

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Households' access to improved drinking water sources and toilet facilities in Ethiopia: A multilevel analysis based on 2016 Ethiopian Demographic and Health Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042071
Article Type:	Original research
Date Submitted by the Author:	30-Jul-2020
Complete List of Authors:	Andualem , Zewudu ; University of Gondar College of Medicine and Health Sciences, Department of Environmental and Occupational health and Safety Dagne, Henok; University of Gondar College of Medicine and Health Sciences, Environmental and Occupational Health and Safety; University of Gondar, Environmental and Occupational Health and Safety Azene, Zelalem; University of Gondar College of Medicine and Health Sciences, Department of Women's and family health, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia.; University of Gondar, Ethiopia taddese, Asefa; University of Gondar College of Medicine and Health Sciences, Epidemiology and Biostatistics Dagnew, Baye ; University of Gondar College of Medicine and Health Sciences, Human Physiology; Mr. Muluneh, Atalay; University of Gondar College of Medicine and Health Sciences, Epidemiology and Bio statistics ; Yeshaw, Yigizie; University of Gondar College of Medicine and Health Sciences, Medical Physiology
Keywords:	PUBLIC HEALTH, PREVENTIVE MEDICINE, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Households' access to improved drinking water sources and toilet facilities in Ethiopia: A multilevel analysis based on 2016 Ethiopian Demographic and Health Survey

Zewudu Andualem^{1*}, Henok Dagne¹, Zelalem Nigussie Azene², Asefa Adimasu Taddese³, Baye Dagnew⁴, Atalay Goshu Muluneh³, and Yigizie Yeshaw⁴

¹Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia

²Department of Women's and family health, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia.

³Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia

⁴Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia rm,

*Corresponding author

Authors' email address

- [ZA] Zewudu Andualem: zewuduandualem12@gmail.com,
- [HD] Henok Dagne: enoch2313@gmail.com,
- [ZNA] Zelalem Nigussie Azene: znigussie35@gmail.com,
- [AAT] Asefa Adimasu Taddese: adimasuasefa@gmail.com,
- [BD] Baye Dagnew: bayedagnew7@gmail.com,
- [AG] Atalay Goshu: atalayg1921@gmail.com, and
- [YY] Yigizie Yeshaw: yigizieyeshaw29@gmail.com

ABSTRACT

Objective: The aim of this study was to assess households' access to improved drinking water sources and sanitation facilities and their associated factors in Ethiopia

Design: Cross-sectional study

Setting: Ethiopia

Participants: Household heads

Primary outcomes: Access to improved drinking water sources and sanitation facilities

Methods: We conducted an in-depth secondary data analysis of the 2016 Ethiopian Demographic and Health Survey (EDHS). Data from a total of 16650 households and 645 clusters were included in the analysis. The households in the EDHS were selected using a stratified two-stage cluster sampling technique. Multilevel binary logistic regression analyses were performed to identify factors associated with access to improved drinking water source and toilet facilities. Adjusted odds ratio with a 95% CI were reported. P-value < 0.05 was used to declare significant association of the covariates and outcomes.

Results: The proportions of households' access to improved sources of drinking water and toilet facilities were 69.94%, [95% CI: (69.23, 70.63)], and 25.36%, [95% CI: (24.69, 26.03)], respectively. Female headed households [AOR = 1.18, 95% CI: (1.01, 1.37)] and better wealth index, \geq 30 minutes time to obtain drinking water [AOR = 0.65, 95% CI: (0.58, 0.73)], rural residence [AOR = 0.06, 95% CI: (0.03, 0.11)] and region were factors associated with access to improved drinking water source. Whereas, higher educational status [AOR = 2.21, 95% CI: (1.12, 4.36)], being widowed [AOR = 0.75, 95% CI: (0.57, 0.98)], improved source of drinking water

[AOR =1.37, 95% CI: (1.12, 1.66)], household size [4 to 6] [AOR = 0.86, 95% CI: (0.75, 0.98)], rural residence [AOR = 0.28, 95% CI: (0.20, 0.38)], households with better wealth index, and region were significantly associated with access to improved toilet facilities

Conclusion: The proportions of households' access to improved drinking water sources and toilet facilities in Ethiopia was relatively low.

Keywords: Improved toilet facilities, Improved water sources, Multilevel analysis, Ethiopia

Strength and limitations of the study

- The use of nationally representative data that can enhance the generalizability of the finding is one of the strength of the study.
- Due to the inherent nature of a cross-sectional study, it does not show the temporal relationship between the outcome status and predictors.
- Moreover, important variables such as culture, traditions, and social norms were not available in EDHS data which could influence the use of toilet facility type.

or the work

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INTRODUCTION

Access to safe water and basic sanitation is one of the fundamental human rights, and an essential step towards improving living standards to maintain and improve health, human growth, and development.⁽¹⁻³⁾ It is one of the critical sustainable development challenges. Sustainable Development Goal (SDG) 6 aims to ensure the availability and sustainable management of water and sanitation for all by 2030. ⁽⁴⁾

Unimproved sources of drinking water and sanitation facilities are responsible for increased risks of various infectious diseases such as; cholera, typhoid, schistosomiasis, infections of the respiratory systems, skin, and eye. (1, 5, 6) The currently available evidences also indicate that to prevent the novel coronavirus disease (COVID-19) outbreak, the provision of safe water, sanitation, and hygienic conditions is essential. (7)

Globally, 2 billion people lack basic sanitation services and 785 million people have no access to clean water. ⁽⁸⁾ More than 1.9 million deaths and 123 million disability-adjusted life-years (DALYs) could have been prevented by provision of adequate access to water, hygiene and sanitation (WASH) worldwide. The WASH-attributable disease burden accounts to 4.6% of global DALYs and 3.3% of global mortality. ⁽⁹⁾ The burden of under 5 mortality was 13%. ⁽¹⁰⁾ In Ethiopia, 60 to 80 % of communicable diseases are attributed to limited access to safe water, inadequate sanitation, and hygiene services. ⁽¹¹⁾

Regarding factors associated with improved drinking water sources and toilet facilities: Sex of household heads, region, residence, family size, time to get to drinking water source, age of household head, educational level, and marital status of the household heads were factors associated with access to an improved drinking water source and toilet facilities based on previous studies. ^(2, 12-16)

In Sub-Saharan Africa, particularly in Ethiopia access to improved sources of drinking water and toilet facilities is still lacking and people are practicing open defecation. ^(17, 18) Therefore, the current study aimed to assess access to improved drinking water sources and toilet facilities and their associated factors in Ethiopia using EDHS 2016 data.

to beet even only

METHODS

Patient and public involvement

This study was based on a publicly available data set (EDHS 2016). Thus, there were no patients or members of the public involved.

Study design and area

The 2016 main EDHS was a cross-sectional survey conducted from 18 January 2016 to 27 June 2016 in Ethiopia by the Ethiopian Central Statistical Agency (ECSA). For our case, we use an indepth secondary data analysis of the survey. The 2016 EDHS survey was the fourth survey conducted in each of the 11 regions of Ethiopia (9 regional states and 2 administrative cities). Administratively, each region in Ethiopia is divided into Zones, each Zone, in turn, is divided into Woredas, and each Woreda into Kebeles (the lowest administrative units in the country). ⁽¹⁹⁾

Data sources

Data were obtained from 2016 Ethiopian Demographic and Health Survey (EDHS-2016) after being registered as an authorized user. The survey collects data on key indicators of health and health-related events including access to drinking water and toilet facilities. A total of 16,650 households from 645 Enumeration Areas (EAs) were included in the survey. ⁽¹⁹⁾

N

Sample size and sampling procedure

A two-stage stratified cluster sampling technique was employed to select study participants. Sampling frame of the 2007 Population and Housing Censuses in which EAs were the sampling units for the first stage and households for the second stage was used. The detailed sampling

BMJ Open

procedure is presented elsewhere. ⁽¹⁹⁾ The current study included individual-level data for 16650 household heads as well as community characteristics of 645 clusters.

Variables of the study

The outcome variables are; access to improved drinking water sources and improved toilet facilities. The explanatory variables; include sex, age, educational level, marital status of the household heads, household wealth index, time to get to drinking water sources, family size, religion, media use, place of residence, and region.

Operational definitions

Improved sources of drinking water: a household is said to have access to an improved drinking water source if it has water piped into its dwelling, water piped to a yard/plot, a public tap/standpipe, a tube well/borehole, a protected dug well, a protected spring, rainwater, bottled water, or sachet water. ⁽²⁰⁾

Improved types of toilet facilities: a household is said to have access to improved toilet facilities if it has unshared flush/pour flush to piped sewer systems, septic tanks or pit latrines, ventilated improved pit latrines, composting toilets, or pit latrines with slabs. ⁽²⁰⁾

Data processing and analysis

Statistical analysis was performed using Stata 16.00 software. The weighted frequencies and the percentages (based on the population size of each region) were computed. The detailed weighting procedure is described elsewhere. ⁽¹⁹⁾

Multilevel binary logistic regression model was used to assess the impact of individual and community-level factors on households' access to an improved source of drinking water and improved toilet facilities. The model, which is most appropriate to consider the cluster random

effect in a multivariate setting and the reason to apply multilevel modeling was the nature of the data collected which have a hierarchical or clustered structure. The first level represents the individual and household and the second level factor is the clusters. Four models were tested in each of the cases (access to an improved source of drinking water and toilet facilities). **Model 0** (the null model) was fitted without explanatory variables to test random variability in the intercept and to estimate the intraclass correlation coefficient (ICC). **Model I** was used to investigate the impact of individual-level factors on the likelihood of having access to improved sources of drinking water and toilet facilities. **Model II** was used to assess the impact of community-level factors on the likelihood of having access to improved sources of drinking water and toilet facilities. **Model II** was employed to assess the impact of individual and community-level factors altogether on access to improved sources of drinking water and toilet facilities.

The random effects (variation of effects) were measured by ICC, percentage change in variance (PCV), Median Odds Ratio (MOR), and deviance (-2log likelihood), which measure the variability between clusters in the multilevel models. The ICC explains the cluster variability, while MOR used to quantify unexplained cluster variability (heterogeneity). The MOR was used to translate cluster variance into OR scale. ⁽²¹⁻²³⁾ In the multilevel model, deviance can measure the total variation due to factors at the community and individual level. ^(22, 24)

Adjusted odds ratio with a 95% confidence interval were reported. P-value < 0.05 was used to declare a significant association among covariates and outcome variables. A multicollinearity test was performed to rule out if there was a significant correlation between explanatory variables. If the values of variance inflation factor (VIF) was lower than 10, then the collinearity problem was considered as less likely. ⁽²⁵⁾

RESULTS

Sociodemographic characteristics of study participants

A total of 16650 study participants were included in the study. The median (\pm SD) age of the household heads was 40 years (\pm 16.22 years, range 15 - 95). Approximately, seven out of ten (69.94%) of the households had access to improved sources of drinking water and only one-fourth (25.36%) of households had access to an improved source of toilet facilities. Majority (98.37%) of respondents had no education. About 68.55% of households were male-headed. [**Table 1**].

 Table 1: Sociodemographic characteristics of study participants in Ethiopia, EDHS 2016 (n=

 16650).

Variables		Frequency	Percent (%)
Source of drinking water	Improved	11,645	69.94
	Unimproved	5,005	30.06
Toilet facilities	Improved	4,222	25.36
	Unimproved	12,428	74.64
Sex of household head	Male	11,413	68.55
	Female	5,237	31.45
Age of household head (years)	13 to 30	4,257	25.57
	31 to 40	4,132	24.82
	41 to 56	4,230	25.41
	≥ 57	4,031	24.21
Education level of the household	No education	16,378	98.37
head	Primary education	93	0.56
	Secondary education	114	0.68
	Higher education	65	0.39
Current marital status household	Never married	1,046	6.29
head	Married	12,064	72.50

	Widowed	2,108	12.67
	Divorced	1,423	8.55
Wealth index	Poorest	4,676	28.08
	Poorer	2,348	14.10
	Middle	2,057	12.35
	Richer	2,020	12.13
	Richest	5,549	33.33
Time to get drinking water	\leq 30 minutes	9,821	58.98
	> 30 minutes	6,829	41.02
Number of household members	1-3 members	6,258	37.59
	4 – 6 members	7,031	42.23
	7 members and above	3,361	20.19
Residence	Urban	5,232	31.42
	Rural	11,418	68.58
Region	Tigray	1,734	10.41
	Afar	1,220	7.33
	Amhara	1,902	11.42
	Oromia	1,988	11.94
	Somali	1,564	9.39
	Benishangul-Gumuz	1,280	7.69
	SNNPR	1,897	11.39
	Gambella	1,280	7.69
	Harari	1,135	6.82
	Dire Dawa	1,161	6.97
	Addis Ababa	1,489	8.94

Regional distribution in terms of improved drinking water and toilet facility sources in Ethiopia

Among Ethiopian regions, nearly all households in Addis Abeba (99.40%) had access to improved sources of drinking water. On the contrary, Somali (56.52%) and Afar regions (51.39%) had the

BMJ Open

least access to an improved sources of drinking water. Households in Benishangul-Gumuz and Amhara regions were lowest in access to toilet facilities with 4.30% and 6.31%, respectively while households in Dire Dawa and Addis Ababa had the highest access to improved toilet facilities with 65.20% and 79.31%, respectively **[S1 Table 1]**.

Factors associated with access to improved drinking water sources

The proportion of households which had access to an improved sources of drinking water was 69.94% at [95% CI: (69.23, 70.63)]. Both individual-level factors and community-level factors had an impact on accessing improved drinking water sources in this study. Among individual-level factors; sex of household head and from community-level factors; wealth index, time to get to drinking water sources, residence and region were significantly associated with access to improved drinking water sources

Female-headed households were 1.18 [AOR = 1.18, CI: (1.01, 1.37)] times more likely to have access to improved drinking water sources than male-headed households.

Compared to poorest households, poorer [AOR = 1.48, CI: (1.26, 1.74)], middle-income [AOR = 2.42, CI: (2.03, 2.90)], richer [AOR = 3.26, CI: (2.68, 3.97)] and richest [AOR = 6.97, CI: (5.17, 9.41)] households were 1.48, 2.42, 3.26, and 6.97 times more likely to access improved drinking water sources at, respectively.

In contrasted with family units who got drinking water < 30 minutes, households who got drinking water \geq 30 minutes were 35% less likely to access drinking water [AOR = 0.65, CI: (0.58, 0.73)]. The adjusted odds of access to improved drinking water sources in rural area was 94.00% less likely compared to urban area [AOR = 0.06, CI: (0.03, 0.11)].

