) δ 5.13 (br s, 1H), 3.57-3.47 (m, 1H), 3.20-3.06 (m, 2H), 2.04-1.95 (m, 1H), 1.90-1.84 (m, 2H), 1.81-1.65 (m, 4H), 1.64-1.06 (m, 18H), 0.91 (d, 3H, J = 6.5 Hz),

0.86 (s, 9H), 0.76 (s, 3H), 0.50 (s, 3H), 0.027 (s, 6H); ¹³C NMR (CDCl₃) δ 139.3, 117.6, 71.8, 55.8, 55.0, 49.4, 43.4, 40.3, 39.5, 38.4, 37.3, 36.8, 35.4, 34.2, 31.8, 30.3, 29.7, 27.9, 25.9, 22.9, 21.5, 18.9, 18.2, 13.1, 11.8, 7.8, -4.6.

Synthesis of **26**. PPh₃ (1.0 g, 3.8 mmol) was added to a solution of the iodide **25** (1.8 g, 3.1 mmol) and iPr₂EtN (1.6 mL, 9.2 mmol) in anhydrous toluene (15 mL). The reaction mixture was heated to 100 °C. After allowing to react overnight, the reaction mixture was cooled and concentrated. The product (2.2 g) was purified by column chromatography (5% MeOH/CH₂Cl₂) and isolated in 84% yield. ¹H NMR (CDCl₃) δ 7.80-7.73 (m, 9H), 7.70-7.64 (m, 6H), 5.06 (br s, 1H), 3.60-3.44 (m, 3H), 1.92-1.85 (m, 1H), 1.80-1.60 (m, 6H), 1.60-0.92 (m, 18H), 0.82 (s, 9H), 0.75 (d, 3H, J = 5.7 Hz), 0.70 (s, 3H), 0.41 (s, 3H), -0.011 (s, 6H).

Synthesis of d_6 -*DHL*. BuLi (2.5 M/hexanes, 0.50 mL, 1.3 mmol) was added to a solution of **26** (0.50 g, 0.59 mmol) in THF (3 mL). After 30 min, d_6 -acetone (0.10 mL, 1.4 mmol) was added. After overnight, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product (0.20 g, 66%) was isolated as a white powder after purification by column chromatography (10% EtOAc/hexanes). ¹H NMR (CDCl₃) δ 5.13 (br s, 1H), 5.07 (t, 1H, J = 7.1 Hz), 3.58-3.48 (m, 1H), 2.02-1.98 (m, 2H), 1.89-1.72 (m, 5H), 1.65-1.31 (m, 12H), 1.27-0.97 (m, 6H), 0.92 (d, 3H, J = 6.5 Hz), 0.87 (s, 9H), 0.77 (s, 3H), 0.51 (s, 3H), 0.036 (s, 6H); ¹³C NMR (CDCl₃) δ 139.5, 125.2, 117.5, 71.9, 56.0, 55.0, 49.5, 43.4, 40.3, 39.6, 38.4, 37.3, 36.0, 35.9, 34.2, 31.8, 29.7, 27.9, 25.9, 24.7, 22.9, 21.5, 18.7, 18.2, 13.1, 11.8, -4.6.

TBAF (1 M/THF, 0.80 mL, 0.80 mmol) was added to a solution of d_6 -TBS-DHL (0.20 g, 0.40 mmol) in THF (2 mL). After overnight, the reaction was diluted with EtOAc, washed with brine, and dried over MgSO₄. Purification by column chromatography (20% EtOAc/hexanes) yielded the product as a white powder (66 mg, 44%). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.13 (br s, 1H), 5.06 (t, 1H, J = 7.0 Hz), 3.60-3.52 (m, 1H), 2.01-1.98 (m, 2H), 1.86-1.67 (m, 9H), 1.65-1.44 (m, 3H), 1.42-1.31 (m, 5H), 1.28-1.15 (m, 5H), 1.08-0.99 (m, 2H), 0.91 (d, 3H, J = 6.4 Hz), 0.76 (s, 3H), 0.50 (s, 3H); ¹³C NMR (CDCl₃) δ 139.5, 130.7, 125.1, 117.4, 70.9, 56.0, 55.0, 49.4, 43.3, 40.2, 39.5, 37.9, 37.1, 36.0, 35.9, 34.1, 31.4, 29.6, 27.8, 24.7, 22.9, 21.5, 18.7, 13.0, 11.8.

S24

Scheme S5. Synthesis of d_6 -7-DHD.

Synthesis of aldehyde **27**. Ozone was bubbled through a solution of **6** (11 g, 0.017 mol) in CH₂Cl₂ (130 mL) and MeOH (40 mL) at 0 °C. After 1 h, PPh₃ (4.9 g, 0.019 mol) was added and the reaction allowed to stir at room temperature for 1 h. The reaction mixture was concentrated and purified by column chromatography (20% EtOAc/hexanes). The product (7.5 g, 75%) was isolated as a yellow foam. ¹H NMR (CDCl₃) δ 9.52 (d, 1H, J = 3.5 Hz), 8.13-8.06 (m, 2H), 7.68-7.65 (m, 2H), 6.44 (d, 1H, J = 8.2 Hz), 6.20 (d, 1H, J = 8.2 Hz), 3.98 (dd, 1H, J = 7.4, 11.5 Hz), 3.85 (dd, 1H, J = 4.6, 14.1 Hz), 3.61-3.50 (m, 1H), 2.35-2.27 (m, 1H), 2.10-2.03 (m, 2H), 1.96-1.90 (m, 3H), 1.78-1.70 (m, 2H), 1.63-1.58 (m, 4H), 1.49-1.34 (m, 4H), 1.10 (d, 3H, J = 3.8 Hz), 0.99 (s, 3H), 0.84 (s, 3H), 0.82 (s, 9H), 0.05 (s, 3H), -0.04 (s, 3H); ¹³C NMR (CDCl₃) δ 204.5, 161.8, 159.6, 138.8, 132.7, 132.5, 130.4, 130.1, 128.1, 127.0, 126.5, 68.0, 67.3, 67.0, 51.7, 50.6, 48.9, 48.4, 44.7, 40.4, 39.1, 35.5, 34.6, 30.4, 26.5, 25.9, 24.3, 22.2, 18.5, 18.0, 13.5, 13.4, -4.4, -5.0.

Synthesis of ester **28**. Methyl(triphenylphosphoranylidene)acetate (1.1 g, 3.3 mmol) was added to a solution of the aldehyde **9** (1.3 g, 2.2 mmol) in CH₂Cl₂ (11 mL). The reaction mixture was allowed to stir overnight, then concentrated. After purification by column chromatography (20% EtOAc/hexanes), the product was isolated as a yellow powder (1.3 g, 90%). ¹H NMR (CDCl₃) δ 8.10-8.02 (m, 2H), 7.64-7.61 (m, 2H), 6.76 (dd, 1H, J = 9.0, 15.6 Hz), 6.59 (d, 1H, J = 8.2 Hz), 6.17 (d, 1H, J = 8.3 Hz), 5.68 (d, 1H, J = 15.6 Hz), 3.91 (dd, 1H, J = 7.1, 11.7 Hz), 3.82 (dd, 1H, J = 4.6, 14.0 Hz), 3.64 (s, 3H), 3.58-3.47 (m, 4H), 1.83-1.73 (m, 1H), 1.61-1.55 (m, 4H), 1.48-1.25 (m, 6H), 1.03 (d, 3H, J = 6.5 Hz), 0.95 (s, 3H), 0.81 (s, 9H), 0.79 (s, 3H), 0.02 (s, 3H), -0.07 (s, 3H); ¹³C NMR (CDCl₃) δ 167.1, 161.7, 159.5, 154.2, 138.6, 132.6, 132.5, 130.4, 130.1, 128.3,

126.9, 126.4, 118.9, 68.0, 67.3, 67.0, 55.5, 51.3, 50.5, 48.6, 44.4, 40.3, 39.2, 35.5, 34.6, 30.4, 27.6, 25.8, 24.3, 21.8, 19.2, 18.5, 18.1, 14.1, 13.3, -4.4, -5.0.

