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Fig S1. Box plots of mFD for the three functional conditions of the CF dataset. The 

two task conditions (1-back and 2-back) showed no significant difference in the 

amount of motion (paired t-test: t = 0.69, df = 19, p = 0.50). Rest was statistically 

different from both 1-back (paired t-test: t = 5.05, df = 19 , p = 7.1*10-5 ) and 2-back 

(paired t-test: t = 4.79, df = 19 , p = 1.3*10-4). Statistical tests were performed after 

averaging the two runs. ***, p < 0.001.    



  

Fig S2. Frequency maps of the WM and CSF masks used for extracting confounding signals.  The maps represent the within-dataset probability for voxels 

to be included in either the WM mask (red to orange) or the CSF mask (blue to cyan). The masks used for generating the probability maps underwent the 

processing described in the main text.  The underlay image is the SPM12 grey matter tissue probability map; the numbers next to each slice refer to z 

coordinates in MNI space. 



  |WM:GM 
correlation| 

WM Voxel Count  |CSF:GM 
correlation| 

CSF Voxel Count 

Dataset N mean std mean std mean std mean std 

CF 20 0.54 0.30 1408 296 0.26 0.28 40 24 

CNP 120 0.39 0.24 1482 331 0.23 0.17 59 57 

 
Table S1. Characteristics of the WM and CSF masks used for extracting confounding signals.  For each tissue compartment, the table reports the mean and 

the standard deviation within each dataset of 1) the absolute Pearson’s correlation between the signal extracted from the mask and the signal extracted from 

the gray matter (GM), and 2) the number of voxels composing the mask (voxel size = 27 mm3).  Before averaging, correlations were z-to-Fisher transformed 

and then back converted to Pearson’s value. The mean GM signal was extracted with a mask obtained by thresholding at 95% the subject-specific T1-derived 

grey-matter probability map.  

  



  

Fig S3. Representative denoising matrices for 

CF and CNP datasets. The plots show the 

explanatory variables (i.e., the denoising 

matrices) used for linear regression of 

nuisance signals in the case of the 

24RP+aCompCor pipeline for an example 

subject. Columns in the matrix contain 

different explanatory variables grouped in 

blocks:  trends, high-pass (HP) filter, low-pass 

(LP) filter, RP24 and aCompCor; while rows 

run on volumes. Note the different scheme 

used for processing the two datasets. CNP 

data were processed with two orthogonal sets 

of regressors for trends, HP and LP filtering, 

so to account for phase shifts between the 

two concatenated runs. For CF data such 

scheme was not required since the different 

epochs were acquired within the same 

functional run. The matrices are plotted 

preserving their aspect ratio so that the reader 

can appreciate the dissimilarities between 

datasets in terms of number of volumes and 

number of explanatory variables.      



 

Fig S4.  Evaluation of in-scanner head movement for the CNP dataset. A) FD series for each subjects. B) Distribution of FD values in 9 bins of different width, 

showing the marked difference in the distribution of FD values between rest and task epochs. C) Task-averaged FD vs rest-averaged FD  



  

Figure S5. QC series for the stillest subject of the A) CF and B) CNP dataset. In each main panel, the first row shows the FD series, while the second row shows 

DVARSGM series calculated after applying 5 different denoising models. BP (band-pass, black line) is a denoising model containing only trends and band-pass 

regressors 



  

Figure S6. QC series for an average-moving subject within the A) CF and B) CNP dataset.In each main panel, the first row shows the FD series, while the 

second row shows DVARSGM series calculated after applying 5 different denoising models. BP (band-pass, black line) is a denoising model containing only 

trends and band-pass regressors.  

 



  

Figure S7. QC-FC plots for evaluating the across-subject relationship between motion (mFD) and connectivity estimates under different denoising strategies for the CNP dataset. 

The top panels (A) show the distribution of QC-FC correlations along with the absolute mean value of the correlations, aiming at quantifying the centering of the distributions. The 

middle panels (B) show the median value of the absolute QC-FC correlations, which takes into account both the centering and the spread of the distribution. The bottom panels 

(C) show the Spearman’s correlation between QC-FC correlations and the Euclidean distance between pairs of nodes, indexing distance-dependent artifacts. QC-FC results are 

displayed for REST and TASK separately. For the task-based change in FC (ΔFC = FCtask- FCrest), the residual relationship with motion was evaluated with respect to the change 

in mFD (mFD= mFDtask- mFDrest).  

 



  

Figure S8. Motion-weighted partition’s similarity for the (A) CNP and (B) CF dataset. Before computing the average similarity, the pairwise similarity matrix was 

weighted by 1/<mFD>, where the mean is calculated over the selected pair of subjects. The weights penalize partitions from high-moving subjects. 



  

Figure S9. Within-network FC calculated under different processing pipelines using the CF dataset. Across-subject mean (top row) and standard deviation (middle) 

of within-network FC are shown for A) rest, B) task, and for the relative change C). For the latter, a white symbol marks the statistical significance of a second-level 

one-sample t-test, with “*” indicating p < 0.001. The magnitude of the task-associated change in FC is significantly negative for all pipelines, but tends to decrease 

in magnitude with more efficient pipelines, with the exception of ICA-AROMA, which shows the greatest magnitude. The across-subject standard deviation tends 

to decrease with more efficient pipelines for all considered networks, with the exception of ICA-AROMA that shows mixed results depending on the networks.   

 



  

Figure S10. Incremental censoring analysis for within-network FC considering models (A) RP24+aCompCor50% and (B) RP24+aCompCor50%+2GSR. In 

each panel, the left plot shows a P-censoring analysis while the right plot a T-censoring analysis. In P-censoring an equal number of volumes were excised 

from rest and task conditions ensuring conditions comparability in terms of tDoF, yet at the expense of removing potentially good volumes in the task condition. 

In T-censoring a more efficient data cleaning comes at the expense of variable tDoF among conditions and, in case of severe thresholds, at the progressive 

elimination of subjects with the highest motion. For each network, the mean across subjects of FC is shown as a black line along with shades representing the 

standard error of the mean (SEM), color-coded based on the network. Likewise, tDoF for the T-censoring variant are represented with the mean and SEM (light-

gray shade for task, darker for rest). DAN: Dorsal Attention, DMN: Default Mode, FPN: Frontoparietal, SMN: Somatomotor, VAN: Ventral Attention and VIS: 

Visual network. 



 

Figure S11. Illustration of the benefits 

produced by the optimization scheme adopted 

in the aCompCor pipelines. Panels A-C show 

the QC-FC benchmarks comparing the 

aCompCor50% model of the CF dataset with 

and without pre orthogonalization with respect 

to different subsets of the confounding 

variables that composed the model. The first 

model is without any optimization. In the 

second model data are orthogonalized with 

respect to the sine and cosine functions used 

for band-pass filtering (ort:BP), the third model 

with respect to both BP and the 24RP set 

(ort:BP+24RP). The metrics are described in 

Fig. 4 of the main text. Panel D shows the 

residual tDoF after the application of each of 

the above-defined aCompCor50% variants. 

The tDoF of each run are color-coded based 

on the mFD of the whole series.     

 



 

 

Figure S12. Comparison of ICA-AROMA performed on the whole run (AROMA) vs performed on each epoch separately (AROMA split run) for the CF 

dataset. Splitting the run before applying ICA-AROMA yields a lower number of total (i.e., summing the 4 epochs) noise-classified components (panel A).  

 



 

Figure S13. QC-FC plots as a function of different censoring thresholds using CF data. The metrics are described in Fig. 4 of the main text.  

 