The likelihood of access to improved sources of drinking water were 95.00% [AOR = 0.05, (0.01, 0.21)] in Afar, 94.00% [AOR = 0.06, (0.01, 0.27)] in Amhara, 92.00% [AOR = 0.08, (0.02, 0.35)] in Oromia, 98.00% [AOR = 0.02, (0.01, 0.10)] in Somalia , 93.00% [AOR = 0.07, (0.02, 0.30)] in SNNPR, and 82.00% [AOR = 0.18 (0.04, 0.89)] in Harari as compared to improved water access in Addis Ababa city **[Table 2].**

Table 2: Multivariate multilevel logistic regression model of the effects of individual- and community-level factors on improved drinking water sources in Ethiopia, EDHS 2016

19			Null Model	Model I	Model II	Model III
20						
21 22	Varia	ibles		AOR(95% CI)	AOR(95% CI)	AOR(95% CI)
23	Sex of household	Male		1		1
24 25	head	Female		1.13 (0.97, 1.32)		1.18 (1.01, 1.37) ^a
26	Age of household	13 to 30		1		1
	head	31 to 40		0.99 (0.85, 1.14)		1.04 (0.89, 1.22)
29 30		41 to 56	(1.07 (0.92, 1.24)		1.13 (0.96, 1.33)
31		≥ 57		0.93 (0.80, 1.09)		1.00 (0.85, 1.17)
32 33	Education level of the	No education				1
34 35	household head	Primary		0.93 (0.50, 1.73)		0.98 (0.52, 1.83)
36		Secondary		1.69 (0.82, 3.49)		1.74 (0.83, 3.65)
37 38		Higher		1.51 (0.40, 5.70)		1.37 (0.34, 5.55)
39 40	Current marital status	Never married		1	2,	1
41	household head	Married		0.74 (0.54, 1.02)		1.02 (0.72, 1.43)
42 43		Divorced		0.71 (0.49, 1.04)		1.01 (0.68, 1.50)
44 45		Widowed		0.72 (0.49, 1.05)		0.98 (0.66, 1.45)
46	Wealth index	Poorest			1	1
47 48		Poorer			1.47 (1.25, 1.73) ^b	1.48 (1.26, 1.74) ^b
49		Middle			2.41 (2.01, 2.88) ^b	2.42 (2.03, 2.90) ^b
50 51		Richer			3.23 (2.66, 3.92) ^b	3.26 (2.68, 3.97) ^b
52 53		Richest			6.84 (5.07, 9.22) ^b	6.97 (5.17, 9.41) ^b
54	Time to get drinking	< 30 minutes			1	1
55 56 57	water	\geq 30 minutes			0.66 (0.58, 0.74) ^b	0.65 (0.58, 0.73) ^b

2 3 Number of k	1 11	1 2 1			1	1
4	nousehold	1-3 members			1	1
5 members		4 – 6 members			0.86 (0.77, 0.97) ^a	0.88 (0.77, 1.00)
6 7		7+			0.88 (0.76, 1.01)	0.88 (0.75, 1.04)
8 Residence		Urban			1	1
10		Rural			0.06 (0.03, 0.10) ^b	0.06 (0.03, 0.11) ^b
11 12 Region		Tigray			0.26 (0.06, 1.18)	0.26 (0.06, 1.17)
13		Afar			0.05 (0.01, 0.21) ^b	0.05 (0.01, 0.21) ^b
14 15		Amhara			0.06 (0.01, 0.27) ^b	0.06 (0.01, 0.27) ^b
16 17		Oromia			0.08 (0.02, 0.35) ^b	0.08 (0.02, 0.35) ^b
18		Somali			0.02 (0.01, 0.10) ^b	0.02 (0.01, 0.10) ^b
19 20		Benishangul Gumuz			0.39 (0.08, 1.80)	0.39 (0.08, 1.81)
21 22		SNNPR	5		0.07 (0.02, 0.30) ^b	0.07 (0.02, 0.30) ^b
23		Gambella	0		0.30 (0.06, 1.35)	0.29 (0.06, 1.33)
24 25		Harari	0		0.18 (0.04, 0.88) ^a	0.18 (0.04, 0.89) ^a
26		Dire Dawa			0.33 (0.07, 1.64)	0.33 (0.07, 1.63)
27 28		Addis Ababa			1	1
29 Random 30	Communi	ty level variance(SE)	12.24 (1.13) ^b	12.05 (1.11) ^b	4.75 (0.42) ^b	4.73 (0.41) ^b
31 effect	ICC (%)		78.81%	• 78.55%	59.08%	58.97%
32 33	MOR		9.05	8.96	5.64	5.62
34 35	PCV		Reference	1.55%	61.19	61.36%
36 Model fit	Log-likeli	hood	-5997.01	-5987.89	-5619.38	-5611.48
 37 statistics 38 	Deviance		11994.02	11975.78	11238.76	11222.96
39 Note:						
40 41 ^{a, b} significant	t at ^a P < 0.0	5; ^b P < 0.001;				
42 AOR: Adjust	ted Odds Ra	tio,				

43 CI: Confidence Interval, 44

45 Model 0- Empty (null) model

46 Model I- Only individual-level explanatory variables included in the model; 47

48 Model II- Only community-level explanatory variables included in the model;

49 Model III- Combined model; both individual-level and community-level explanatory variables 50

51 PCV: Proportional Change in Variance,

52 MOR: Median Odds Ratio 53

54

55

56

57

58

59

Factors associated with access to improved toilet facilities

The proportion of households with access to an improved source of toilet facility was 25.36% at [95% CI: (24.69%, 26.03%)]. Individual-level factors such as educational level of the household heads, marital status, and community level factors such as wealth index, source of drinking water, number of household members, residence, and region were factors significantly associated with households' access to improved toilet facilities.

Compared with households whose household heads had no education, households headed with those who attained higher education were 2.21 times more likely to have access to improved toilet facilities at [AOR = 2.21 CI: (1.12, 4.36)]. The likelihood of access to toilet facilities was 25% [AOR = 0.75, CI: (0.57, 0.98)] lower in households with widowed household heads, as compared to those who never married.

Households with poorer [AOR = 3.97 CI: (2.99, 5.29)], middle [AOR = 5.82 CI: (4.35, 7.80)], richer [AOR = 8.58 CI: (6.40, 11.50)], and richest wealth index [AOR = 23.94 CI: (17.45, 32.83)], were 3.97, 5.82, 8.58, and 23.94 times more likely to access improved toilet facilities as compared to households with the poorest wealth index, respectively.

Households who had improved sources of drinking water were 1.37 [AOR = 1.37 CI: (1.12, 1.66)] times more likely to have access to improved toilet facilities, compared with their counterparts. Compared to household which had one to three members, 24% of those with four to six members were [AOR = 0.86 (0.75, 0.98)] less likely to access improved toilet facilities.

About 72% of rural households were less likely to have access to improved toilet facilities as compared with those from urban residence [AOR = 0.28 CI: (0.20, 0.38)]. About 72.00% in Tigray [AOR = 0.28, CI: (0.17, 0.46)], 63.00% in Afar [AOR = 0.37, CI: (0.21, 0.67)], 96.00% in Amhara

BMJ Open

0.33)], 85% in Gambella [AOR = 0.15 CI:(0.09, 0.26)], and 60.00% in Harari [AOR = 0.40 CI:
(0.24, 0.66)] households were more likely to have access to improved toilet facilities as compared
to households in Addis Ababa city [Table 3].

Table 3: Multivariate multilevel logistic regression model of the effects of individual- and community-level factors on improved sources of toilet facilities in Ethiopia, EDHS 2016

19		Null Model	Model I	Model II	Model III
20		Null Model	Nodel I	Wodel II	Niodel III
21 Variab	les		AOR(95% CI)	AOR(95% CI)	AOR(95% CI)
2≸ex of household head	Male		1		1
24 25	Female	N'	1.01 (0.88, 1.16)		1.03 (0.89, 1.19)
26 Age of household head	13 to 30		1		1
27 28	31 to 40		0.99 (0.85, 1.15)		1.04 (0.89, 1.21)
29 30	41 to 56		0.98 (0.84, 1.15)		1.02 (0.86, 1.20)
31	≥ 57		0.98 (0.83, 1.16)		1.08 (0.91, 1.28)
32 3 ⁵ Education level of the	No education				1
³ household head 35	Primary		1.34 (0.67, 2.67)		1.19 (0.59, 2.40)
36	Secondary		0.74 (0.40, 1.36)		0.75 (0.41, 1.38)
37 38	Higher		2.26 (1.13, 4.54)	0,	2.21 (1.12, 4.36) ^b
³ Current marital status 40	Never married		1	2/	1
4 household head	Married		0.87 (0.71, 1.08)		0.99 (0.80, 1.22)
42 43	Divorced		0.69 (0.52, 0.91) ^b		0.82 (0.62, 1.08)
44	Widowed		0.66 (0.50, 0.86) ^c		0.75 (0.57, 0.98) ^b
45 46Wealth index	Poorest			1	1
47 48	Poorer			3.99 (3.00, 5.31) ^c	3.97 (2.99, 5.29) ^c
49	Middle			5.87 (4.39, 7.86) °	5.82 (4.35, 7.80) ^c
50 51	Richer			8.65 (6.46, 11.58) °	8.58 (6.40, 11.50) °
52 53	Richest			24.76 (18.08, 33.91) ^c	23.94 (17.45, 32.83) ^c
5≸ource of drinking	Unimproved			1	1
55 56 57	Improved			1.36 (1.12, 1.65) ^c	1.37 (1.12, 1.66) ^c

2			1			
$^{3}_{4}$ Number of	household	1 - 3 members			1	1
5 members		4 – 6 members			0.88 (0.78, 0.99) ^a	0.86 (0.75, 0.98) ^c
6 7		7+			1.07 (0.91, 1.26)	1.02 (0.86, 1.22)
⁸ Residence 9		Urban			1	1
10		Rural			0.28 (0.21, 0.39) °	0.28 (0.20, 0.38) ^c
¹¹ Region 12		Tigray			0.27 (0.16, 0.45) °	0.28 (0.17, 0.46) ^c
13		Afar			0.38 (0.21, 0.68) °	0.37 (0.21, 0.67) ^c
14 15		Amhara			0.04 (0.02, 0.06) °	0.04 (0.02, 0.06) ^c
16 17		Oromia			0.10 (0.06, 0.17) °	0.10 (0.06, 0.17) ^c
18		Somali			1.33 (0.79, 2.22)	1.32 (0.79, 2.21)
19 20		Benishangul G.	6		0.05 (0.03, 0.10) °	0.05 (0.03, 0.10) ^c
21		SNNPR	6		0.20 (0.12, 0.34) °	0.20 (0.12, 0.33) ^c
22 23		Gambella			0.15 (0.09, 0.26) °	0.15 (0.09, 0.26) ^c
24 25		Harari			0.40 (0.24, 0.66) °	0.40 (0.24, 0.66) ^c
26		Dire Dawa		4	1.13 (0.69, 1.87)	1.14 (0.69, 1.89)
27 28		Addis Ababa		6	1	1
29 Random 30	Community	v level variance(SE)	8.66 (0.73) ^c	8.71 (0.74) ^c	1.21 (0.12)°	1.22 (0.12) ^c
3¢ffect	ICC (%)		72.46%	72.58%	26.95%	27.08%
32 33	MOR		16.37	16.50	2.84	2.86
34	PCV		reference	-1.07%	86.03	85.91%
35 3∲∕Iodel fit	Log-likelih	ood	-5621.74	-5603.26	-5029.24	-5018.39
³⁷ statistics	Deviance		11243.48	11206.52	11036.78	10058.48

³Note: 40 4^{a, b, c} significant at ^a P < 0.05; ^b p < 0.01, ^c P < 0.001;

4AOR: Adjusted Odds Ratio,

43 44**CI:** Confidence Interval,

45Model 0- Empty (null) model

46 **Hodel I-** Only individual-level explanatory variables included in the model;

49Jodel II- Only community-level explanatory variables included in the model;

Model III- Combined model; both individual-level and community-level explanatory variables

FPCV: Proportional Change in Variance,

⁵MOR: Median Odds Ratio 53

54

55

56

57

58

59

Random-effects analysis

The prevalence rate of access to improved drinking water sources varied across communities (community-level variance = 12.24, p = <0.001) [Table 2]. The null model revealed that 78.81% of the total variance in the odds of access to improved drinking water sources was accounted by between-cluster variation of characteristics (ICC = 0.7881). The inter-cluster variability declined over successive models, from 78.81% in the null model to 78.55% in the only individual-level, 59.08% in the only community-level, and 58.97% in the final (combined) models. The proportional change in variance indicated that the addition of predictors to the empty model explained an increased proportion of variation in access to improved drinking water sources. The combined model showed that a higher PCV, i.e., 61.36% of the variance in access to improved drinking water sources to source sould be explained by the combined factors at the individual- and community-levels.

In [**Table 3**] the final model (**Model III**), ICC value of 0.2708 indicates that 27.08% of the total variation in access to improved toilet facilities is accounted for the community-level factors. The remaining 72.92% variation is therefore triggered by the individual- level and other unknown factors. The proportional change in variance indicated that the addition of predictors to the empty model explained an increased proportion of variation in access to improved toilet facilities. The combined model showed a higher PCV, i.e., 85.91% of the variance in access to improved toilet facilities facilities could be explained by the combined factors at the individual- and community-levels.

Model fit statistics

As shown in [Tables 2 & 3] (model fit statistics), the values of log-likelihood and Deviance showed a subsequent reduction which indicates that each model represents a significant

improvement over the previous model and it points to the goodness of fit for the final model built in the analysis.

DISCUSSION

In this study, we aimed to assess access to improved drinking water sources and sanitation facilities and their associated factors in Ethiopia. Accordingly, the proportion of households' access to improved drinking water sources was 69.94%, [95% CI: (69.23, 70.63)]. This finding is lower than reports from studies conducted in Ghana,⁽²⁾ Viet Nam,⁽¹⁶⁾, and Eswatini. ⁽¹⁴⁾ Whereas, it is higher than a reported proportion from a study conducted in Nepal. ⁽¹⁵⁾ The proportion of households' access to toilet facilities was 25.36%, [95% CI: (24.69, 26.03)]. This result is higher than the one reported from Ghana,⁽²⁾ However, lower than studies from Nigeria,⁽²⁶⁾ and Viet Nam. ⁽¹⁶⁾ The variation could be the disparities in GDP status and literacy rate among countries, study period, and setting.