Synthesis of **29**. Raney Nickel (~1 mL) was added to a solution of **28** (1.3 g, 2.0 mmol) in THF (20 mL). The reaction mixture was sparged with H₂ for 20 min, then left under an atmosphere of H₂. After 30 min, the reaction mixture was filtered through Celite and concentrated. Caution: the catalyst should not be allowed to go dry. The product (1.2 g, 95%) was isolated as a yellow powder and was used without purification. ¹H NMR (CDCl₃) δ 8.16-8.05 (m, 2H), 7.69-7.62 (m, 2H), 6.61 (d, 1H, J = 8.2 Hz), 6.22 (d, 1H, J = 8.3 Hz), 3.93-3.81 (m, 2H), 3.62 (s, 3H), 3.59-3.51 (m, 1H), 2.38-2.28 (m, 1H), 2.25-2.14 (m, 1H), 2.09-1.93 (m, 4H), 1.82-1.72 (m, 2H), 1.61-1.50 (m, 4H), 1.40-1.33 (m, 8H), 0.98 (s, 3H), 0.90 (d, 3H, J = 6.1 Hz), 0.82 (s, 9H), 0.79 (s, 3H), 0.05 (s, 3H), -0.04 (s, 3H); ¹³C NMR (CDCl₃) δ 174.5, 161.8, 159.5, 138.5, 132.6, 132.5, 130.5, 130.2, 128.5, 126.9, 126.5, 68.3, 67.4, 67.0, 56.2, 5.4, 50.5, 48.8, 44.3, 40.3, 39.3, 35.5, 34.6, 30.7, 30.6, 30.4, 27.4, 25.9, 24.4, 21.8, 18.5, 18.1, 18.0, 13.1, -4.4, -5.0.

Synthesis of alcohol **30**. LiAlH₄ (1 M/THF, 15 mL, 15 mmol) was added to a solution of **29** (1.2 g, 1.9 mmol) in THF (10 mL), then heated to reflux. After 1 h, the reaction was cooled and quenched with 10% HCl. The reaction mixture was extracted with EtOAc, washed with saturated NaHCO₃ and brine, and dried over MgSO₄. The product was purified by column chromatography (20% EtOAc/hexanes) and isolated as a white powder (0.53 g, 61%). ¹H NMR (CDCl₃) δ 5.53 (d, 1H, J = 5.5 Hz), 5.37-5.34 (m, 1H), 3.61-3.52 (m, 3H), 2.31 (d, 2H, J = 7.6 Hz), 2.08-2.04 (m, 1H), 1.93-1.80 (m, 4H), 1.72-1.53 (m, 6H), 1.49-1.19 (m, 10H), 0.94 (d, 3H, J = 6.0 Hz), 0.91 (s, 3H), 0.87 (s, 9H), 0.60 (s, 3H), 0.05 (s, 6H); ¹³C NMR (CDCl₃) δ 141.0, 140.7, 119.1, 116.3, 71.2, 63.5, 55.7, 54.4, 46.2, 42.9, 41.3, 39.2, 38.5, 37.0, 35.9, 32.4, 31.7, 29.3, 28.1, 25.9, 23.0, 21.1, 18.8, 18.2, 16.3, 11.8, -4.6.

Synthesis of iodide **31**. Iodine (0.40 g, 1.6 mmol) was added to a solution of the alcohol **30** (0.53 g, 1.1 mmol), imidazole (0.15 g, 2.2 mmol), and PPh₃ (0.40 g, 1.5 mmol) in CH₂Cl₂ (10 mL). After 30 min, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The product was isolated as a white powder (0.65 g, 100%) and used without further purification. ¹H NMR (CDCl₃) δ 5.52 (d, 1H, J = 3.3 Hz), 5.37-5.35 (m, 1H), 3.62-3.52 (m, 1H), 3.22-3.07 (m, 2H), 2.31 (d, 2H, J = 7.7 Hz), 2.07-2.03 (apparent dt, 1H, J = 4.1, 10.0 Hz), 1.93-1.81 (m, 5H), 1.75-1.66 (m, 4H), 1.58-1.13 (m, 10H), 0.93 (d, 3H, J = 6.5 Hz), 0.91 (s, 3H), 0.87 (s, 9H), 0.59

(s, 3H), 0.045 (s, 6H); ¹³C NMR (CDCl₃) δ 140.9, 140.7, 119.1, 116.4, 71.2, 55.5, 54.4, 46.2, 42.9, 41.3, 39.1, 38.5, 37.0, 36.8, 35.4, 32.4, 30.3, 28.1, 25.9, 23.0, 21.1, 18.8, 18.2, 16.3, 11.8, 7.8, -4.6.

Synthesis of **32**. PPh₃ (0.35 g, 1.3 mmol) was added to a solution of the iodide **31** (0.65 g, 1.1 mmol) and iPr₂EtN (0.60 mL, 3.4 mmol) in anhydrous toluene (6 mL). The reaction mixture was heated to 100 °C. After allowing to react overnight, the reaction mixture was cooled and concentrated. The product (0.94 g) was purified by column chromatography (5% MeOH/CH₂Cl₂) and isolated in 100% yield. ¹H NMR (CDCl₃) δ 7.74-7.67 (m, 9H), 7.65-7.58 (m, 6H), 5.42 (d, 1H, J = 5.5 Hz), 5.25-5.23 (m, 1H), 3.52-3.45 (m, 3H), 2.21 (d, 2H, J = 6.8 Hz), 1.90-1.79 (m, 3H), 1.82-1.64 (m, 6H), 1.58-1.38 (m, 5H), 1.26-1.00 (m, 6H), 0.79 (s, 3H), 0.78 (s, 9H), 0.72 (d, 3H, J = 5.7 Hz), 0.45 (s, 3H), -0.048 (s, 6H).

Synthesis of d_6 -7-*DHD*. BuLi (2.5 M/hexanes, 1.0 mL, 2.5 mmol) was added to a solution of **32** (1.0 g, 1.2 mmol) in THF (6 mL). After 30 min, d_6 -acetone (0.20 mL, 2.7 mmol) was added. After overnight, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product (0.25 g, 41%) was isolated as a white powder after purification by column chromatography (10% EtOAc/hexanes). ¹H NMR (CDCl₃) δ 5.53 (d, 1H, J = 5.6 Hz), 5.38-5.35 (m, 1H), 5.08 (t, 1H, J = 7.1 Hz), 3.63-3.53 (m, 1H), 2.31 (d, 2H, J = 7.7 Hz), 2.10-1.81 (m, 6H), 1.73-1.50 (m, 4H), 1.42-1.03 (m, 10H), 0.95 (d, 3H, J = 6.5 Hz), 0.92 (s, 3H), 0.88 (s, 9H), 0.60 (s, 3H), 0.055 (s, 6H); ¹³C NMR (CDCl₃) δ 141.1, 140.6, 125.1, 119.2, 116.3, 71.2, 55.8, 54.4, 46.3, 42.9, 41.3, 39.2, 38.5, 37.0, 36.0, 35.9, 32.4, 28.1, 25.9, 24.7, 23.0, 21.1, 18.7, 18.2, 16.3, 11.8, -4.6.

TBAF (1 M/THF, 2.0 mL, 2.0 mmol) was added to a solution of d_6 -TBS-DHD (0.25g, 0.50 mmol) in THF (2 mL). After overnight, the reaction was diluted with EtOAc, washed with brine, and dried over MgSO₄. Purification by column chromatography (20% EtOAc/hexanes) yielded the product as a white powder (0.17 g, 89%). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.54 (dd, 1H, J = 2.2, 5.5 Hz), 5.37-5.35 (m, 1H), 5.07 (t, 1H, J = 7.1 Hz), 3.63-3.57 (m, 1H), 2.44 (ddd, 1H, J = 2.6, 4.8, 14.4 Hz), 2.25 (t, 1H, J = 12.1 Hz), 2.08-2.01 (m, 1H), 2.00-1.89 (m, 2H), 1.88-1.78 (m, 6H), 1.71-1.65 (m, 2H), 1.58-1.08 (m, 10H), 0.94 (d, 3H, J = 6.6 Hz), 0.92 (s, 3H), 0.59 (s, 3H); ¹³C NMR (CDCl₃) δ 141.3, 139.7,

130.7, 125.1, 119.5, 116.2, 70.3, 55.7, 54.4, 46.2, 42.9, 40.7, 39.1, 38.3, 36.9, 36.0, 35.9, 31.9, 28.0, 24.7, 23.0, 21.0, 18.7, 16.2, 11.7.

Scheme S6. Synthesis of d_6 -8-DHD.

Synthesis of 33. Diethyl azodicarboxylate (2.3 M/toluene, 3.5 mL, 8.1 mmol) was added to a solution of the 7-dehydrocholenol **30** (1.2 g, 2.5 mmol) in benzene (13 mL), then heated to reflux. After 3 h, the reaction mixture was cooled and concentrated. The reaction resulted in a 3:1 mixture of isomers in favor of the desired product. The mixture was purified by column chromatography (hexanes:EtOAc, 1:1) to yield the product as a white powder (0.78 g, 48%). The isomers could be partially separated by column chromatography using toluene:EtOAc (1:1).

Synthesis of **34**. EtNH₂ (~6 mL) was condensed into a flask at -78 °C. A cooled solution of **33** (0.78 g, 1.2 mmol) in THF (6 mL) was added, followed by Li° (100 mg, 14 mmol). The reaction mixture turned blue upon completion. After 1 h, the reaction was quenched with saturated NH₄Cl and warmed to room temperature to dissipate the EtNH₂. The reaction was diluted with EtOAc and washed with additional saturated NH₄Cl, brine, and dried over MgSO₄. The product was purified by column chromatography (hexanes:EtOAc, 4:1) and isolated as a white powder (0.20 g, 35%). ¹H NMR (CDCl₃) δ 5.38 (br s, 1H), 3.59 (t, 2H, J = 6.4 Hz), 3.53-3.43 (m, 1H), 2.51 (br s, 2H), 2.32 (t, 1H, J = 13.0 Hz), 2.23-2.16 (m, 1H), 2.12-2.09 (m, 2H), 2.02-1.72 (m, 4H), 1.64-1.55 (m, 4H), 1.46-1.23 (m, 10H), 1.15 (s, 3H), 0.93 (d, 3H, J = 6.5 Hz), 0.86 (s, 9H), 0.63 (s, 3H), 0.03 (s, 6H); ¹³C NMR (CDCl₃) δ 139.7, 132.3, 126.2, 119.0, 72.2, 63.5, 54.5, 51.8, 42.7, 42.0, 37.4, 36.8, 36.0, 35.8, 32.4, 31.7, 29.4, 28.9, 28.8, 25.9, 22.9, 22.8, 22.2, 18.6, 18.2, 11.2, -4.7.

Synthesis of iodide **35**. Iodine (0.13 g, 0.51 mmol) was added to a solution of the alcohol **34** (0.20 g, 0.42 mmol), imidazole (0.060 g, 0.88 mmol), and PPh₃ (0.13 g, 0.50 mmol) in CH₂Cl₂ (5 mL). After 30 min, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The product was isolated as a yellow oil (0.20 g, 80%) and used without further purification. ¹H NMR (CDCl₃) δ 5.38 (br s, 1H), 3.55-3.44 (m, 1H), 3.20-3.10 (m, 2H), 2.51 (br s, 2H), 2.35-2.28 (m, 1H), 2.23-2.19 (m, 1H), 2.18-2.06 (m, 2H), 1.98-1.83 (m, 3H), 1.82-1.7 (m, 3H), 1.62-1.55 (m, 3H), 1.53-1.40 (m, 4H), 1.33-1.22 (m, 4H), 1.15 (s, 3H), 0.93 (d, 3H, J = 6.4 Hz), 0.87 (s, 9H), 0.63 (s, 3H), 0.032 (s, 6H); ¹³C NMR (CDCl₃) δ 139.6, 132.3, 126.2, 119.0, 72.2, 54.4, 51.8, 42.7, 42.0, 37.4, 36.7, 35.7, 35.4, 32.4, 30.3, 28.9, 28.7, 25.9, 22.9, 22.8, 22.2, 18.7, 18.2, 11.2, 7.8, -4.6.

Synthesis of **36**. PPh₃ (0.11 g, 0.42 mmol) was added to a solution of the iodide **35** (0.20 g, 0.34 mmol) and iPr₂EtN (0.20 mL, 1.1 mmol) in anhydrous toluene (2 mL). The reaction mixture was heated to 100 °C. After allowing to react overnight, the reaction mixture was cooled and concentrated. The product (0.0.22 g) was purified by column chromatography (5% MeOH/CH₂Cl₂) and isolated in 74% yield. ¹H NMR (CDCl₃) δ 7.83-7.76 (m, 9H), 7.71-7.66 (m, 6H), 5.36 (br s, 1H), 3.69-3.59 (m, 2H), 3.50-3.42 (m, 1H), 2.47 (br s, 2H), 2.29 (app t, 1H, J = 11.0 Hz), 2.20-2.16 (m, 2H), 2.10-1.99 (m, 2H), 1.89-1.65 (m, 6H), 1.58-1.46 (m, 3H), 1.33-1.23 (m, 8H), 1.12 (s, 3H), 0.85 (s, 9H), 0.79 (d, 3H, J = 5.8 Hz), 0.56 (s, 3H), 0.018 (s, 6H).

Synthesis of d_6 -8-DHD. BuLi (2.5 M/hexanes, 0.20 mL, 0.50 mmol) was added to a solution of **36** (0.22 g, 0.26 mmol) in THF (2 mL). After 30 min, d_6 -acetone (0.040 mL, 0.54 mmol) was added. After overnight, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product (65 mg, 50%) was isolated as a white powder after purification by column chromatography (10% EtOAc/hexanes). ¹H NMR (CDCl₃) δ 5.38 (br s, 1H), 5.07 (t, 1H, J = 7.1 Hz), 3.53-3.45 (m, 1H), 2.52 (br s, 2H), 2.32 (t, 1H, J = 13.0 Hz), 2.29-2.21 (m, 1H), 2.20-1.89 (m, 6H), 1.83-1.73 (m, 2H), 1.61-1.53 (m, 3H), 1.44-1.27 (m, 8H), 1.16 (s, 3H), 0.94 (d, 3H, J = 6.3 Hz), 0.87 (s, 9H), 0.63 (s, 3H), 0.035 (s, 6H).