Individual-level factors were associated with access to improved drinking water sources and toilet facilities in the present study. Female-headed households were 1.18 times more likely than male-headed households to access improved drinking water sources. Similar findings were reported from Ghana, Vietnam, and Nigeria. ^(2, 16, 27) Gender differences may play an important role in the work division in developing countries. Most of the time women have higher household responsibilities such as fetching water, cleaning compound, childcare, and food preparation, etc. Therefore, this might be directly linked with water and sanitation in the sense that women may be preoccupied with other daily routines than WASH.

Page 21 of 31

BMJ Open

Those households with heads having better educational status were 2.21 times more likely to access improved toilet facilities. This finding supported by evidence from previous studies.^(14, 26, 28) Households who are led by heads who have no education had a lower probability of access to improved toilet facilities. In sub-Saharan Africa, education is a resource factor of quality health outcomes, and educated people usually are more aware of the condition that guarantees their well beings. This implies that educated household heads in this study may have utilized their resources to provide their households with improved toilet facilities.

In addition to individual level factors, community-level factors were also associated with access to improved drinking water sources and toilet facilities. When compared to households within a poorest category, households within poorer, middle, richer and richest wealth index category were 1.48, 2.42, 3.26, and 6.97 times more likely to have access to improved sources of drinking water and 3.97, 5.82, 8.58, and 23.94 times higher odds to access improved toilet facilities, respectively. This result is consistent with results from previous studies.^(13, 14, 29) People who have better income would intend to fulfill the necessities of life. Economically, the rich can afford the initial high cost of both water and sanitation facilities and the poor may be disproportionately underserved in the distribution of public utility, and hence consume poor quality water and use unimproved sanitation facilities.

Compared with households that got drinking water < 30 minutes, households which obtained drinking water \geq 30 minutes were 35% less likely to access improved drinking water sources. Hence, the length of time to get drinking (proximity of a house to a drinking water source) water might make difference in access to improved sources of drinking water and coverage (%) with improved water supply (HH connection, public standpipes, protected underground water sources,

rainwater collection). This is not surprising as physical distance is one of the reasons of WASH service in accessibilities.

The adjusted odds of access to improved drinking water sources and toilet facilities were 94.00% and 72.00% less likely among rural households as compared to urban households, respectively. The rural-urban disparity in access to improved sources of drinking water and toilet facilities have been reported by several other previous studies, too. ^(12, 30, 31). The disparity might be, in sub-Saharan Africa, most of the people live in rural areas and their economic status is poor. Therefore, they do not have adequate financial resources to acquire improved drinking water sources and toilet facilities.

Furthermore, households who had improved sources of drinking water were 1.37 times more likely to access an improved toilet facilities. This study finding is consistent with an earlier study. ⁽²⁶⁾ The possible explanation could be a lack of access to adequate sanitation is also linked to the limited access to water supply and households who had improved water sources may be practicing more in hygiene and sanitation.

Lastly, those households with four to six were 24% less likely access to improved toilet facilities compared to households with a family size of one to three. This is contrary to that of an earlier study. ⁽²⁾ The possible explanation could be the highest number of household members, the fewer resources they could have to build improved toilet facilities.

CONCLUSION

The proportion of households' access to an improved source of drinking water and sanitation facility was low in the country. Sex of household head, wealth index, time to get drinking water, residence, and region were associated with access to improved drinking water sources. Educational level of the household head, wealth index, being widowed, source of drinking water, number of household members, residence, and region were factors associated with access to improved toilet facilities. Thus, governmental and non-governmental organizations working on water, hygiene, and sanitation should consider a multi-faceted policy approach that accounts for the regions and residence variations and other identified factors to ease the problem.

Acknowledgments

We would like to thank the Demographic and Health Survey (DHS) Programme for allowing the use of Ethiopian Demographic and Health Survey (EDHS) data for this study.

Competing interests: None declared.

Patient consent for publication: Not required.

Ethics approval: The EDHS 2016 was approved by the National Research Ethics Review Committee of Ethiopia and ICF Macro International. The approval letter was obtained from the measure DHS for the use of this data, and the dataset was downloaded from <u>www.meauredhs.com</u>. This analysis was approved by the Department of Environmental and occupational health and safety, University of Gondar.

Funding

The author(s) received no specific funding for this work.

Availability of data and materials

The dataset analyzed during the current study available from the corresponding author on reasonable request.

Authors' contributions

ZA wrote the analyzed data, drafted the paper, and prepared the manuscript. HD, ZNA, AAT, BD, AG, and YY drafted the paper, writing – review & editing, and commented on the manuscript. All the authors read and approved the final manuscript.

BMJ Open

REFERENCES

1. Prüss-Ustün A, Wolf J, Bartram J, Clasen T, Cumming O, Freeman MC, et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low-and middle-income countries. International journal of hygiene and environmental health. 2019;222(5):765-77.

2. Agbadi P, Darkwah E, Kenney PL. A Multilevel Analysis of Regressors of Access to Improved Drinking Water and Sanitation Facilities in Ghana. Journal of environmental and public health. 2019;2019.

3. Assembly UG. Resolution on Human Right to Water and Sanitation. New York: United Nations. 2010.

4. Brookes JD, Carey CC. Ensure availability and sustainable management of water and sanitation for all. UN Chronicle. 2015;51(4):15-6.

5. Mills JE, Cumming O. The impact of water, sanitation and hygiene on key health and social outcomes. URL: https://www lshtm ac uk/sites/default/files/2017-07/WASHEvidencePaper HighRes 01. 2016;23.

6. Saxena SK, Kumar S, Haikerwal A, Bhatt ML. Introductory chapter: Neglected tropical waterborne infectious diseases-strategies for mitigation. Water Challenges of an Urbanizing World. 2018:1.

7. Organization WH. Water, sanitation, hygiene, and waste management for the COVID-19 virus: interim guidance, 23 April 2020. World Health Organization, 2020.

8. Organization WH. Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. 2017.

9. Organization WH. Water, sanitation, hygiene and health: a primer for health professionals.World Health Organization, 2019.

10. Organization WH. Safer water, better health. 2019.

11. UNICEF. Water, sanitation and hygiene (WASH) 2020 [cited 2020 April, 14]. Available from: https://www.unicef.org/ethiopia/water-sanitation-and-hygiene-wash.

12. Mulenga JN, Bwalya BB, Kaliba-Chishimba K. Determinants and inequalities in access to improved water sources and sanitation among the Zambian households. International Journal of Development and Sustainability. 2017;6(8):746-62.

13. Morakinyo OM, Adebowale SA, Oloruntoba EO. Wealth status and sex differential of household head: implication for source of drinking water in Nigeria. Archives of Public Health. 2015;73(1):58.

14. Simelane MS, Shongwe MC, Vermaak K, Zwane E. Determinants of Households' Access to Improved Drinking Water Sources: A Secondary Analysis of Eswatini 2010 and 2014 Multiple Indicator Cluster Surveys. Advances in Public Health. 2020;2020.

15. Wang C, Pan J, Yaya S, Yadav RB, Yao D. Geographic Inequalities in Accessing Improved Water and Sanitation Facilities in Nepal. International journal of environmental research and public health. 2019;16(7):1269.

16. Tuyet-Hanh TT, Long TK, Van Minh H, Huong LTT. Longitudinal household trends in access to improved water sources and sanitation in Chi Linh town, Hai Duong province, Viet Nam and associated factors. AIMS public health. 2016;3(4):880.

17. Organization WH, UNICEF. Progress on drinking water and sanitation: special focus on sanitation. Progress on drinking water and sanitation: special focus on sanitation2008.

BMJ Open

18. Beyene A, Hailu T, Faris K, Kloos H. Current state and trends of access to sanitation in Ethiopia and the need to revise indicators to monitor progress in the Post-2015 era. BMC public health. 2015;15:451-.

Central Statistical Agency (CSA). Central Statistical Agency (CSA) [Ethiopia] and ICF
 Ethiopia demographic and health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland,
 USA: CSA and ICF,2017.

20. Supply WUJW, Programme SM, Organization WH, Supply WUJMPfW, Sanitation, UNICEF. Water for life: making it happen: World health organization; 2005.

21. Merlo J, Chaix B, Ohlsson H, Beckman A, Johnell K, Hjerpe P, et al. A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena. Journal of Epidemiology & Community Health. 2006;60(4):290-7.

22. Merlo J, Yang M, Chaix B, Lynch J, Råstam L. A brief conceptual tutorial on multilevel analysis in social epidemiology: investigating contextual phenomena in different groups of people. Journal of Epidemiology & Community Health. 2005;59(9):729-36.

23. Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health: integrating random and fixed effects in multilevel logistic regression. American journal of epidemiology. 2005;161(1):81-8.

24. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. Journal of the royal statistical society: Series b (statistical methodology). 2002;64(4):583-639.

25. Hair Jr JF. Multivariate Data Analysis Joseph F. Hair Jr. William C. Black Barry J. Babin Rolph E. Anderson Seventh Edition.

26. Abubakar IR. Access to sanitation facilities among Nigerian households: determinants and sustainability implications. Sustainability. 2017;9(4):547.

27. Morakinyo OM, Adebowale SA, Oloruntoba EO. Wealth status and sex differential of household head: implication for source of drinking water in Nigeria. Archives of public health = Archives belges de sante publique. 2015;73:58.

28. Akpakli DE, Manyeh AK, Akpakli JK, Kukula V, Gyapong M. Determinants of access to improved sanitation facilities in rural districts of southern Ghana: evidence from Dodowa Health and Demographic Surveillance Site. BMC Res Notes. 2018;11(1):473-.

29. Njuguna J. Progress in sanitation among poor households in Kenya: evidence from demographic and health surveys. BMC public health. 2019;19(1):135.

30. Irianti S, Prasetyoputra P, Sasimartoyo TP. Determinants of household drinking-water source in Indonesia: An analysis of the 2007 Indonesian family life survey. Cogent Medicine. 2016;3(1).

31. Prasetyoputra P, Irianti S. Access to improved sanitation facilities in indonesia: An econometric analysis of geographical and socioeconomic disparities. Journal of Applied Sciences in Environmental Sanitation. 2013;8(3).

Supplementary Table 1: Regional distribution of access to improved drinking water sources and toilet facilities in Ethiopia, EDHS, 2016.

Region	Source of dr	inking water	Toilet fa	cilities
-	Unimproved	Improved	Unimproved	Improved
Tigray	410 (23.64%)	1,324 (76.36%)	1,380 (79.58%)	354 (20.42%)
Afar	627 (51.39%)	593 (48.61%)	1,032 (84.59%)	188 (15.41%)
Amhara	741 (38.96%)	1,161 (61.04%)	1,782 (93.69%)	120 (6.31%)
Oromia	746 (37.53%)	1,242 (62.47%)	1,785 (89.79%)	203 (10.21%)
Somali	884 (56.52%)	680 (43.48%)	1,145 (73.21%)	419 (26.79%)
Benishangul Gumuz	271 (21.17%)	1,009 (78.83%)	1,225 (95.70%)	55 (4.30%)
SNNPR	775 (40.85%)	1,122 (59.15%)	1,650 (86.98%)	247 (13.02%)
Gambella	246 (19.22%)	1,034 (80.78%)	1,098 (85.78%)	182 (14.22%)
Harari	179 (15.77%)	956 (84.23%)	619 (54.54%)	516 (45.46%)
Dire Dawa	117 (10.08%)	1,044 (89.92%)	404 (34.80%)	757 (65.20%)
Addis Ababa	9 (0.60%)	1,480 (99.40%)	308 (20.69%)	1,181 (79.31%)
Total	5005(30.06%)	11,645	12,428	4,222
		(69.94%)	(74.64%)	(25.36%)
'	/	2		

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.annals.org/, and Epidemiology at http://www.strobe-statement.org.

1	(a) Indicate the study's design with a compact buyer distance in the title $-\pi$ the	Page No.
	(a) Indicate the study's design with a commonly used term in the title or the	
	abstract	
	(b) Provide in the abstract an informative and balanced summary of what was	
	done and what was found	
	\sim	
2	Explain the scientific background and rationale for the investigation being	
	reported	
3	State specific objectives, including any prespecified hypotheses	
	\sim	
Λ	Present key elements of study design early in the paper	1
4	Present key elements of study design early in the paper	
5	Describe the setting, locations, and relevant dates, including periods of	
	recruitment, exposure, follow-up, and data collection	
6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
	selection of participants. Describe methods of follow-up	
	<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of	
	case ascertainment and control selection. Give the rationale for the choice of	
	cases and controls	
	<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of	
	selection of participants	
	(b) Cohort study—For matched studies, give matching criteria and number of	
	exposed and unexposed	
	<i>Case-control study</i> —For matched studies, give matching criteria and the number	
	of controls per case	
7	Clearly define all outcomes, exposures, predictors, potential confounders, and	
	effect modifiers. Give diagnostic criteria, if applicable	
	3 4 5 6	done and what was found 2 Explain the scientific background and rationale for the investigation being reported 3 State specific objectives, including any prespecified hypotheses 4 Present key elements of study design early in the paper 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case 7 Clearly define all outcomes, exposures, predictors, potential confounders, and

Section and Item	Item No.	Recommendation	Reported Page No
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		Case-control study—If applicable, explain how matching of cases and controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures	

		BMJ Open	Page
Section and Item	ltem No.	Recommendation	Reported o Page No.
Main Results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	
		and their precision (eg, 95% confidence interval). Make clear which confounders	
		were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other Analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key Results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
	_	multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other Information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	
•		r cases and controls in case-control studies and, if applicable, for exposed and unexposes.	ed groups in
cohort and cross-sectio	onal studie		5
cohort and cross-section	onal studio	es.	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5 .
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5
cohort and cross-section	onal studio	es. hecklist, please save a copy and upload it as part of your submission. DO NOT include	5