TBAF (1M/THF, 0.30 mL, 0.30 mmol) was added to a solution of d_6 -TBS-DHD (65 mg, 0.13 mmol) in THF (2 mL). After overnight, the reaction was diluted with EtOAc, washed with brine, and dried over MgSO₄. Purification by column chromatography (20% EtOAc/hexanes) yielded the

product as a white powder (14 mg, 89%). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.41 (br s, 1H), 5.07 (t, 1H, J = 7.1 Hz), 3.57-3.49 (m, 1H), 2.52 (br s, 2H), 2.37-2.25 (m, 2H), 2.20-1.82 (m, 10H), 1.61-1.26 (m, 10H), 1.17 (s, 3H), 0.93 (d, 3H, J = 6.5 Hz), 0.63 (s, 3H); ¹³C NMR (CDCl₃) δ 138.8, 132.0, 130.7, 126.4, 125.1, 119.5, 71.5, 54.7, 51.8, 42.2, 42.0, 37.4, 36.8, 36.1, 35.6, 32.0, 29.3, 29.0, 28.8, 24.8, 23.0, 22.9, 22.3, 18.6, 11.3.

Scheme S7. Synthesis of d_6 -Des and d_7 -Chol.

Synthesis of **37**. TsOH (0.31 g, 1.6 mmol) was added to a milky solution of 5-cholenic acid-3 β -ol (3.2 g, 8.4 mmol) in MeOH (40 mL). After stirring overnight, the reaction mixture was concentrated. The residue was dissolved in EtOAc and washed with saturated NaHCO₃, brine, and dried over MgSO₄. The product was isolated as a white powder (3.1 g, 94%). ¹H NMR (CDCl₃) δ 5.31 (d, 1H, J = 5.2 Hz), 3.63 (s, 3H), 3.56-3.43 (m, 1H), 2.37-2.13 (m, 4H), 2.01-1.87 (m, 3H), 1.86-1.70 (m, 5H), 1.58-1.13 (m, 10H), 1.11-1.07 (m, 4H), 0.97 (s, 3H), 0.89 (d, 3H, J = 6.4 Hz), 0.64 (s, 3H); ¹³C NMR (CDCl₃) δ 174.8, 140.7, 121.6, 71.7, 56.7, 55.7, 51.5, 50.0, 42.3, 42.2, 39.7, 37.2, 36.4, 35.3, 31.8, 31.5, 31.0, 30.9, 28.0, 24.2, 21.0, 19.3, 18.2, 11.8.

TBSCl (1.4 g, 9.3 mmol) and imidazole (0.80 g, 12 mmol) were added to a solution of the ester (3.1 g, 7.9 mmol) in DMF (16 mL) and THF (8 mL). After overnight, the reaction mixture was diluted with EtOAc, washed with H₂O and brine, then dried over MgSO₄. The product was purified by column chromatography (10% EtOAc/hexanes) and isolated as a white powder (3.6 g, 89%). ¹H NMR (CDCl₃) δ 5.26 (d, 1H, J = 5.1 Hz), 3.61 (s, 3H), 3.48-3.36 (m, 1H), 2.36-2.22 (m, 1H), 2.20-2.08 (m, 3H), 1.98-1.65 (m, 7H), 1.53-1.19 (m, 10H), 0.95 (s, 3H), 0.88 (d, 3H, J = 6.3 Hz), 0.84 (s, 9H), 0.63 (s, 3H), 0.0089 (s, 6H); ¹³C NMR (CDCl₃) δ 174.6, 141.4, 121.0, 72.5, 56.7, 55.7, 51.3, 50.1, 42.7, 42.3, 39.7, 37.3, 36.5, 35.3, 32.0, 31.8, 31.5, 30.9, 28.0, 25.8, 24.2, 22.6, 21.0, 19.3, 18.2, 18.1, 14.0, 11.8, -4.7.

Synthesis of alcohol **38**. DIBAL-H (1 M/toluene, 21 mL, 21 mmol) was added to a solution of the ester **37** (3.6 g, 7.1 mmol) in THF (35 mL) at 0 °C. After 1 h, the reaction was quenched with 10% HCl and extracted with EtOAc. The organics were washed with brine and dried over MgSO₄. The product was isolated as a white powder (3.2 g, 94%). ¹H NMR (CDCl₃) δ 5.29 (d, 1H, J = 5.2 Hz), 3.59 (dt, 2H, J = 1.5, 6.8 Hz), 3.51-3.40 (m, 1H), 2.25 (dt, 1H, J = 2.2, 13.1 Hz), 2.14 (ddd, 1H, J = 2.0, 5.1, 13.3 Hz), 2.02-1.91 (m, 2H), 1.84-1.75 (m, 2H), 1.67-1.39 (m, 13H), 1.26-1.02 (7H), 0.97 (s, 3H), 0.91 (d, 3H, J = 6.5 Hz), 0.86 (s, 9H), 0.65 (s, 3H), 0.032 (s, 6H); ¹³C NMR (CDCl₃) δ 141.5, 121.1, 72.6, 63.6, 56.7, 55.9, 50.1, 42.8, 42.3, 39.7, 37.3, 36.5, 35.5, 32.0, 31.9, 31.8, 29.3, 28.2, 25.9, 24.2, 21.0, 19.4, 18.6, 18.2, 11.8, -4.6.

Synthesis of mesylate **39**. MsCl (0.50 mL, 6.5 mmol) was added to a solution of the alcohol **38** (2.0 g, 4.2 mmol) in freshly distilled pyridine (20 mL) at 0 °C. After 30 min, the reaction mixture was concentrated under vacuum. The crude product was dissolved in EtOAc and washed with H₂O, brine, and dried over MgSO₄. The product (2.1 g, 88%) was isolated as a white powder and used without further purification. ¹H NMR (CDCl₃) δ 5.29 (d, 1H, J = 5.0 Hz), 4.17 (dt, 2H, J = 2.1, 6.6 Hz), 3.51-3.40 (m, 1H), 2.98 (s, 3H), 2.24 (dt, 1H, J = 1.7, 12.9 Hz), 2.13 (ddd, 1H, J = 1.7, 5.0, 13.5 Hz), 2.02-1.92 (m, 2H), 1.83-1.36 (m, 14H), 1.22-1.01 (m, 7H), 0.97 (s, 3H), 0.92 (d, 3H, J = 6.5 Hz), 0.86 (s, 9H), 0.65 (s, 3H), 0.032 (s, 6H); ¹³C NMR (CDCl₃) δ 141.5, 121.1, 72.6, 70.6, 56.7, 55.7, 50.1, 42.8, 42.3, 39.7, 37.3, 36.5, 35.3, 32.0, 31.8, 31.5, 28.2, 25.9, 25.8, 24.2, 21.0, 19.4, 18.5, 18.2, 11.8, -4.6.

*Synthesis of d*₇-*Chol*. A solution of *d*₇-2-bromopropane (1.8 mL, 19.1 mmol) in THF (20 mL) was added in portions to Mg° (0.50 g, 20 mmol) in a minimal amount of THF. After 30 min, Li₂CuCl₄ (0.1 M/THF, 3.7 mL, 0.37 mmol) was added, followed by a solution of the mesylate **39** (2.1 g, 3.7 mmol) in THF (20 mL). After 1 h, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product was purified by column chromatography (5% EtOAc/hexanes) and isolated as a white powder (1.7 g, 88%). ¹H NMR (CDCl₃) δ 5.30 (d, 1H, J = 5.1 Hz), 3.51-3.41 (m, 1H), 2.26 (dt, 1H, 2.0, 13.0 Hz), 2.14 (ddd, 1H, J = 1.9, 5.0, 13.3 Hz), 2.02-1.92 (m, 2H), 1.84-1.68 (m, 3H), 1.57-1.22 (m, 12H), 1.18-1.02 (m, 8H), 0.98 (s, 3H), 0.90 (d, 3H, J = 6.7 Hz), 0.87 (s, 9H), 0.66 (s, 3H), 0.040 (s, 6H); ¹³C NMR (CDCl₃) δ 141.5, 121.1, 72.6, 56.8, 56.1, 50.2, 42.8, 42.3, 39.8, 39.2, 37.4, 36.5, 36.2, 35.8, 32.1, 31.9, 28.2, 25.9, 24.3, 23.8, 21.0, 19.4, 18.7, 18.2, 11.8, -4.6.