BMJ Open

Households' access to improved drinking water sources and toilet facilities in Ethiopia: A multilevel analysis based on 2016 Ethiopian Demographic and Health Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042071.R1
Article Type:	Original research
Date Submitted by the Author:	11-Jan-2021
Complete List of Authors:	Andualem , Zewudu ; University of Gondar College of Medicine and Health Sciences, Department of Environmental and Occupational health and Safety Dagne, Henok; University of Gondar College of Medicine and Health Sciences, Environmental and Occupational Health and Safety; University of Gondar, Environmental and Occupational Health and Safety Azene, Zelalem; University of Gondar College of Medicine and Health Sciences, Department of Women's and family health, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia.; University of Gondar, Ethiopia taddese, Asefa; University of Gondar College of Medicine and Health Sciences, Epidemiology and Biostatistics Dagnew, Baye ; University of Gondar College of Medicine and Health Sciences, Human Physiology; Mr. Fisseha, Roman ; Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia. Muluneh, Atalay; University of Gondar College of Medicine and Health Sciences, Epidemiology and Bio statistics ; Yeshaw, Yigizie; University of Gondar College of Medicine and Health Sciences, Redical Physiology
Primary Subject Heading :	Public health
Secondary Subject Heading:	Occupational and environmental medicine
Keywords:	PUBLIC HEALTH, PREVENTIVE MEDICINE, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
8
9
10
11
11 12 13 14 15 16 17
12
13
14
15
16
17
18
19
20
21
22
22 23
24
25
26
27
28
29
30
30 31
32
33
22
34 35
35
36
36 37
38
39
40
41
42
43
43 44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

1 h

Households' access to improved drinking water sources and toilet facilities in Ethiopia: A 1 multilevel analysis based on 2016 Ethiopian Demographic and Health Survey 2

Zewudu Andualem^{1*}, Henok Dagne¹, Zelalem Nigussie Azene², Asefa Adimasu Taddese³, Baye Dagnew⁴, 3

Roman Fisseha⁵, Atalay Goshu Muluneh³, and Yigizie Yeshaw⁴ 4

- 5 ¹Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of
- Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia 6
- 7 ²Department of Women's and family health, School of Midwifery, College of Medicine and Health
- Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia. 8
- 9 ³Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health
- 10 Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia
- 11 ⁴Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences,
- 12 University of Gondar, P. O. Box 196 Gondar, Ethiopia
 - ⁵Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of 13 Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia. 14
 - 15 *Corresponding author

Authors' email address 16

- 17 [ZA] Zewudu Andualem: zewuduandualem12@gmail.com, [HD] Henok Dagne: enoch2313@gmail.com,
- [ZNA] Zelalem Nigussie Azene: znigussie35@gmail.com, [AAT] Asefa Adimasu Taddese: 18
- 19 adimasuasefa@gmail.com, [BD] Baye Dagnew: bayedagnew7@gmail.com, [RF] Roman Fisseha:
- romanfisseha85@gmail.com, [AGM] Atalay Goshu Muluneh: atalayg1921@gmail.com, and [YY] Yigizie 20
 - 21 Yeshaw: yigizieyeshaw29@gmail.com

60

22

BMJ Open

24 ABSTRACT

Objective: This study aimed to assess households' access to improved drinking water sources
 and sanitation facilities and their associated factors in Ethiopia

Design: Cross-sectional study

Setting: Ethiopia

29 Participants: Household heads

Primary outcomes: Access to improved drinking water sources and sanitation facilities

Methods: We conducted an in-depth secondary data analysis of 2016 Ethiopian Demographic and Health Survey (EDHS). Data from a total of 16650 households and 645 clusters were included in the analysis. The households in the EDHS were selected using a stratified two-stage cluster sampling technique. Multilevel binary logistic regression analyses were performed to identify factors associated with access to an improved drinking water source and toilet facilities. Adjusted odds ratio with a 95% CI were reported. P-value < 0.05 was used to declare a significant association between the covariates and outcomes.

Results: The proportions of households' access to improved sources of drinking water and toilet facilities were 69.94%, [95% CI: (69.23, 70.63)], and 25.36%, [95% CI: (24.69, 26.03)], respectively. Female headed households [AOR = 1.18, 95% CI: (1.01, 1.37)] and better wealth index, \geq 30 minutes time to obtain drinking water [AOR = 0.65, 95% CI: (0.58, 0.73)], rural residence [AOR = 0.06, 95% CI: (0.03, 0.11)] and region were factors associated with access to improved drinking water source. Whereas, higher educational status [AOR = 2.21, 95% CI: (1.12, 4.36)], being widowed [AOR = 0.75, 95% CI: (0.57, 0.98)], improved source of drinking water

1 2		
2 3 4	45	[AOR =1.37, 95% CI: (1.12, 1.66)], household size [4 to 6] [AOR = 0.86, 95% CI: (0.75, 0.98)],
5 6	46	rural residence [AOR = 0.28 , 95% CI: (0.20 , 0.38)], households with better wealth index, and
7 8 9	47	region were significantly associated with access to improved toilet facilities
10 11	48	Conclusion: The proportions of households' access to improved drinking water sources and toilet
12 13 14	49	facilities in Ethiopia was relatively low.
15 16 17	50	Keywords: Improved toilet facilities, improved water sources, multilevel analysis, Ethiopia
18 19 20	51	Keywords: Improved toilet facilities, improved water sources, multilevel analysis, Ethiopia
21 22		
23 24		
25 26		
27		
28 29		
30		
31 32		
33		
34 35		
36 27		
37 38		
39 40		
40		
42 43		
44		
45 46		
47		
48 49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	53	Strength and limitations of the study
5 6 7	54	The use of nationally representative data that can enhance the generalizability of the finding
8 9	55	is one of the strength of the study.
10 11 12	56	The Due to the inherent nature of a cross-sectional study, it does not show the temporal
13 14	57	relationship between the outcome status and predictors.
15 16	58	The Moreover, important variables such as culture, traditions, and social norms were not
17 18 19	59	available in EDHS data which could influence the use of toilet facility type.
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53	60	available in EDHS data which could influence the use of toilet facility type.
55 56 57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INTRODUCTION

 Access to safe water and basic sanitation is one of the fundamental human rights, and an essential step towards improving living standards to maintain and improve health, human growth, and development. ⁽¹⁻³⁾ It is one of the critical sustainable development challenges. Sustainable Development Goal (SDG) 6 aims to ensure the availability and sustainable management of water and sanitation for all by 2030. ⁽⁴⁾

Unimproved sources of drinking water and sanitation facilities are responsible for increased risks of various infectious diseases such as; cholera, typhoid, schistosomiasis, infections of the respiratory systems, skin, and eye. (1, 5, 6) The currently available evidences also indicate that to prevent the novel coronavirus disease (COVID-19) outbreak, the provision of safe water, sanitation, and hygienic conditions is essential. ⁽⁷⁾

Globally, 2 billion people lack basic sanitation services and 785 million people have no access to clean water. ⁽⁸⁾ More than 1.9 million deaths and 123 million disability-adjusted life-years (DALYs) could have been prevented by the provision of adequate access to water, hygiene, and sanitation (WASH) worldwide. The WASH-attributable disease burden accounts to 4.6% of global DALYs and 3.3% of global mortality. ⁽⁹⁾ The burden of under 5 mortality was 13%. ⁽¹⁰⁾ In Ethiopia, 60 to 80 % of communicable diseases are attributed to limited access to safe water, inadequate sanitation, and hygiene services. ⁽¹¹⁾

Regarding factors associated with improved drinking water sources and toilet facilities: Sex of household heads, region, residence, family size, time to get to drinking water source, age of household head, educational level, and marital status of the household heads were factors associated with access to an improved drinking water source and toilet facilities based on previous studies. ^(2, 12-16)

In Sub-Saharan Africa, particularly in Ethiopia access to improved sources of drinking water and toilet facilities is still lacking and people are practicing open defecation. (17, 18) There was no statistical approach in the study using nationally representative data (2016 EDHS data), which accounts for the hierarchical nature of the data. However, in 2014 national studies conducted in Sub-Saharan African countries indicates that the spatial coverage in use of improved drinking water supply and sanitation. (19) Therefore, the current study aimed to assess access to improved drinking water sources and toilet facilities and their associated factors in Ethiopia using EDHS Toreterien ont 2016 data.

92 METHODS

93 Patient and public involvement

This study was based on a publicly available data set (EDHS 2016). Thus, there were no patientsor members of the public involved.

96 Study design and area

97 The 2016 main EDHS was a cross-sectional survey conducted from 18 January 2016 to 27 June 98 2016 in Ethiopia by the Ethiopian Central Statistical Agency (ECSA). For our case, we use an in-99 depth secondary data analysis of the survey. The 2016 EDHS survey was the fourth survey 100 conducted in each of the 11 regions of Ethiopia (9 regional states and 2 administrative cities). 101 Administratively, each region in Ethiopia is divided into Zones, each Zone, in turn, is divided into 102 Woredas, and each Woreda into Kebeles (the lowest administrative units in the country). ⁽²⁰⁾

103 Data sources

Data were obtained from 2016 Ethiopian Demographic and Health Survey (EDHS-2016) after
being registered as an authorized user. The survey collects data on key indicators of health and
health-related events including access to drinking water and toilet facilities. A total of 16,650
households from 645 Enumeration Areas (EAs) were included in the survey. ⁽²⁰⁾

108 Sample size and sampling procedure

A two-stage stratified cluster sampling technique was employed to select study participants.
Sampling frame of the 2007 Population and Housing Censuses in which EAs were the sampling
units for the first stage and households for the second stage was used. A total of 18,008 households
were selected for the sample, of which 17,067 were occupied. Of the occupied households, 16,650

BMJ Open

2		
_		
3		
4		
_		
5		
6		
0		
7		
'		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	/	
1	8	
1	9	
2	0	
2		
ว	2	
2	3	
2	4	
	5	
2	С	
2	6	
2	7	
2	8	
า	9	
ર	0	
3	1	
3	2	
2	3	
2	4	
3	5	
3	6	
3	7	
ર	8	
3	9	
4	0	
4	1	
4	2	
4	3	
	4	
4	5	
4	6	
4		
۵	8	
4	9	
5	0	
5		
5	2	
5	3	
	4	
5	5	
5	6	
5		
5	8	
	0	

60

were successfully interviewed, yielding a response rate of 98%. ⁽²⁰⁾ The current study included
individual-level data for 16650 household heads as well as community characteristics of 645
clusters.

116 Variables of the study

117 The outcome variables are; access to improved drinking water sources and improved toilet 118 facilities. The explanatory variables; include sex, age, educational level, marital status of the 119 household heads, household wealth index, time to get to drinking water sources, family size, 120 religion, media use, place of residence, and region.

121 **Operational definitions**

Improved sources of drinking water: a household is said to have access to an improved drinking water source if it has water piped into its dwelling, water piped to a yard/plot, a public tap/standpipe, a tube well/borehole, a protected dug well, a protected spring, rainwater, bottled water, or sachet water. ⁽²¹⁾

Improved types of toilet facilities: a household is said to have access to improved toilet facilities
 if it has unshared flush/pour flush to piped sewer systems, septic tanks or pit latrines, ventilated
 improved pit latrines, composting toilets, or pit latrines with slabs. ⁽²¹⁾

4 129 Data processing and analysis

Statistical analysis was performed using Stata 16.00 software. The weighted frequencies and the
 percentages (based on the population size of each region) were computed. The detailed weighting
 procedure is described elsewhere. ⁽²⁰⁾

Multilevel binary logistic regression model was used to assess the impact of individual andcommunity-level factors on households' access to an improved source of drinking water and

improved toilet facilities. The model, which is most appropriate to consider the cluster random effect in a multivariate setting and the reason to apply multilevel modeling was the nature of the data collected which have a hierarchical or clustered structure. The first level represents the individual and household and the second level factor is the clusters. Four models were tested in each of the cases (access to an improved source of drinking water and toilet facilities). Model 0 (the null model) was fitted without explanatory variables to test random variability in the intercept and to estimate the intraclass correlation coefficient (ICC). Model I was used to investigate the impact of individual-level factors on the likelihood of having access to improved sources of drinking water and toilet facilities. Model II was used to assess the impact of community-level factors on the likelihood of having access to improved sources of drinking water and toilet facilities. Model III was employed to assess the impact of individual and community-level factors altogether on access to improved sources of drinking water and toilet facilities.

The random effects (variation of effects) were measured by ICC, percentage change in variance (PCV), Median Odds Ratio (MOR), and deviance (-2log likelihood), which measure the variability between clusters in the multilevel models. The ICC explains the cluster variability, while MOR is used to quantify unexplained cluster variability (heterogeneity). The MOR was used to translate cluster variance into OR scale. ⁽²²⁻²⁴⁾ In the multilevel model, deviance can measure the total variation due to factors at the community and individual levels. ^(23, 25)

Adjusted odds ratio with a 95% confidence interval were reported. P-value < 0.05 was used to declare a significant association among covariates and outcome variables. A multicollinearity test was performed to rule out if there was a significant correlation between explanatory variables. If the values of variance inflation factor (VIF) was lower than 10, then the collinearity problem was considered as less likely. ⁽²⁶⁾ RESULTS

1

BMJ Open

2 3 4 5	158
6 7	159
8 9 10	160
11 12 13	161
13 14 15	162
16 17	163
18 19 20	164
21 22	165
23 24	166
$\begin{array}{c} 25\\ 26\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 43\\ 44\\ 56\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 9\\ 60\\ \end{array}$	

59 Socio-demographic characteristics of study participants

A total of 16650 study participants were included in the study. The median (±SD) age of the household heads was 40 years (± 16.22 years, range 15 - 95). Approximately, seven out of ten (69.94%) of the households had access to improved sources of drinking water and only one-fourth (25.36%) of households had access to an improved source of toilet facilities. Majority (98.37%) of respondents had no education. About 68.55% of households were male-headed. [**Table 1**].

Table 1: Socio-demographic characteristics of study participants in Ethiopia, EDHS 2016 (n= 16650)

Variables		Frequency	Percent (%)
Source of drinking water	Improved	11,645	69.94
	Unimproved	5,005	30.06
Toilet facilities	Improved	4,222	25.36
	Unimproved	12,428	74.64
Sex of household head	Male	11,413	68.55
	Female	5,237	31.45
Age of household head (years)	13 to 30	4,257	25.57
	31 to 40	4,132	24.82
	41 to 56	4,230	25.41
	≥ 57	4,031	24.21
Education level of the household	No education	16,378	98.37
head	Primary education	93	0.56
	Secondary education	114	0.68
	Higher education	65	0.39
Current marital status household	Never married	1,046	6.29
head	Married	12,064	72.50

	Widowed	2,108	12.67
	Divorced	1,423	8.55
Wealth index	Poorest	4,676	28.08
	Poorer	2,348	14.10
	Middle	2,057	12.35
	Richer	2,020	12.13
	Richest	5,549	33.33
Time to get drinking water	\leq 30 minutes	9,821	58.98
	> 30 minutes	6,829	41.02
Number of household members	1-3 members	6,258	37.59
	4 – 6 members	7,031	42.23
	7 members and above	3,361	20.19
Residence	Urban	5,232	31.42
	Rural	11,418	68.58
Region	Tigray	1,734	10.41
	Afar	1,220	7.33
	Amhara	1,902	11.42
	Oromia	1,988	11.94
	Somali	1,564	9.39
	Benishangul-Gumuz	1,280	7.69
	SNNPR	1,897	11.39
	Gambella	1,280	7.69
	Harari	1,135	6.82
	Dire Dawa	1,161	6.97
	Addis Ababa	1,489	8.94

169 Among Ethiopian regions, nearly all households in Addis Abeba (99.40%) had access to improved

sources of drinking water. On the contrary, Somali (56.52%) and Afar regions (51.39%) had the

Page 13 of 30

BMJ Open

1 2		
3 4	171	least access to improved sources of drinking water. Households in Benishangul-Gumuz and
5 6	172	Amhara regions were lowest in access to toilet facilities with 4.30% and 6.31%, respectively while
7 8 9	173	households in Dire Dawa and Addis Ababa had the highest access to improved toilet facilities with
10 11 12	174	65.20% and 79.31%, respectively [S1 Table 1].
13 14 15	175	Factors associated with access to improved drinking water sources
16 17	176	The proportion of households which had access to improved sources of drinking water was 69.94%
18 19	177	at [95% CI: (69.23, 70.63)]. Both individual-level factors and community-level factors had an
20 21 22	178	impact on accessing improved drinking water sources in this study. Among individual-level
23 24	179	factors; sex of household head and from community-level factors; wealth index, time to get to
25 26	180	drinking water sources, residence, and region were significantly associated with access to
27 28 29	181	improved drinking water sources
30 31 32	182	Female-headed households were 1.18 [AOR = 1.18, CI: (1.01, 1.37)] times more likely to have
32 33 34 35	183	access to improved drinking water sources than male-headed households.
35 36 37	184	Compared to poorest households, poorer [AOR = 1.48, CI: (1.26, 1.74)], middle-income [AOR =
38 39	185	2.42, CI: (2.03, 2.90)], richer [AOR = 3.26, CI: (2.68, 3.97)] and richest [AOR = 6.97, CI: (5.17,
40 41	186	9.41)] households were 1.48, 2.42, 3.26, and 6.97 times more likely to access improved drinking
42 43 44	187	water sources, respectively.
45 46 47	188	In contrasted with family units who got drinking water < 30 minutes, households who got drinking
48 49	189	water \geq 30 minutes were 35% less likely to access drinking water [AOR = 0.65, CI: (0.58, 0.73)].
50 51 52	190	The adjusted odds of access to improved drinking water sources in rural area was 94.00% less
53 54 55 56	191	likely compared to urban area [AOR = 0.06 , CI: (0.03 , 0.11)].
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The likelihood of access to improved sources of drinking water were 95.00% [AOR = 0.05, (0.01, 0.21)] in Afar, 94.00% [AOR = 0.06, (0.01, 0.27)] in Amhara, 92.00% [AOR = 0.08, (0.02, 0.35)] in Oromia, 98.00% [AOR = 0.02, (0.01, 0.10)] in Somalia, 93.00% [AOR = 0.07, (0.02, 0.30)] in SNNPR, and 82.00% [AOR = 0.18 (0.04, 0.89)] in Harari as compared to improved water access in Addis Ababa city [Table 2].

Table 2: Multivariable multilevel logistic regression model of the effects of individual- and community-level factors on improved drinking water sources in Ethiopia, EDHS 2016

9		Null Model	Model I	Model II	Model III
Varia Varia	5	AOR(95% CI)	AOR(95% CI)	AOR(95% CI)	
23 Sex of household	Male		1		1
head	Female	0	1.13 (0.97, 1.32)		1.18 (1.01, 1.37) ^a
Age of household	13 to 30		1		1
head	31 to 40		0.99 (0.85, 1.14)		1.04 (0.89, 1.22)
29 80	41 to 56		1.07 (0.92, 1.24)		1.13 (0.96, 1.33)
31	≥ 57		0.93 (0.80, 1.09)		1.00 (0.85, 1.17)
Education level of the	No education				1
4 household head	Primary		0.93 (0.50, 1.73)		0.98 (0.52, 1.83)
86	Secondary		1.69 (0.82, 3.49)		1.74 (0.83, 3.65)
	Higher		1.51 (0.40, 5.70)		1.37 (0.34, 5.55)
⁹ Current marital status	Never married		1		1
household head	Married		0.74 (0.54, 1.02)		1.02 (0.72, 1.43)
	Divorced		0.71 (0.49, 1.04)		1.01 (0.68, 1.50)
14	Widowed		0.72 (0.49, 1.05)		0.98 (0.66, 1.45)
15 16 Wealth index	Poorest			1	1
17 18	Poorer			1.47 (1.25, 1.73) ^b	1.48 (1.26, 1.74) ^b
19	Middle			2.41 (2.01, 2.88) ^b	2.42 (2.03, 2.90) ^b
50 51	Richer			3.23 (2.66, 3.92) ^b	3.26 (2.68, 3.97) ^b
	Richest			6.84 (5.07, 9.22) ^b	6.97 (5.17, 9.41) ^b
⁴ Time to get drinking	< 30 minutes			1	1
5 56 water	≥ 30 minutes			0.66 (0.58, 0.74) ^b	0.65 (0.58, 0.73) ^b

2 ³ Number of	household	1 – 3 members			1	1
4 members	110 45 0110 14	4 - 6 members			0.86 (0.77, 0.97) ^a	0.88 (0.77, 1.00)
6 7		7+			0.88 (0.76, 1.01)	0.88 (0.75, 1.04)
8 Residence		Urban			1	1
9 10		Rural			0.06 (0.03, 0.10) ^b	0.06 (0.03, 0.11) ^b
11 12 Region		Tigray			0.26 (0.06, 1.18)	0.26 (0.06, 1.17)
13		Afar			0.05 (0.01, 0.21) ^b	0.05 (0.01, 0.21) ^b
14 15		Amhara			0.06 (0.01, 0.27) ^b	0.06 (0.01, 0.27) ^b
16 17		Oromia			0.08 (0.02, 0.35) ^b	0.08 (0.02, 0.35) ^b
18		Somali			0.02 (0.01, 0.10) ^b	0.02 (0.01, 0.10) ^b
19 20		Benishangul Gumuz			0.39 (0.08, 1.80)	0.39 (0.08, 1.81)
21 22		SNNPR	5		0.07 (0.02, 0.30) ^b	0.07 (0.02, 0.30) ^b
23		Gambella			0.30 (0.06, 1.35)	0.29 (0.06, 1.33)
24 25		Harari			0.18 (0.04, 0.88) ^a	0.18 (0.04, 0.89) ^a
26 27		Dire Dawa			0.33 (0.07, 1.64)	0.33 (0.07, 1.63)
28		Addis Ababa			1	1
29 Random 30	Communi	ity level variance(SE)	12.24 (1.13) ^b	12.05 (1.11) ^b	4.75 (0.42) ^b	4.73 (0.41) ^b
31 effect	ICC (%)		78.81%	78.55%	59.08%	58.97%
32 33	MOR		9.05	8.96	5.64	5.62
34 35	PCV		Reference	1.55%	61.19	61.36%
36 Model fit	Log-likeli	ihood	-5997.01	-5987.89	-5619.38	-5611.48
37 statistics38	Deviance		11994.02	11975.78	11238.76	11222.96
39 _{Note:} 40					2/	
41 ^{a, b} significat		5; b P < 0.001;				
42 AOR: Adju	sted Odds Ra	tio,				

43 **CI:** Confidence Interval, 43

45 Model 0- Empty (null) model

46 47 Model I- Only individual-level explanatory variables included in the model;

48 Model II- Only community-level explanatory variables included in the model;

49 Model III- Combined model; both individual-level and community-level explanatory variables 50

51 PCV: Proportional Change in Variance,

52 MOR: Median Odds Ratio

53		
54	199	
55		
56		
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

200 Factors associated with access to improved toilet facilities

The proportion of households with access to an improved source of toilet facility was 25.36% at [95% CI: (24.69%, 26.03%)]. Individual-level factors such as educational level of the household heads, marital status, and community level factors such as wealth index, source of drinking water, number of household members, residence, and region were factors significantly associated with households' access to improved toilet facilities.

Compared with households whose household heads had no education, households headed with those who attained higher education were 2.21 times more likely to have access to improved toilet facilities at [AOR = 2.21 CI: (1.12, 4.36)]. The likelihood of access to toilet facilities was 25% [AOR = 0.75, CI: (0.57, 0.98)] lower in households with widowed household heads, as compared to those who never married.

Households with poorer [AOR = 3.97 CI: (2.99, 5.29)], middle [AOR = 5.82 CI: (4.35, 7.80)],
richer [AOR = 8.58 CI: (6.40, 11.50)], and richest wealth index [AOR = 23.94 CI: (17.45, 32.83)],
were 3.97, 5.82, 8.58, and 23.94 times more likely to access improved toilet facilities as compared
to households with the poorest wealth index, respectively.

Households who had improved sources of drinking water were 1.37 [AOR = 1.37 CI: (1.12, 1.66)]
times more likely to have access to improved toilet facilities, compared with their counterparts. Compared
to household which had one to three members, 24% of those with four to six members were [AOR = 0.86
(0.75, 0.98)] less likely to access improved toilet facilities.

About 72% of rural households were less likely to have access to improved toilet facilities as compared with those from urban residence [AOR = 0.28 CI: (0.20, 0.38)]. About 72.00% in Tigray [AOR = 0.28, CI: (0.17, 0.46)], 63.00% in Afar [AOR = 0.37, CI: (0.21, 0.67)], 96.00% in Amhara

1 2 2								
4	[AOR =	0.04, (0.02, 0.06))], 90.00% ir	n Oromia [AOR =	0.10, CI: (0.06, 0.17)], 95.00% in		
0	Benishangul Gumuz [AOR = 0.05 CI: (0.03, 0.10)], 80.00% in SNNPR [AOR = 0.20 CI: (0.12,							
7 8 224 9	0.33)], 85% in Gambella [AOR = 0.15 CI:(0.09, 0.26)], and 60.00% in Harari [AOR = 0.40 CI:							
	(0.24, 0.66)] households were more likely to have access to improved toilet facilities as compared							
12 13 226	to househo	olds in Addis Abał	oa city [Tabl	e 3].				
10	Table 3:	Multivariable mu	ltilevel logist	ic regression mod	el of the effects of ir	ndividual- and		
19	communit	y-level factors on	improved sou	rces of toilet facilit	ies in Ethiopia, EDHS	2016		
20 21			Null Model	Model I	Model II	Model III		
22	Variab	les		AOR(95% CI)	AOR(95% CI)	AOR(95% CI)		
23 2 \$ ex of house	hold head	Male		1		1		
25 26		Female		1.01 (0.88, 1.16)		1.03 (0.89, 1.19)		
² Age of house	hold head	13 to 30		1		1		
28 29		31 to 40		0.99 (0.85, 1.15)		1.04 (0.89, 1.21)		
30 31		41 to 56		0.98 (0.84, 1.15)		1.02 (0.86, 1.20)		
32		≥ 57		0.98 (0.83, 1.16)		1.08 (0.91, 1.28)		
33 3Æducation le	vel of the	No education		1		1		
35 household he	ad	Primary		1.34 (0.67, 2.67)		1.19 (0.59, 2.40)		
37		Secondary		0.74 (0.40, 1.36)		0.75 (0.41, 1.38)		
38 39		Higher		2.26 (1.13, 4.54)		2.21 (1.12, 4.36) ^b		
⁴ Current marit	tal status	Never married		1		1		
4⊉ousehold he	ad	Married		0.87 (0.71, 1.08)		0.99 (0.80, 1.22)		
43 44		Divorced		0.69 (0.52, 0.91) ^b		0.82 (0.62, 1.08)		
45 Widowed				0.66 (0.50, 0.86) °		0.75 (0.57, 0.98) ^b		
46 4 Wealth index Poorest 48 49 Poorer		Poorest			1	1		
		Poorer			3.99 (3.00, 5.31) °	3.97 (2.99, 5.29) ^c		
50 Middle				5.87 (4.39, 7.86) ^c	5.82 (4.35, 7.80) ^c			
51 52		Richer			8.65 (6.46, 11.58) ^c	8.58 (6.40, 11.50) ^c		
53 54		Richest			24.76 (18.08, 33.91) ^c	23.94 (17.45, 32.83) ^c		
5 \$ ource of dri	nking	Unimproved			1	1		
56 57								

- 57
- 58

2						
³ water	Improved				1.36 (1.12, 1.65) ^c	1.37 (1.12, 1.66) ^c
5 Number of household $1-3$ members					1	1
6 7 members		4 – 6 members			0.88 (0.78, 0.99) ^a	0.86 (0.75, 0.98) ^c
8		7+			1.07 (0.91, 1.26)	1.02 (0.86, 1.22)
1 Residence		Urban			1	1
11 12		Rural			0.28 (0.21, 0.39) °	0.28 (0.20, 0.38) ^c
1 R egion		Tigray			0.27 (0.16, 0.45) °	0.28 (0.17, 0.46) ^c
14 15		Afar			0.38 (0.21, 0.68) °	0.37 (0.21, 0.67) ^c
16 17		Amhara			0.04 (0.02, 0.06) °	0.04 (0.02, 0.06) ^c
18		Oromia			0.10 (0.06, 0.17) °	0.10 (0.06, 0.17) ^c
19 20		Somali	-		1.33 (0.79, 2.22)	1.32 (0.79, 2.21)
21 22		Benishangul G.	6		0.05 (0.03, 0.10) °	0.05 (0.03, 0.10) ^c
23		SNNPR			0.20 (0.12, 0.34) °	0.20 (0.12, 0.33) ^c
24 25		Gambella			0.15 (0.09, 0.26) °	0.15 (0.09, 0.26) ^c
26		Harari		6	0.40 (0.24, 0.66) °	0.40 (0.24, 0.66) ^c
27 28		Dire Dawa			1.13 (0.69, 1.87)	1.14 (0.69, 1.89)
29 30		Addis Ababa			1	1
3Random	Community level variance(S		8.66 (0.73) ^c	8.71 (0.74) ^c	1.21 (0.12) ^c	1.22 (0.12)°
32 affect	ICC (%)		72.46%	72.58%	26.95%	27.08%
34	MOR		16.37	16.50	2.84	2.86
35 36	PCV		reference	-1.07%	86.03	85.91%
³⁷ Model fit 38	Log-likeliho	ood	-5621.74	-5603.26	-5029.24	-5018.39
39tatistics 40	Deviance		11243.48	11206.52	11036.78	10058.48
40 4) Tatai						

4 Note:

1

^{42, b, c} significant at ^a P < 0.05; ^b p < 0.01, ^c P < 0.001; 43

44OR: Adjusted Odds Ratio,

4€I: Confidence Interval,

46 **₄≯Iodel 0-** Empty (null) model

4 Model I- Only individual-level explanatory variables included in the model;

49 Model II- Only community-level explanatory variables included in the model;

5 Model III- Combined model; both individual-level and community-level explanatory variables

⁵**P**CV: Proportional Change in Variance, 53

5410R: Median Odds Ratio

- 55 229 56
- 57
- 58

230 Random-effects analysis

The prevalence rate of access to improved drinking water sources varied across communities (community-level variance = 12.24, p = <0.001) [Table 2]. The null model revealed that 78.81%of the total variance in the odds of access to improved drinking water sources was accounted by between-cluster variation of characteristics (ICC = 0.7881). The inter-cluster variability declined over successive models, from 78.81% in the null model to 78.55% in the only individual-level, 59.08% in the only community-level, and 58.97% in the final (combined) models. The proportional change in variance indicated that the addition of predictors to the empty model explained an increased proportion of variation in access to improved drinking water sources. The combined model showed that a higher PCV, i.e., 61.36% of the variance in access to improved drinking water sources could be explained by the combined factors at the individual- and community-levels.