TBAF (1 M/THF, 3.4 mL, 3.4 mmol) was added to a solution of the d_7 -TBS-Chol (1.2 g, 2.3 mmol) in THF (11 mL). After overnight, the reaction mixture was diluted with EtOAc, washed with brine, and dried over MgSO₄. The product (0.44 g, 49%) was isolated as a white powder after purification by column chromatography (20% EtOAc/hexanes). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.32 (d, 1H, J = 5.2 Hz), 3.55-3.44 (m, 1H), 2.30-2.16 (m, 2H), 2.02-1.92 (m, 2H), 1.85-1.74 (m, 4H), 1.59-1.20 (m, 12H), 1.14-1.01 (m, 8H), 0.98 (s, 3H), 0.89 (d, 3H, J = 6.5 Hz), 0.65 (s, 3H); ¹³C NMR (CDCl₃) δ 140.7, 121.7, 71.7, 56.7, 56.1, 50.1, 42.3, 39.7, 39.2, 37.2, 36.4, 36.1, 35.7, 31.8, 31.6, 28.2, 24.2, 23.7, 21.0, 19.4, 18.7, 11.8.

Synthesis of iodide **40**. Iodine (1.1 g, 4.2 mmol) was added to a solution of the alcohol **38** (1.7 g, 3.5 mmol), imidazole (0.45 g, 6.6 mmol), and PPh₃ (1.1 g, 4.2 mmol) in CH₂Cl₂ (18 mL). After 1 h, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The product was isolated as a white powder (2.4 g, 100%). ¹H NMR (CDCl₃) δ 5.29 (d, 1H, J = 7.0 Hz), 3.51-3.40 (m, 1H), 3.21-3.06 (m, 2H), 2.24 (dt, 1H, J = 2.2, 13.2 Hz), 2.14 (ddd, 1H, J = 2.0, 5.1, 13.2 Hz), 1.98-1.67 (m, 7H), 1.58-1.39 (m, 9H), 1.27-1.00 (m, 7H), 0.97 (s, 3H), 0.90 (d, 3H, J = 6.5 Hz), 0.86 (s, 9H), 0.65 (s, 3H), 0.030 (s, 6H).

Synthesis of **41**. PPh₃ (1.1 g, 4.2 mmol) was added to a solution of the iodide **40** (2.4 g, 4.2 mmol) in anhydrous CH₃CN (8 mL). The reaction mixture was heated to reflux. After allowing to react overnight, the reaction mixture was cooled and concentrated. The product (3.0 g, 85%) was

purified by column chromatography (5% MeOH/CH₂Cl₂) and isolated as a white powder. ¹H NMR (CDCl₃) δ 7.84-7.76 (m, 9H), 7.71-7.65 (m, 6H), 5.26 (br s, 1H), 3.69-3.60 (m, 2H), 3.49-3.38 (m, 1H), 2.26-2.09 (m, 2H), 1.90-1.65 (m, 8H), 1.54-1.30 (m, 10H), 1.23-1.02 (m, 5H), 0.98 (s, 3H), 0.85 (s, 9H), 0.76 (d, 3H, J = 5.8 Hz), 0.58 (s, 3H), 0.019 (s, 6H).

Synthesis of d_6 -Des. BuLi (2.5 M/hexanes, 0.25 mL, 0.63 mmol) was added to a solution of **41** (0.50 g, 0.59 mmol) in THF (3 mL) at 0 °C. After 30 min, d_6 -acetone (0.044 mL, 0.60 mmol) was added. After overnight, the reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. The product (0.15 g, 50%) was isolated as a white powder after purification by column chromatography (5% EtOAc/hexanes). ¹H NMR (CDCl₃) δ 5.29 (d, 1H, J = 5.1 Hz), 5.07 (t, 1H, J = 7.1 Hz), 3.50-3.41 (m, 1H), 2.25 (dt, 1H, J = 2.2, 13.2 Hz), 2.14 (ddd, 1H, J = 2.0, 5.2, 13.1 Hz), 2.03-1.92 (m, 3H), 1.86-1.67 (m, 4H), 1.58-1.34 (m, 10H), 1.26-1.02 (m, 6H), 1.00 (s, 3H), 0.91 (d, 3H, J = 6.5 Hz), 0.87 (s, 9H), 0.65 (s, 3H), 0.036 (s, 6H).

TBAF (1 M/THF, 0.75 mL, 0.75 mmol) was added to a solution of d_6 -TBS-Des (0.18 g, 0.36 mmol) in THF (2 mL). After overnight, the reaction was diluted with EtOAc, washed with brine, and dried over MgSO₄. Purification by column chromatography (20% EtOAc/hexanes) yielded the product as a white powder (98 mg, 70%). Product of higher purity was obtained after purification by HPLC (C18, MeOH). ¹H NMR (CDCl₃) δ 5.33 (d, 1H, J = 5.2 Hz), 5.06 (t, 1H, J = 7.1 Hz), 3.55-3.45 (m, 1H), 2.30-2.16 (m, 2H), 2.02-1.92 (m, 4H), 1.88-1.75 (m, 4H), 1.58-1.33 (m, 10H), 1.26-1.03 (m, 6H), 0.98 (s, 3H), 0.91 (d, 3H, J = 6.5 Hz), 0.66 (s, 3H); ¹³C NMR (CDCl₃) δ 140.7, 125.2, 121.7, 71.7, 56.7, 56.0, 50.1, 42.3, 42.2, 39.7, 37.2, 36.4, 36.1, 35.6, 31.8, 31.6, 28.2, 24.6, 24.2, 21.0, 19.4, 18.6, 11.8.

STATISTICS

		Neurons			Astrocytes		
	Mean	±SE	N	Mean	±SE	Ν	P value
Lan	0.351	0.015	44	0.036	0.003	42	<0.001
14dZym	0.035	0.002	44	0.007	0.000	42	<0.001
Zym	1.539	0.038	44	0.249	0.010	42	<0.001
DHL	0.575	0.017	44	0.148	0.005	42	<0.001
7DHD	0.470	0.021	43	0.795	0.038	42	<0.001
8DHD	0.067	0.003	44	0.039	0.002	42	<0.001
Des	14.785	0.266	44	9.429	0.249	42	<0.001
		Neurons			Astrocytes		
	Mean	±SE	Ν	Mean	±SE	Ν	
dHLan	0.003	0.001	44	0.017	0.003	42	<0.001
14dZyme	0.000	0.000	44	0.000	0.000	42	
Zyme	0.572	0.013	44	0.139	0.010	42	<0.001
Lath	0.262	0.010	44	0.069	0.003	42	<0.001
7DHC	0.135	0.029	42	0.088	0.023	42	0.221
8DHC	0.353	0.009	44	0.160	0.006	42	<0.001
Chol	35.110	0.780	44	30.629	0.779	42	<0.001
							P value
7-keto	0.00169	0.000452	44	0.00694	0.00028	42	<0.001
24-OH	0.0233	0.001887	44	0.000116	0.000155	42	<0.001
25-OH	0.00804	0.000949	44	0.000473	6.5E-05	42	<0.001

Table S1. Statistics for Figure 4.