In [**Table 3**] the final model (**Model III**), ICC value of 0.2708 indicates that 27.08% of the total variation in access to improved toilet facilities is accounted for the community-level factors. The remaining 72.92% variation is therefore triggered by the individual- level and other unknown factors. The proportional change in variance indicated that the addition of predictors to the empty model explained an increased proportion of variation in access to improved toilet facilities. The combined model showed a higher PCV, i.e., 85.91% of the variance in access to improved toilet facilities could be explained by the combined factors at the individual- and community-levels.

249 Model fit statistics

As shown in [**Tables 2 & 3**] (model fit statistics), the values of log-likelihood and Deviance showed a subsequent reduction which indicates that each model represents a significant

improvement over the previous model and it points to the goodness of fit for the final model built in the analysis.

DISCUSSION

In this study, we aimed to assess access to improved drinking water sources and sanitation facilities and their associated factors in Ethiopia. Accordingly, the proportion of households' access to improved drinking water sources was 69.94%, [95% CI: (69.23, 70.63)]. This finding is lower than reports from studies conducted in Ghana,⁽²⁾ Viet Nam,⁽¹⁶⁾, and Eswatini. ⁽¹⁴⁾ Whereas, it is higher than a reported proportion from a study conducted in Nepal. (15) The proportion of households' access to toilet facilities was 25.36%, [95% CI: (24.69, 26.03)]. This result is higher than the one reported from Ghana,⁽²⁾ However, lower than studies from Nigeria,⁽²⁷⁾ and Viet Nam. ⁽¹⁶⁾ The variation could be the disparities in GDP status and literacy rate among countries, study period, and setting.

Individual-level factors were associated with access to improved drinking water sources and toilet facilities in the present study. Female-headed households were 1.18 times more likely than male-headed households to access improved drinking water sources. Similar findings were reported from Ghana, Vietnam, and Nigeria. (2, 16, 28) Gender differences may play an important role in the work division in developing countries. Most of the time women have higher household responsibilities such as fetching water, cleaning compounds, childcare, and food preparation, etc. Therefore, this might be directly linked with water and sanitation in the sense that women may be preoccupied with other daily routines than WASH.

Page 21 of 30

BMJ Open

Those households with heads having better educational status were 2.21 times more likely to access improved toilet facilities. This study finding is supported by evidence from previous studies. (14, 27, 29) Households who are led by heads who have no education had a lower probability of access to improved toilet facilities. In sub-Saharan Africa, education is a resource factor of quality health outcomes, and educated people usually are more aware of the condition that guarantees their well beings. This implies that educated household heads in this study may have utilized their resources to provide their households with improved toilet facilities.

In addition to individual level factors, community-level factors were also associated with access to improved drinking water sources and toilet facilities. When compared to households within the poorest category, households within poorer, middle, richer, and richest wealth index category were 1.48, 2.42, 3.26, and 6.97 times more likely to have access to improved sources of drinking water and 3.97, 5.82, 8.58, and 23.94 times higher odds to access improved toilet facilities, respectively. This result is consistent with results from previous studies. (13, 14, 30) People who have better incomes would intend to fulfill the necessities of life. Economically, the rich can afford the initial high cost of both water and sanitation facilities and the poor may be disproportionately underserved in the distribution of public utility, and hence consume poor quality water and use unimproved sanitation facilities.

Compared with households that got drinking water < 30 minutes, households which obtained
drinking water ≥ 30 minutes were 35% less likely to access improved drinking water sources.
Hence, the length of time to get drinking (proximity of a house to a drinking water source) water
might make difference in access to improved sources of drinking water and coverage (%) with
improved water supply (HH connection, public standpipes, protected underground water sources,

rainwater collection). This is not surprising as the physical distance is one of the reasons of WASH
service inaccessibility.

The adjusted odds of access to improved drinking water sources and toilet facilities were 94.00% and 72.00% less likely among rural households as compared to urban households, respectively. The rural-urban disparity in access to improved sources of drinking water and toilet facilities have been reported by several other previous studies, too. ^(12, 31, 32). The disparity might be, in sub-Saharan Africa, most of the people live in rural areas and their economic status is poor. Therefore, they do not have adequate financial resources to acquire improved drinking water sources and toilet facilities.

Furthermore, households who had improved sources of drinking water were 1.37 times more likely to access an improved toilet facilities. This study finding is consistent with an earlier study. ⁽²⁷⁾ The possible explanation could be a lack of access to adequate sanitation is also linked to the limited access to water supply and households who had improved water sources may be practicing more in hygiene and sanitation.

Lastly, those households with four to six were 24% less likely access to improved toilet facilities compared to households with a family size of one to three. This is contrary to that of an earlier study. ⁽²⁾ The possible explanation could be the highest number of household members, the fewer resources they could have to build improved toilet facilities.

CONCLUSION

BMJ Open

The proportion of households' access to an improved source of drinking water and sanitation facility was low in the country. Sex of household head, wealth index, time to get drinking water, residence, and region were associated with access to improved drinking water sources. Educational level of the household head, wealth index, being widowed, source of drinking water, number of household members, residence, and region were factors associated with access to improved toilet facilities. Thus, governmental and non-governmental organizations working on water, hygiene, and sanitation should consider a multi-faceted policy approach that accounts for the regions and residence variations and other identified factors to ease up the problem.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
Δ	
-	
2	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 33 34 35 36 37 8 9 30 31 23 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 33 34 35 36 37 8 9 30 31 32 33 33 34 35 36 37 8 9 30 31 32 33 33 34 35 36 37 8 37 8 37 37 8 37 8 37 8 37 8 37	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
50	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
Эт	
55	
56	
57	
58	
50	

60

1

Acknowledgments 324 We would like to thank the Demographic and Health Survey (DHS) programme for allowing the 325 use of Ethiopian Demographic and Health Survey (EDHS) data for this study. 326 Competing interests: None declared. 327 Patient consent for publication: Not required. 328 Ethics approval: The EDHS 2016 was approved by the National Research Ethics Review 329 Committee of Ethiopia and ICF Macro International. The approval letter was obtained from the 330 measure DHS for the use of this data, and the dataset was downloaded from www.meauredhs.com. 331 This analysis was approved by the Department of Environmental and occupational health and 332

- 333 safety, University of Gondar.
- 334 Funding
- 335 The author(s) received no specific funding for this work.

336 Availability of data and materials

- 337 The dataset analyzed during the current study available from the corresponding author upon
 338 reasonable request.
- 3 339 Authors' contributions
- 340 ZA wrote the analyzed data, drafted the paper, and prepared the manuscript. HD, ZNA, AAT, BD,
- $^{2}_{3}$ 341 RF, AGM, and YY drafted the paper, writing review & editing, and commented on the
- 342 manuscript. All the authors read and approved the final manuscript.

BMJ Open

1 2 3 4 5	344	REFERENCES
6 7	345	1. Prüss-Ustün A, Wolf J, Bartram J, Clasen T, Cumming O, Freeman MC, et al. Burden of
8	346	disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An
9 10	347	updated analysis with a focus on low-and middle-income countries. International journal of
11 12	348	hygiene and environmental health. 2019;222(5):765-77.
13 14	349	2. Agbadi P, Darkwah E, Kenney PL. A Multilevel Analysis of Regressors of Access to
15	350	Improved Drinking Water and Sanitation Facilities in Ghana. Journal of environmental and
16 17 18 19 20 21	351	public health. 2019;2019.
	352	3. Assembly UG. Resolution on Human Right to Water and Sanitation. New York: United
	353	Nations. 2010.
22	354	4. Brookes JD, Carey CC. Ensure availability and sustainable management of water and
23 24 25 26 27 28 29	355	sanitation for all. UN Chronicle. 2015;51(4):15-6.
	356	5. Mills JE, Cumming O. The impact of water, sanitation and hygiene on key health and
	357	social outcomes. URL: https://www lshtm ac uk/sites/default/files/2017-
	358	07/WASHEvidencePaper_HighRes_01. 2016;23.
30 31	359	6. Saxena SK, Kumar S, Haikerwal A, Bhatt ML. Introductory chapter: Neglected tropical
32 33 34 35 36	360	waterborne infectious diseases-strategies for mitigation. Water Challenges of an Urbanizing
	361	World. 2018:1.
	362	7. Organization WH. Water, sanitation, hygiene, and waste management for the COVID-19
37 38	363	virus: interim guidance, 23 April 2020. World Health Organization, 2020.
39	364	8. Organization WH. Progress on drinking water, sanitation and hygiene: 2017 update and
40 41	365	SDG baselines. 2017.
42 43	366	9. Organization WH. Water, sanitation, hygiene and health: a primer for health
44	367	professionals. World Health Organization, 2019.
45 46	368	10. Organization WH. Safer water, better health. 2019.
47 48	369	11. UNICEF. Water, sanitation and hygiene (WASH) 2020 [cited 2020 April, 14]. Available
49 50	370	from: https://www.unicef.org/ethiopia/water-sanitation-and-hygiene-wash.
51	371	12. Mulenga JN, Bwalya BB, Kaliba-Chishimba K. Determinants and inequalities in access
52 53	372	to improved water sources and sanitation among the Zambian households. International Journal
54 55	373	of Development and Sustainability. 2017;6(8):746-62.
56 57 58 59		

1

2 3			
4 5 6 7	374		nyo OM, Adebowale SA, Oloruntoba EO. Wealth status and sex differential of
	375		d: implication for source of drinking water in Nigeria. Archives of Public Health.
	376	2015;73(1):58.	
8 9	377	14. Simelar	ne MS, Shongwe MC, Vermaak K, Zwane E. Determinants of Households'
10 11 12 13 14 15 16	378	Access to Imp	roved Drinking Water Sources: A Secondary Analysis of Eswatini 2010 and 2014
	379	Multiple Indica	ator Cluster Surveys. Advances in Public Health. 2020;2020.
	380	15. Wang (C, Pan J, Yaya S, Yadav RB, Yao D. Geographic Inequalities in Accessing
	381	Improved Wate	er and Sanitation Facilities in Nepal. International journal of environmental
17 18	382	research and p	ublic health. 2019;16(7):1269.
19	383	16. Tuyet-l	Hanh TT, Long TK, Van Minh H, Huong LTT. Longitudinal household trends in
20 21	384	access to impro	oved water sources and sanitation in Chi Linh town, Hai Duong province, Viet
22 23 24 25 26 27 28	385	Nam and assoc	tiated factors. AIMS public health. 2016;3(4):880.
	386	17. Organiz	zation WH, UNICEF. Progress on drinking water and sanitation: special focus on
	387	sanitation. Pro	gress on drinking water and sanitation: special focus on sanitation2008.
	388	18. Beyene	A, Hailu T, Faris K, Kloos H. Current state and trends of access to sanitation in
29	389	Ethiopia and th	ne need to revise indicators to monitor progress in the Post-2015 era. BMC public
30 31 32 33 34 35 36	390	health. 2015;1:	5:451
	391	19. Pullan	RL, Freeman MC, Gething PW, Brooker SJ. Geographical inequalities in use of
	392	improved drinl	king water supply and sanitation across sub-Saharan Africa: mapping and spatial
	393	analysis of cro	ss-sectional survey data. PLoS Med. 2014;11(4):e1001626.
37 38	394	20. Central	Statistical Agency (CSA). Central Statistical Agency (CSA) [Ethiopia] and ICF
39 40	395	Ethiopia demo	graphic and health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland,
41	396	USA: CSA and	ł ICF,2017.
42 43	397	21. Supply	WUJW, Programme SM, Organization WH, Supply WUJMPfW, Sanitation,
44 45	398	UNICEF. Wate	er for life: making it happen: World health organization; 2005.
46 47	399	22. Merlo J	J, Chaix B, Ohlsson H, Beckman A, Johnell K, Hjerpe P, et al. A brief conceptual
48	400	tutorial of mult	tilevel analysis in social epidemiology: using measures of clustering in multilevel
49 50	401	logistic regress	sion to investigate contextual phenomena. Journal of Epidemiology & Community
51 52	402	Health. 2006;6	0(4):290-7.
53			
54 55			
56 57			
58			
59			

Page 27 of 30

BMJ Open

1 2		
3 4	403	23. Merlo J, Yang M, Chaix B, Lynch J, Råstam L. A brief conceptual tutorial on multilevel
5	404	analysis in social epidemiology: investigating contextual phenomena in different groups of
6 7	405	people. Journal of Epidemiology & Community Health. 2005;59(9):729-36.
8 9	406	24. Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health:
10 11	407	integrating random and fixed effects in multilevel logistic regression. American journal of
12	408	epidemiology. 2005;161(1):81-8.
13 14	409	25. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model
15 16	410	complexity and fit. Journal of the royal statistical society: Series b (statistical methodology).
17 18	411	2002;64(4):583-639.
19	412	26. Hair Jr JF. Multivariate Data Analysis Joseph F. Hair Jr. William C. Black Barry J. Babin
20 21	413	Rolph E. Anderson Seventh Edition.
22 23	414	27. Abubakar IR. Access to sanitation facilities among Nigerian households: determinants
24 25	415	and sustainability implications. Sustainability. 2017;9(4):547.
26	416	28. Morakinyo OM, Adebowale SA, Oloruntoba EO. Wealth status and sex differential of
27 28 29 30 31 32 33	417	household head: implication for source of drinking water in Nigeria. Archives of public health =
	418	Archives belges de sante publique. 2015;73:58.
	419	29. Akpakli DE, Manyeh AK, Akpakli JK, Kukula V, Gyapong M. Determinants of access to
	420	improved sanitation facilities in rural districts of southern Ghana: evidence from Dodowa Health
34 35	421	and Demographic Surveillance Site. BMC Res Notes. 2018;11(1):473
36 37	422	30. Njuguna J. Progress in sanitation among poor households in Kenya: evidence from
38	423	demographic and health surveys. BMC public health. 2019;19(1):135.
39 40	424	31. Irianti S, Prasetyoputra P, Sasimartoyo TP. Determinants of household drinking-water
41 42	425	source in Indonesia: An analysis of the 2007 Indonesian family life survey. Cogent Medicine.
43 44	426	2016;3(1).
45	427	32. Prasetyoputra P, Irianti S. Access to improved sanitation facilities in indonesia: An
46 47	428	econometric analysis of geographical and socioeconomic disparities. Journal of Applied Sciences
48 49	429	in Environmental Sanitation. 2013;8(3).
50 51 52	430	
53 54	431	
55 56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table 1: Regional distribution of access to improved drinking water sources and toilet facilities in Ethiopia, EDHS, 2016.

Region	Source of dr	inking water	Toilet fa	cilities
-	Unimproved	Improved	Unimproved	Improved
Tigray	410 (23.64%)	1,324 (76.36%)	1,380 (79.58%)	354 (20.42%)
Afar	627 (51.39%)	593 (48.61%)	1,032 (84.59%)	188 (15.41%)
Amhara	741 (38.96%)	1,161 (61.04%)	1,782 (93.69%)	120 (6.31%)
Oromia	746 (37.53%)	1,242 (62.47%)	1,785 (89.79%)	203 (10.21%)
Somali	884 (56.52%)	680 (43.48%)	1,145 (73.21%)	419 (26.79%)
Benishangul Gumuz	271 (21.17%)	1,009 (78.83%)	1,225 (95.70%)	55 (4.30%)
SNNPR	775 (40.85%)	1,122 (59.15%)	1,650 (86.98%)	247 (13.02%)
Gambella	246 (19.22%)	1,034 (80.78%)	1,098 (85.78%)	182 (14.22%)
Harari	179 (15.77%)	956 (84.23%)	619 (54.54%)	516 (45.46%)
Dire Dawa	117 (10.08%)	1,044 (89.92%)	404 (34.80%)	757 (65.20%)
Addis Ababa	9 (0.60%)	1,480 (99.40%)	308 (20.69%)	1,181 (79.31%)
Total	5005(30.06%)	11,645	12,428	4,222
		(69.94%)	(74.64%)	(25.36%)

BMJ Open

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.annals.org/, and Epidemiology at http://www.strobe-statement.org.

Section and Item	ltem No.	Recommendation	Reported Page N
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/Rationale	2	Explain the scientific background and rationale for the investigation being	
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Methods Study Design	4	Present key elements of study design early in the paper	
Study Design	-	Tresent key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of	
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
		selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	
		exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number	
		of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	
		effect modifiers. Give diagnostic criteria, if applicable	

	No.	Recommendation	Page No
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Mathada	12	(a) Describe all statistical methods, including those used to control for	
Statistical Methods	12		
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was	
		addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results	1		1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
·		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	

1 2	Section and Item	ltem No.	Recommendation	Reported on Page No.		
3	Main Results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates			
4			and their precision (eg, 95% confidence interval). Make clear which confounders			
5 6			were adjusted for and why they were included			
7 8			(b) Report category boundaries when continuous variables were categorized			
9			(c) If relevant, consider translating estimates of relative risk into absolute risk for a			
10 11			meaningful time period			
12 13	Other Analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and			
14 15			sensitivity analyses			
15 16 17	Discussion					
18 19	Key Results	18	Summarise key results with reference to study objectives			
20	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or			
21 22			imprecision. Discuss both direction and magnitude of any potential bias			
23	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,			
24 25			multiplicity of analyses, results from similar studies, and other relevant evidence			
26 27	Generalisability	21	Discuss the generalisability (external validity) of the study results			
28 29	Other Information					
30 31	Funding	22	Give the source of funding and the role of the funders for the present study and, if			
32			applicable, for the original study on which the present article is based			
33 34						
35	*Give information separation	ately for	cases and controls in case-control studies and, if applicable, for exposed and unexpos	ed groups in		
36 37	cohort and cross-section	al studie	is.			
38 39	(Ince you have completed this checklist, please save a conviand uplead it as part of your submission, D() N()T include					
39 40	abaalilist on yout of the weater measurement descented to unleaded on a sevente file					
41						
42						
43						

BMJ Open

Households' access to improved drinking water sources and toilet facilities in Ethiopia: A multilevel analysis based on 2016 Ethiopian Demographic and Health Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042071.R2
Article Type:	Original research
Date Submitted by the Author:	16-Feb-2021
Complete List of Authors:	Andualem , Zewudu ; University of Gondar College of Medicine and Health Sciences, Department of Environmental and Occupational health and Safety Dagne, Henok; University of Gondar College of Medicine and Health Sciences, Environmental and Occupational Health and Safety; University of Gondar, Environmental and Occupational Health and Safety Azene, Zelalem; University of Gondar College of Medicine and Health Sciences, Department of Women's and family health, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia.; University of Gondar, Ethiopia taddese, Asefa; University of Gondar College of Medicine and Health Sciences, Epidemiology and Biostatistics Dagnew, Baye ; University of Gondar College of Medicine and Health Sciences, Human Physiology; Mr. Fisseha, Roman ; Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia. Muluneh, Atalay; University of Gondar College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia. Muluneh, Atalay; University of Gondar College of Medicine and Health Sciences, Epidemiology and Bio statistics ; Yeshaw, Yigizie; University of Gondar College of Medicine and Health Sciences, Medical Physiology
Primary Subject Heading :	Public health
Secondary Subject Heading:	Occupational and environmental medicine
Keywords:	PUBLIC HEALTH, PREVENTIVE MEDICINE, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
8
9
10
11
11 12 13 14 15 16 17
12
13
14
15
16
17
18
19
20
21
22
22 23
24
25
26
27
28
29
30
30 31
32
33
22
34 35
35
36
36 37
38
39
40
41
42
43
43 44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

1 h

Households' access to improved drinking water sources and toilet facilities in Ethiopia: A 1 multilevel analysis based on 2016 Ethiopian Demographic and Health Survey 2

Zewudu Andualem^{1*}, Henok Dagne¹, Zelalem Nigussie Azene², Asefa Adimasu Taddese³, Baye Dagnew⁴, 3

Roman Fisseha⁵, Atalay Goshu Muluneh³, and Yigizie Yeshaw⁴ 4

- 5 ¹Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of
- Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia 6
- 7 ²Department of Women's and family health, School of Midwifery, College of Medicine and Health
- Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia. 8
- 9 ³Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health
- 10 Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia
- 11 ⁴Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences,
- 12 University of Gondar, P. O. Box 196 Gondar, Ethiopia
 - ⁵Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of 13 Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia. 14
 - 15 *Corresponding author

Authors' email address 16

- 17 [ZA] Zewudu Andualem: zewuduandualem12@gmail.com, [HD] Henok Dagne: enoch2313@gmail.com,
- [ZNA] Zelalem Nigussie Azene: znigussie35@gmail.com, [AAT] Asefa Adimasu Taddese: 18
- 19 adimasuasefa@gmail.com, [BD] Baye Dagnew: bayedagnew7@gmail.com, [RF] Roman Fisseha:
- romanfisseha85@gmail.com, [AGM] Atalay Goshu Muluneh: atalayg1921@gmail.com, and [YY] Yigizie 20
 - 21 Yeshaw: yigizieyeshaw29@gmail.com

60

22

BMJ Open

24 ABSTRACT

Objective: This study aimed to assess households' access to improved drinking water sources
 and sanitation facilities and their associated factors in Ethiopia

Design: Cross-sectional study

Setting: Ethiopia

29 Participants: Household heads

Primary outcomes: Access to improved drinking water sources and sanitation facilities

Methods: We conducted an in-depth secondary data analysis of the 2016 Ethiopian Demographic and Health Survey (EDHS). Data from a total of 16650 households and 645 clusters were included in the analysis. The households in the EDHS were selected using a stratified two-stage cluster sampling technique. Multilevel binary logistic regression analyses were performed to identify factors associated with access to an improved drinking water source and toilet facilities. Adjusted odds ratio with a 95% CI were reported. P-value < 0.05 was used to declare a significant association between the covariates and outcomes.

Results: The proportions of households' access to improved sources of drinking water and toilet facilities were 69.94%, [95% CI: (69.23, 70.63)], and 25.36%, [95% CI: (24.69, 26.03)], respectively. Female-headed households and better wealth index positively associated access improved drinking water sources, ≥ 30 minutes round trip to obtain drinking water, rural residence, and region were negatively associated with access to an improved drinking water source. Whereas higher educational status, access to an improved source of drinking water, and households with better wealth index, were positively associated with access to improve toilet facility, being

2		
3 4	45	widowed, household size [4 to 6], being in rural residence, and region were negatively significantly
5 6 7	46	associated with access to improved toilet facilities
8 9 10	47	Conclusion: The proportions of households' access to improved drinking water sources and toilet
11 12	48	facilities in Ethiopia was relatively low.
13 14 15	49	Keywords: Improved toilet facilities, improved water sources, multilevel analysis, Ethiopia
16 17 18	50	
19	51	Strength and limitations of the study
20 21	21	Strength and minitations of the study
22 23 24	52	The use of nationally representative data that can enhance the generalizability of the finding
25 26	53	is one of the strength of the study.
27 28	54	The Due to the inherent nature of a cross-sectional study, it does not show the temporal
29 30 31	55	relationship between the outcome status and predictors.
32 33	56	The Moreover, important variables such as culture, traditions, and social norms were not
34 35 36	57	available in EDHS data which could influence the use of toilet facility type.
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	58	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

INTRODUCTION

Access to safe water and basic sanitation is one of the fundamental human rights, and an essential step towards improving living standards to maintain and improve health, human growth, and development. ⁽¹⁻³⁾ It is one of the critical sustainable development challenges. Sustainable Development Goal (SDG) 6 aims to ensure the availability and sustainable management of water and sanitation for all by 2030. ⁽⁴⁾

Unimproved sources of drinking water and sanitation facilities are responsible for increased risks of various infectious diseases such as; cholera, typhoid, schistosomiasis, infections of the respiratory systems, skin, and eye. (1, 5, 6) The currently available evidences also indicates that to prevent the novel coronavirus disease (COVID-19) outbreak, the provision of safe water, sanitation, and hygienic conditions is essential. ⁽⁷⁾

Globally, 2 billion people lack basic sanitation services and 785 million people have no access to clean water. ⁽⁸⁾ More than 1.9 million deaths and 123 million disability-adjusted life-years (DALYs) could have been prevented by the provision of adequate access to water, hygiene, and sanitation (WASH) worldwide. The WASH-attributable disease burden accounts for 4.6% of global DALYs and 3.3% of global mortality. ⁽⁹⁾ The burden of under 5 mortality was 13%. ⁽¹⁰⁾ In Ethiopia, 60 to 80 % of communicable diseases are attributed to limited access to safe water, inadequate sanitation, and hygiene services. ⁽¹¹⁾

Regarding factors associated with improved drinking water sources and toilet facilities: Sex of
household heads, region, residence, family size, and time to get to drinking water source, age of
household head, educational level, and marital status of the household heads were factors
associated with access to an improved drinking water source and toilet facilities based on previous
studies. ^(2, 12-16)

In Sub-Saharan Africa, particularly in Ethiopia access to improved sources of drinking water and toilet facilities is still lacking and people are practicing open defecation. (17, 18) There was no statistical approach in the study using nationally representative data (2016 Ethiopian Demographic and Health Survey (EDHS) data), which accounts for the hierarchical nature of the data. However, in 2014 national studies conducted in Sub-Saharan African countries indicates that the spatial coverage in use of improved drinking water supply and sanitation. (19) Therefore, the current study aimed to assess access to improved drinking water sources and toilet facilities and their associated Lusing EDro 2. factors in Ethiopia using EDHS 2016 data.

90 METHODS

Patient and public involvement

This study was based on a publicly available data set (EDHS 2016). Thus, there were no patientsor members of the public involved.

94 Study design and area

The 2016 main EDHS was a cross-sectional survey conducted from 18 January 2016 to 27 June 2016 in Ethiopia by the Ethiopian Central Statistical Agency (ECSA). For our case, we use an indepth secondary data analysis of the survey. The 2016 EDHS survey was the fourth survey conducted in each of the 11 regions of Ethiopia (9 regional states and 2 administrative cities). Administratively, each region in Ethiopia is divided into Zones, each Zone, in turn, is divided into Woredas, and each Woreda into Kebeles (the lowest administrative units in the country). ⁽²⁰⁾

101 Data sources

Data were obtained from 2016 Ethiopian Demographic and Health Survey (EDHS-2016) after being registered as an authorized user. The survey collects data on key indicators of health and health-related events including access to drinking water and toilet facilities. A total of 16,650 households from 645 Enumeration Areas (EAs) were included in the survey. ⁽²⁰⁾

106 Sample size and sampling procedure

107 A two-stage stratified cluster sampling technique was employed to select study participants. 108 Sampling frame of the 2007 Population and Housing Censuses in which EAs were the sampling 109 units for the first stage and households for the second stage was used. A total of 18,008 households 110 were selected for the sample, of which 17,067 were occupied. Of the occupied households, 16,650

were successfully interviewed, yielding a response rate of 98%. (20) The current study included individual-level data for 16650 household heads as well as community characteristics of 645 clusters. Variables of the study Outcome variables Access to improved drinking water sources and improved toilet facilities. Explanatory variables The explanatory variables for this study were classified as individual, and community level factors for both access to improved drinking water sources and improved toilet facilities. The individual level factors for access to improved drinking water sources and improved toilet facilities were the sex of household head, age of household head, educational level of household head, and marital status of the household heads. The community-level factors for access to improved drinking water sources were household wealth index, time to get to drinking water sources, family size, place of residence, and region. The community level factors for access to improved toilet facilities were household wealth index, family size, sources of drinking water, place of residence, and region. The variables were selected based on the literature review for factors affecting access to improved drinking water sources and improved toilet facilities. The basis of classification of explanatory variables into individual level, household level, and community level variables were based on previous studies (2, 21, 22) and our professional judgments.