Table S2.	Statistics	for	Figure	5.
-----------	------------	-----	--------	----

			Neurons							Astrocytes		
HAL	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500		HAL	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500
Lan	0.0123	0.0132	0.0043	0.0016	0.2393		Lan	0.5732	0.2360	0.3738	0.1319	0.2004
14dZym	0.5996	0.0028	< 0.000001	< 0.000001	< 0.000001		14dZym	0.3794	0.0091	0.0000	< 0.000001	< 0.000001
Zym	0.0000	0.0000	< 0.000001	0.0000	< 0.000001		Zym	0.0427	0.0005	0.0000	0.0000	< 0.000001
DHL	0.0001	0.0005	0.0004	0.0000	0.0002		DHL	0.0189	0.0327	0.0014	0.0004	0.0003
7DHD	< 0.000001	< 0.000001	< 0.000001	< 0.000001	< 0.000001		7DHD	< 0.000001	< 0.000001	< 0.000001	< 0.000001	< 0.000001
8DHD	< 0.000001	< 0.000001	< 0.000001	< 0.000001	< 0.000001		8DHD	< 0.000001	0.0000	0.0001	< 0.000001	< 0.000001
Des	< 0.000001	< 0.000001	< 0.000001	< 0.000001	< 0.000001		Des	< 0.000001	< 0.000001	< 0.000001	< 0.000001	< 0.000001
dHLan	0.0312	0.2515	0.0955	0.4781	0.4781		dHLan	0.2412	0.5630	0.2406	0.1745	0.7204
14dZyme							14dZyme					
Zyme	0.0197	0.9439	0.1231	0.1087	0.0000		Zyme	0.0976	0.2667	0.0147	0.9670	0.0042
Lath	0.0110	0.0455	0.4787	0.8981	0.6568		Lath	0.0046	0.0003	0.0004	0.0129	0.0155
7DHC	< 0.000001	< 0.000001	< 0.000001	< 0.000001	< 0.000001		7DHC	<0.000001	< 0.000001	< 0.000001	< 0.000001	< 0.000001
8DHC	< 0.000001	< 0.000001	< 0.000001	< 0.000001	0.0001		8DHC	<0.000001	< 0.000001	< 0.000001	< 0.000001	< 0.000001
Chol	0.0060	0.0000	<0.000001	<0.000001	<0.000001		Chol	0.0189	0.0004	0.0389	0.0000	<0.000001
			Neurons vs	Astrocyte	s							
	0	10	25	50	100	500						
Lan	< 0.000001	< 0.000001	<0.00001	<0.00001	<0.00001	< 0.000001						
14dZym	<0.000001	<0.00001	<0.00001	<0.00001	<0.00001	< 0.000001						
Zym	< 0.000001	< 0.000001	< 0.000001	< 0.000001	<0.00001	< 0.000001						
DHL	< 0.000001	0.000001	0.000038	0.00019	0.000003	0.000001						
7DHD	0.001612	0.594617	0.000001	0.004863	0.000176	0.000173						
8DHD	< 0.000001	0.002234	0.001172	0.007706	0.000538	0.000362						
Des	< 0.000001	< 0.000001	< 0.000001	0.000091	< 0.00001	0.000006						
dHLan	0.072611	0.052066	0.460083	0.110254		0.048979						
14dZyme												
Zyme	< 0.000001	< 0.000001	0.000001	< 0.00001	< 0.000001	< 0.000001						
Lath	< 0.000001	< 0.000001	0.000008	0.007163	0.000214	0.002804						
7DHC	0.108725	0.000049	0.005082	0.029216	0.761101	0.142016						
8DHC	< 0.000001	0.000037	0.002593	0.557409	0.773505	0.575636						
Chol	0.488416	0.619122	0.417791	0.043694	0.000045	<0.00001						

Table S3. Statistics for Figure 6A (haloperidol).

			NEURON	IS						ASTROCYT	ASTROCYTES
HAL	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	HAL	C vs 10		C vs 25	C vs 25 C vs 50	C vs 25 C vs 50 C vs 100
Lan	0.0123	0.0132	0.0043	0.0016	0.2393	Lan	0.5732		0.2360	0.2360 0.3738	0.2360 0.3738 0.1319
14dZym	0.5996	0.0028	<0.00000	<0.000001	<0.00001	14dZym	0.3794		0.0091	0.0091 0.0000	0.0091 0.0000 < 0.000001
Zym	0.0000	0.0000	<0.00000	0.0000	<0.00001	Zym	0.0427		0.0005	0.0005 0.0000	0.0005 0.0000 0.0000
DHL	0.0001	0.0005	0.0004	0.0000	0.0002	DHL	0.0189		0.0327	0.0327 0.0014	0.0327 0.0014 0.0004
7DHD	<0.0000	<0.00000	<0.00000	< 0.000001	< 0.000001	7DHD	< 0.000001	<0	.000001	0.000001 <0.000001	0.000001 <0.000001 <0.000001
8DHD	<0.00000	<0.00000	<0.00000	<0.000001	<0.00001	8DHD	<0.000001	(0.0000	0.0000 0.0001	0.0000 0.0001 <0.00001
Des	<0.0000	<0.00000	<0.00000	< 0.000001	< 0.000001	Des	< 0.000001	<0.000	0001	0001 <0.000001	0001 <0.000001 <0.000001
dHLan	0.0312	0.2515	0.0955	0.4781	0.4781	dHLan	0.2412	0.56	30	0.2406	0.2406 0.1745
14dZyme						14dZyme					
Zyme	0.0197	0.9439	0.1231	0.1087	0.0000	Zyme	0.0976	0.266	57	67 0.0147	67 0.0147 0.9670
Lath	0.0110	0.0455	0.4787	0.8981	0.6568	Lath	0.0046	0.000	3	3 0.0004	3 0.0004 0.0129
7DHC	<0.00000	<0.00000	<0.00000	<0.000001	<0.00001	7DHC	<0.000001	<0.00000)1	1 <0.000001	1 <0.000001 <0.000001
8DHC	<0.0000	<0.00000	<0.00000	<0.000001	0.0001	8DHC	< 0.000001	<0.00000)1	1 <0.000001	1 <0.000001 <0.000001
Chol	0.0060	0.0000	<0.00000	<0.000001	<0.00001	Chol	0.0189	0.000	4	4 0.0389	4 0.0389 0.0000

Table S4. Statistics for Figure 6B (cariprazine).

	•		NEUI	RONS						ASTRO	CYTES		
CAR	C vs 1	C vs 5	C vs 10	C vs 25	C vs 50	C vs 100	CAR	C vs 1	C vs 5	C vs 10	C vs 25	C vs 50	C vs 100
Lan	0.00041	0.000347	0.000084	0.000023	0.000022	0.000941	Lan	0.001154	0.090499	0.513583	0.287688	0.607367	0.172336
14dZym	0.000007	0.000006	0.000083	0.000271	0.000113	< 0.000001	14dZym	0.375826	0.502896	0.423718	0.103223	0.51891	<0.000001
Zym	0.344645	0.500499	0.063734	0.001107	0.00068	< 0.000001	Zym	0.391482	0.227011	0.032695	0.000015	0.000253	0.000001
DHL	0.048546	0.040029	0.054387	0.049778	0.031374	< 0.000001	DHL	0.03583	0.059429	0.017932	0.000082	0.000003	<0.000001
7DHD	0.997484	0.015604	0.000002	< 0.000001	< 0.000001	< 0.000001	7DHD	0.15757	< 0.000001	< 0.000001	< 0.000001	< 0.000001	<0.000001
8DHD	0.626923	0.06985	0.016627	0.000019	< 0.000001	< 0.000001	8DHD	0.122889	0.003235	< 0.000001	< 0.000001	< 0.000001	<0.00001
Des	0.023535	0.009148	0.001945	0.000004	<0.000001	<0.00001	Des	0.699206	0.372854	0.004402	<0.00001	<0.00001	<0.000001
dHLan	0.158933	0.8346	0.293177	0.471613	0.805183	0.873327	dHLan	0.647902	0.335878	0.867409	0.724227	0.537149	0.505306
14dZyme		0.183845					14dZyme						
Zyme	0.733343	0.038278	0.029556	0.000072	<0.00001	< 0.000001	Zyme	0.042394	0.344341	0.456012	0.621934	0.017651	0.000013
Lath	< 0.00001	0.00311	0.261105	0.000037	0.000097	0.08113	Lath	0.004946	0.005108	0.002758	< 0.000001	< 0.000001	0.000015
7DHC	0.634428	0.041967	0.00375	< 0.000001	< 0.000001	< 0.000001	7DHC	0.830218	< 0.000001	< 0.000001	< 0.000001	< 0.000001	<0.00001
8DHC	0.21604	0.572956	0.042	0.000007	< 0.000001	< 0.000001	8DHC	0.673427	0.000053	0.000028	< 0.000001	< 0.000001	<0.00001
Chol	0.018182	0.081789	0.088534	0.117876	0.002994	<0.00001	Chol	0.188263	0.853286	0.245154	0.288833	0.009625	<0.00001

Table S5. Statistics for Figure 6C (aripiprazole).

			NEURONS					A	STROCYTE	S	
ARI	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	ARI	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500
Lan	0.0003	0.0000	0.0002	0.0001	0.0091	Lan	0.0385	0.0447	0.0346	0.0100	0.0124
14dZym	0.0002	0.0022	0.5166	<0.00001	<0.00001	14dZym	0.1885	0.2866	0.2146	0.1178	<0.000001
Zym	0.0000	< 0.000001	< 0.000001	<0.00001	<0.00001	Zym	0.6878	0.1950	0.3259	0.0500	0.0002
DHL	0.0000	0.0000	0.0000	0.0000	< 0.000001	DHL	0.4132	0.0498	0.0535	0.0404	0.0001
7DHD	<0.00001	< 0.000001	< 0.000001	<0.00001	< 0.000001	7DHD	< 0.000001	<0.00001	< 0.000001	< 0.000001	<0.00001
8DHD	<0.00001	< 0.00001	0.0000	< 0.000001	< 0.00001	8DHD	0.0000	0.0000	< 0.00001	< 0.000001	< 0.000001
Des	0.0000	< 0.00001	< 0.00001	< 0.000001	< 0.000001	Des	0.0001	0.0000	< 0.00001	< 0.000001	< 0.000001
dHLan	0.1270	0.6531	0.7698	0.0114	0.5703	dHLan	0.1042	0.3245	0.0444	0.6640	0.5215
14dZyme						14dZyme					
Zyme	<0.000001	< 0.000001	< 0.000001	<0.00001	<0.00001	Zyme	0.1397	0.1912	0.3390	0.3501	0.6467
Lath	0.0024	0.0002	0.0000	0.0015	0.0095	Lath	0.3641	0.1598	0.0309	0.0394	0.4428
7DHC	<0.00001	< 0.000001	< 0.000001	< 0.000001	< 0.000001	7DHC	< 0.000001	<0.00001	< 0.000001	<0.00001	< 0.000001
8DHC	<0.00001	< 0.000001	< 0.000001	< 0.000001	< 0.000001	8DHC	0.0001	0.0002	0.0000	0.0000	0.0000
Chol	0.0086	0.0002	0.0000	<0.00001	<0.00001	Chol	0.0737	0.0154	0.0042	0.0002	0.0000

Table S6. Statistics for Figure 6D (trazodone).

			NEURONS					A	STROCYTE	S	
TRZ	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	TRZ	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500
Lan	0.0814	0.1799	0.3115	0.5463	0.6997	Lan	0.6534	0.1442	0.0035	0.1787	0.0051
14dZym	0.1000	0.2436	0.5695	0.0130	<0.000001	14dZym	0.8828	0.8828	0.4781	0.0844	<0.000001
Zym	0.3778	0.0291	0.0047	0.0001	<0.000001	Zym	0.0526	0.0644	0.0611	0.0463	0.0008
DHL	0.0777	0.0052	0.0015	0.0001	<0.000001	DHL	0.5062	0.2096	0.0807	0.0175	0.0116
7DHD	<0.000001	<0.000001	<0.000001	<0.000001	<0.000001	7DHD	<0.000001	<0.000001	<0.000001	<0.000001	<0.000001
8DHD	0.0000	<0.000001	<0.000001	<0.000001	<0.000001	8DHD	0.0000	<0.000001	<0.000001	<0.000001	<0.000001
Des	0.0081	0.0003	0.0000	<0.000001	<0.000001	Des	<0.000001	<0.000001	<0.000001	<0.000001	<0.000001
dHLan	0.2258	0.6870	0.5992	0.7975	0.4328	dHLan	0.4781	0.4781	0.4781	0.1091	0.4142
14dZyme						14dZyme					
Zyme	0.2492	0.1345	0.0870	0.0333	0.0107	Zyme	0.5363	0.1170	0.3106	0.0017	0.0005
Lath	0.1735	0.0535	0.1221	0.1302	0.2466	Lath	0.6445	0.0452	0.7820	0.0112	0.0008
7DHC	<0.000001	<0.000001	<0.000001	<0.000001	<0.000001	7DHC	<0.000001	<0.000001	<0.000001	<0.000001	<0.000001
8DHC	0.2377	0.0469	0.0171	0.0003	0.0000	8DHC	0.0135	<0.000001	<0.000001	<0.000001	<0.000001
Chol	0.2863	0.1124	0.0338	0.0037	0.0000	Chol	0.0053	0.3015	0.0418	0.9523	0.0002

	-								1	1	
			NEURONS					A	ASTROCYTE	S	
AMIOD	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	AMIOD	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500
Lan	0.0001	0.0000	0.0000	0.0001	0.0081	Lan	0.0511	0.3849	0.0251	0.7033	0.2786
14dZym	0.0001	0.0665	<0.00001	<0.00001	<0.00001	14dZym	0.8956	0.4244	0.3417	0.3417	0.8419
Zym	0.2235	0.4731	0.5430	0.0003	<0.00001	Zym	0.7653	0.1442	0.1017	0.0350	<0.000001
DHL	0.1357	0.2708	0.2108	0.1367	0.0002	DHL	0.0710	0.0640	0.0876	0.0604	0.0155
7DHD	0.0434	0.0012	0.0024	0.0000	<0.00001	7DHD	0.0062	0.0003	0.0001	0.0087	<0.000001
8DHD	0.2847	0.3669	0.7872	0.2771	<0.00001	8DHD	0.0646	0.0139	0.0289	0.0162	<0.000001
Des	0.0903	0.2671	0.0201	0.0032	0.0005	Des	0.0011	0.0015	0.0003	0.0534	0.0112
dHLan	0.1838		0.1838			dHLan	0.4346	0.4346	0.4346	0.4346	0.4346
14dZyme						14dZyme					
Zyme	0.1719	<0.00001	< 0.000001	< 0.000001	<0.00001	Zyme	0.6092	0.1500	0.0001	0.0016	<0.000001
Lath	0.0002	0.0020	0.7881	0.7862	<0.00001	Lath	0.9484	0.2264	0.0542	0.8318	0.0078
7DHC	0.1440	0.0001	0.0000	0.0052	0.0060	7DHC	0.0040	0.0007	0.0000	0.0011	< 0.000001
8DHC	0.9948	0.0000	< 0.000001	< 0.000001	<0.00001	8DHC	0.7029	0.1467	0.2580	0.1212	< 0.000001
Chol	0.0872	0.5881	0.1844	0.0019	<0.000001	Chol	0.0138	0.0760	0.0123	0.0099	0.0864

Table S7. Statistics for Figure 6E (amiodarone).

Table S8. Statistics for Figure 7.

			NEURONS						ASTROCYTE	S	-
HAL	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	HAL	C vs 10	C vs 25	C vs 50	C vs 100	C vs
7-keto	0.820864	0.195313	0.180185	0.325553	0.345252	7-keto	0.305303	0.426553	0.375829	0.420775	0.0
24-OH	0.38498	0.009475	0.000167	0.000002	<0.000001	24-OH					
25-OH	0.147282	0.055791	0.00671	0.005232	0.000707	25-OH	0.522932	0.498951	0.003149	0.010778	0.0
CAR	C vs 5	C vs 10	C vs 25	C vs 50	C vs 100	CAR	C vs 5	C vs 10	C vs 25	C vs 50	C vs
7-keto	0.949126	0.478059	0.478059	0.478059	0.81706	7-keto	0.530667	0.478241	0.703051	0.882682	0.6
24-OH	0.178196	0.013195	0.01226	0.023346	0.002067	24-OH	0.478059	0.478059	0.478059	0.478059	0.4
25-OH	0.099236	0.706019	0.140157	0.886589	0.035586	25-OH	0.817251	0.426431	0.074524	0.048633	<0.0
ARI	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	ARI	C vs 10	C vs 25	C vs 50	C vs 100	C vs
7-keto	0.295827	0.368838	0.37655	0.844546	0.863488	7-keto	0.849479	0.81572	0.097286	0.600533	0
24-OH	0.198314	0.085723	0.027426	0.007143	0.000221	24-OH					
25-OH	0.035044	0.010233	0.011699	0.007798	0.001259	25-OH	0.997193	0.435064	0.77405	0.623376	0.0

Table S9. Statistics for Figure S3.

			PTAD				PTAD						
Neurons	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	C vs 1000	Astrocyte	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	C vs 1000
CHOL	0.08650	0.13720	0.02600	0.01720	0.00010	0.00010	CHOL	0.33515	0.41828	0.45562	0.74476	0.01601	0.11943
7DHC	0.08023	0.02637	0.02377	0.00024	0.00000	0.00010	7DHC	0.00000	0.00008	0.00000	0.00000	0.00000	0.00000
8DHC	0.08023	0.02637	0.02377	0.00024	0.00000	0.00010	D 8DHC	0.00053	0.00017	0.00019	0.00770	0.00000	0.00000
DES	0.09672	0.02899	0.00381	0.00022	0.00000	0.00000	D DES	0.00066	0.00000	0.00000	0.00000	0.00000	0.00000
LAN	0.58352	0.43194	0.33607	0.09252	0.54066	0.64017	7 LAN	0.24357	0.04554	0.08989	0.07279	0.00026	0.36575
			DMG				DMG						
Neurons	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	C vs 1000	Astrocyte	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	C vs 1000
CHOL	0.74229	0.17269	0.33077	0.01474	0.00000	0.00000	CHOL	0.84432	0.90176	0.64965	0.55673	0.00118	0.06085
7DHC	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	7DHC	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
8DHC	0.01298	0.00008	0.00000	0.00000	0.00000	0.00000	D 8DHC	0.00057	0.00000	0.00000	0.00000	0.00000	0.00000
DES	0.21994	0.94557	0.00006	0.00000	0.00000	0.00000	D DES	0.00002	0.00000	0.00000	0.00000	0.00000	0.00000
LAN	0.11135	0.00403	0.06562	0.07754	0.15836	0.37636	5 LAN	0.65603	0.43294	0.84524	0.05437	0.01592	0.00806

Table S10. Statistics for Figure S4.

			NEURONS					4	STROCYTE	S	
SERT	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	SERT	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500
Lan	0.04776	0.37711	0.00379	0.01415	0.50508	Lan	0.15810	0.07456	0.15450	0.31185	0.17252
14dZym	0.00369	0.00021	0.00573	0.00003	0.00077	14dZym	0.37583	0.04773	0.01268	0.28315	0.45398
Zym	0.54977	0.00789	0.21986	0.01401	0.08711	Zym	0.00142	0.21267	0.68316	0.32893	0.99649
DHL	0.43255	0.12513	0.67369	0.65497	0.13429	DHL	0.30722	0.42207	0.79345	0.15636	0.24087
7DHD	0.20459	0.00250	0.00128	0.01360	0.00014	7DHD	0.04486	0.25452	0.05015	0.02578	< 0.000001
8DHD	0.11220	0.17510	0.81725	0.25243	0.00023	8DHD	0.60650	0.55858	0.17847	0.31082	0.00657
Des	0.16451	0.33985	0.91869	0.13912	0.10348	Des	0.03078	0.00243	0.00000	0.00003	0.00001
dHLan	0.80566	0.49422	0.19465	0.15238	0.37442	dHLan	0.82204	0.44299	0.84542	0.72912	0.45571
14dZyme		0.34089	0.05603		0.21847	14dZyme					
Zyme	0.93552	0.00708	0.03406	0.98377	0.00651	Zyme	0.07795	0.07665	0.46154	0.94953	0.75019
Lath	0.63629	0.12057	0.03028	0.06857	0.00088	Lath	0.26881	0.96755	0.03004	0.05415	0.80728
7DHC	0.28773	0.00026	0.00003	0.01188	0.00004	7DHC	0.82264	0.58281	0.02191	0.01053	0.00007
8DHC	0.28699	0.00514	0.00368	0.04718	0.00093	8DHC	0.20797	0.12664	0.72216	0.66573	0.13355
Chol	0.40199	0.08593	0.18022	0.79798	0.16187	Chol	0.00053	0.00159	0.00095	0.00019	0.00031

Table S11. Statistics for Figure S5.

_			NEURONS					l	ASTROCYTE	S	
TRZ	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	TRZ	C vs 10	C vs 25	C vs 50	C vs 100	C vs 5
7-keto	0.74160	0.54242	0.92295	0.09011	0.53120	7-keto	0.76502	0.52751	0.95841	0.74805	0.3
24-OH	0.53072	0.17419	0.16083	0.13277	0.09496	24-OH	0.64447	0.44606	0.71945	0.44606	0.4
25-OH	0.58625	0.43266	0.23053	0.29365	0.86720	25-OH	0.67891	0.48508	0.11620	0.86414	0.3
AMIOD	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	AMIOD	C vs 10	C vs 25	C vs 50	C vs 100	C vs 5
7-keto	0.06564	0.30185	0.01530	0.00785	0.24809	7-keto	0.52243	0.46780	0.43122	0.42432	0.5
24-OH	0.17432	0.10722	0.01299	0.07604	0.01299	24-OH					
25-OH	0.16534	0.17314	0.04439	0.26967	0.62471	25-OH	0.91428	0.64209	0.35663	0.20713	0.5
SERT	C vs 10	C vs 25	C vs 50	C vs 100	C vs 500	SERT	C vs 10	C vs 25	C vs 50	C vs 100	C vs 5
7-keto	0.47806	0.47806	0.47806	0.47806	0.47806	7-keto	0.24624	0.13587	0.65826	0.33967	0.4
24-OH	0.22213	0.00108	0.00108	0.00108	0.00108	24-OH	0.47806	0.47806	0.47806	0.47806	0.4
25-OH	0.31839	0.07476	0.06604	0.00593	0.18517	25-OH	0.15695	0.26838	0.24779	0.76693	0.3