Operational definitions

Improved sources of drinking water: a household is said to have access to an improved drinking water source if it has water piped into its dwelling, water piped to a yard/plot, a public tap/standpipe, a tube well/borehole, a protected dug well, a protected spring, rainwater, bottled water, or sachet water. ⁽²³⁾

Improved types of toilet facilities: a household is said to have access to improved toilet facilities
if it has unshared flush/pour flush to piped sewer systems, septic tanks or pit latrines, ventilated
improved pit latrines, composting toilets, or pit latrines with slabs. ⁽²³⁾

140 Data processing and analysis

Statistical analysis was performed using Stata 16.00 software. The weighted frequencies and the
percentages (based on the population size of each region) were computed. The detailed weighting
procedure is described elsewhere. ⁽²⁰⁾

Multilevel binary logistic regression model was used to assess the impact of individual and community-level factors on households' access to an improved source of drinking water and improved toilet facilities. The model, which is most appropriate to consider the cluster random effect in a multivariate setting and the reason to apply multilevel modeling was the nature of the data collected which have a hierarchical or clustered structure. The first level represents the individual and household and the second level factor is the clusters. Four models were tested in each of the cases (access to an improved source of drinking water and toilet facilities). Model 0 (the null model) was fitted without explanatory variables to test random variability in the intercept and to estimate the intraclass correlation coefficient (ICC). Model I was used to investigate the impact of individual-level factors on the likelihood of having access to improved sources of

> drinking water and toilet facilities. **Model II** was used to assess the impact of community-level factors on the likelihood of having access to improved sources of drinking water and toilet facilities. **Model III** was employed to assess the impact of individual and community-level factors altogether on access to improved sources of drinking water and toilet facilities.

The random effects (variation of effects) were measured by ICC, percentage change in variance (PCV), Median Odds Ratio (MOR), and deviance (-2log likelihood), which measure the variability between clusters in the multilevel models. The ICC explains the cluster variability, while MOR is used to quantify unexplained cluster variability (heterogeneity). The MOR was used to translate cluster variance into OR scale. ⁽²⁴⁻²⁶⁾ In the multilevel model, deviance can measure the total variation due to factors at the community and individual levels. ^(25, 27)

Adjusted odds ratio with a 95% confidence interval were reported. P-value < 0.05 was used to declare a significant association among covariates and outcome variables. A multicollinearity test was performed to rule out if there was a significant correlation between explanatory variables. If the values of variance inflation factor (VIF) was lower than 10, then the collinearity problem was considered as less likely. ⁽²⁸⁾

RESULTS

170 Socio-demographic characteristics of study participants

A total of 16650 study participants were included in the study. The median (\pm SD) age of the household heads was 40 years (\pm 16.22 years, range 15 - 95). Approximately, seven out of ten (69.94%) of the households had access to improved sources of drinking water and only one-fourth (25.36%) of households had access to an improved source of toilet facilities. Majority (98.37%) of respondents had no education. About 68.55% of households were male-headed. [**Table 1**].

BMJ Open

Variables		Frequency	Percent (%)
Source of drinking water	Improved	11,645	69.
Source of drinking water	Unimproved	·	
	•	5,005	30.
Toilet facilities	Improved	4,222	25.
	Unimproved	12,428	74
Sex of household head	Male	11,413	68
	Female	5,237	31
Age of household head (years)	13 to 30	4,257	25
	31 to 40	4,132	24
	41 to 56	4,230	25
	≥ 57	4,031	24
Education level of the household	No education	16,378	98
head	Primary education	93	0
	Secondary education	114	0
	Higher education	65	0
Current marital status household head	Never married	1,046	6
	Married	12,064	72
	Widowed	2,108	12
	Divorced	1,423	8
Wealth index	Poorest	4,676	28
	Poorer	2,348	14
	Middle	2,057	12
	Richer	2,020	12
	Richest	5,549	33
Time to get drinking water	\leq 30 minutes	9,821	58
	> 30 minutes	6,829	41
Number of household members	1 - 3 members	6,258	37
	4 – 6 members	7,031	42

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54 55
56
57
58
59
60

1 2

	7 members and above	3,361	20.19
Residence	Urban	5,232	31.42
	Rural	11,418	68.58
Region	Tigray	1,734	10.41
	Afar	1,220	7.33
	Amhara	1,902	11.42
	Oromia	1,988	11.94
	Somali	1,564	9.39
	Benishangul-Gumuz	1,280	7.69
	SNNPR	1,897	11.39
	Gambella	1,280	7.69
	Harari	1,135	6.82
	Dire Dawa	1,161	6.97
	Addis Ababa	1,489	8.94

178

179

Regional distribution in terms of improved drinking water and toilet facility sources in Ethiopia

Among Ethiopian regions, nearly all households in Addis Abeba (99.40%) had access to improved sources of drinking water. On the contrary, Somali (56.52%) and Afar regions (51.39%) had the least access to improved sources of drinking water. Households in Benishangul-Gumuz and Amhara regions were lowest in access to toilet facilities with 4.30% and 6.31%, respectively while households in Dire Dawa and Addis Ababa had the highest access to improved toilet facilities with 65.20% and 79.31%, respectively **[S1 Table 1]**.

186 Factors associated with access to improved drinking water sources

The proportion of households which had access to improved sources of drinking water was 69.94%
at [95% CI: (69.23, 70.63)]. Both individual-level factors and community-level factors had an

Page 13 of 30

BMJ Open

1 2		
2 3 4	189	impact on accessing improved drinking water sources in this study. Among individual-level
5 6	190	factors; sex of household head and from community-level factors; wealth index, time to get to
7 8 9	191	drinking water sources, residence, and region were significantly associated with access to
10 11 12	192	improved drinking water sources
13 14	193	Female-headed households were 1.18 [AOR = 1.18, CI: (1.01, 1.37)] times more likely to have
15 16 17	194	access to improved drinking water sources than male-headed households.
18 19	195	Compared to poorest households, poorer [AOR = 1.48, CI: (1.26, 1.74)], middle-income [AOR =
20 21	196	2.42, CI: (2.03, 2.90)], richer [AOR = 3.26, CI: (2.68, 3.97)] and richest [AOR = 6.97, CI: (5.17,
22 23 24	197	9.41)] households were 1.48, 2.42, 3.26, and 6.97 times more likely to access improved drinking
25 26 27	198	water sources, respectively.
28 29	199	In contrasted with family units who got drinking water < 30 minutes, households who got drinking
30 31 32	200	water \geq 30 minutes were 35% less likely to access drinking water [AOR = 0.65, CI: (0.58, 0.73)].
33 34	201	The adjusted odds of access to improved drinking water sources in rural area was 94.00% less
35 36 37	202	likely compared to urban area $[AOR = 0.06, CI: (0.03, 0.11)].$
38 39 40	203	The likelihood of access to improved sources of drinking water were 95.00% [AOR = 0.05, (0.01,
41 42	204	0.21)] in Afar, 94.00% [AOR = 0.06, (0.01, 0.27)] in Amhara, 92.00% [AOR = 0.08, (0.02, 0.35)]
43 44	205	in Oromia, 98.00% [AOR = 0.02, (0.01, 0.10)] in Somalia, 93.00% [AOR = 0.07, (0.02, 0.30)] in
45 46 47	206	SNNPR, and 82.00% [AOR = 0.18 (0.04, 0.89)] in Harari as compared to improved water access
48 49 50	207	in Addis Ababa city [Table 2].
50 51 52	208	Table 2: Multivariable multilevel logistic regression model of the effects of individual- and
53 54	209	community-level factors on improved drinking water sources in Ethiopia, EDHS 2016
55 56		Null ModelModel IModel IIIModel III
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Varia	ables		AOR(95% CI)	AOR(95% CI)	AOR(95% CI)
Sex of household	Male		1		1
head	Female		1.13 (0.97, 1.32)		1.18 (1.01, 1.37) ^a
Age of household	13 to 30		1		1
head	31 to 40		0.99 (0.85, 1.14)		1.04 (0.89, 1.22)
2	41 to 56		1.07 (0.92, 1.24)		1.13 (0.96, 1.33)
3	≥ 57		0.93 (0.80, 1.09)		1.00 (0.85, 1.17)
Education level of the	No education		1		1
household head	Primary		0.93 (0.50, 1.73)		0.98 (0.52, 1.83)
3	Secondary		1.69 (0.82, 3.49)		1.74 (0.83, 3.65)
)	Higher		1.51 (0.40, 5.70)		1.37 (0.34, 5.55)
Current marital status	Never married		1		1
household head	Married	0	0.74 (0.54, 1.02)		1.02 (0.72, 1.43)
	Divorced		0.71 (0.49, 1.04)		1.01 (0.68, 1.50)
7	Widowed		0.72 (0.49, 1.05)		0.98 (0.66, 1.45)
Wealth index	Poorest			1	1
	Poorer	(1.47 (1.25, 1.73) ^b	1.48 (1.26, 1.74) ^b
	Middle		4.	2.41 (2.01, 2.88) ^b	2.42 (2.03, 2.90) ^b
2	Richer			3.23 (2.66, 3.92) ^b	3.26 (2.68, 3.97) ^h
5	Richest		4	6.84 (5.07, 9.22) ^b	6.97 (5.17, 9.41) ^b
Time to get drinking	< 30 minutes			1	1
water	\geq 30 minutes		C	0.66 (0.58, 0.74) ^b	0.65 (0.58, 0.73) ^b
Number of household	1 - 3 members			1	1
members	4 – 6 members			0.86 (0.77, 0.97) ^a	0.88 (0.77, 1.00)
2	7+			0.88 (0.76, 1.01)	0.88 (0.75, 1.04)
Residence	Urban			1	1
5	Rural			0.06 (0.03, 0.10) ^b	0.06 (0.03, 0.11) ^b
Region	Tigray			0.26 (0.06, 1.18)	0.26 (0.06, 1.17)
	Afar			0.05 (0.01, 0.21) ^b	0.05 (0.01, 0.21) ^b
	Amhara			0.06 (0.01, 0.27) ^b	$0.06 (0.01, 0.27)^{t}$
2	Oromia			0.08 (0.02, 0.35) ^b	$0.08 (0.02, 0.35)^{t}$
1	Somali			0.02 (0.01, 0.10) ^b	0.02 (0.01, 0.10) ^b
	Benishangul Gumuz			0.39 (0.08, 1.80)	0.39 (0.08, 1.81)

		SNNPR			0.07 (0.02, 0.30) ^b	0.07 (0.02, 0.30) ^b
		Gambella			0.30 (0.06, 1.35)	0.29 (0.06, 1.33)
		Harari			0.18 (0.04, 0.88) ^a	0.18 (0.04, 0.89) ^a
		Dire Dawa			0.33 (0.07, 1.64)	0.33 (0.07, 1.63)
		Addis Ababa			1	1
Random	Commun	nity level variance(SE)	12.24 (1.13) ^b	12.05 (1.11) ^b	4.75 (0.42) ^b	4.73 (0.41) ^b
effect	ICC (%)	<u> </u>	78.81%	78.55%	59.08%	58.97%
-	MOR		9.05	8.96	5.64	5.62
	PCV					
			Reference	1.55%	61.19	61.36%
Model fit	Log-like	lihood	-5997.01	-5987.89	-5619.38	-5611.48
statistics	Deviance	e	11994.02	11975.78	11238.76	11222.96
Model I- (Model II- Model III PCV: Proj	Only commun - Combined m	al-level explanatory variabl nity-level explanatory varia nodel; both individual-leve nge in Variance,	bles included in the	model;	ables	
5 210						
2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 1 2		ssociated with access	-			25.26%
212	The propo	ortion of households w	ith access to an i	mproved source	of toilet facility wa	s 25.36% at
213	[95% CI:	(24.69%, 26.03%)]. In	dividual-level fac	ctors such as edu	ucational level of th	e household
214	heads, marital status, and community level factors such as wealth index, source of drinking water,					
215 0	number of household members, residence, and region were factors significantly associated with					
216 2 3 4 5 5 7	household	s' access to improved	toilet facilities.			

Compared with households whose household heads had no education, households headed with those who attained higher education were 2.21 times more likely to have access to improved toilet facilities at [AOR = 2.21 CI: (1.12, 4.36)]. The likelihood of access to toilet facilities was 25% [AOR = 0.75, CI: (0.57, 0.98)] lower in households with widowed household heads, as compared to those who never married.

Households with poorer [AOR = 3.97 CI: (2.99, 5.29)], middle [AOR = 5.82 CI: (4.35, 7.80)],
richer [AOR = 8.58 CI: (6.40, 11.50)], and richest wealth index [AOR = 23.94 CI: (17.45, 32.83)],
were 3.97, 5.82, 8.58, and 23.94 times more likely to access improved toilet facilities as compared
to households with the poorest wealth index, respectively.

Households who had improved sources of drinking water were 1.37 [AOR = 1.37 CI: (1.12, 1.66)] times more likely to have access to improved toilet facilities, compared with their counterparts. Compared to household which had one to three members, 24% of those with four to six members were [AOR = 0.86(0.75, 0.98)] less likely to access improved toilet facilities.

About 72% of rural households were less likely to have access to improved toilet facilities as compared with those from urban residence [AOR = 0.28 CI: (0.20, 0.38)]. About 72.00% in Tigray [AOR = 0.28, CI: (0.17, 0.46)], 63.00% in Afar [AOR = 0.37, CI: (0.21, 0.67)], 96.00% in Amhara [AOR = 0.04, (0.02, 0.06)], 90.00% in Oromia [AOR = 0.10, CI; (0.06, 0.17)], 95.00% in Benishangul Gumuz [AOR = 0.05 CI: (0.03, 0.10)], 80.00% in SNNPR [AOR = 0.20 CI: (0.12, (0.33)], 85% in Gambella [AOR = 0.15 CI:(0.09, 0.26)], and 60.00% in Harari [AOR = 0.40 CI: (0.24, 0.66)] households were more likely to have access to improved toilet facilities as compared to households in Addis Ababa city [Table 3].

Table 3: Multivariable multilevel logistic regression model of the effects of individual- and
community-level factors on improved sources of toilet facilities in Ethiopia, EDHS 2016

2 3		Null Model	Model I	Model II	Model III
4 5 Variab	les		AOR(95% CI)	AOR(95% CI)	AOR(95% CI)
6 Sex of household head	Male		1		1
8	Female		1.01 (0.88, 1.16)		1.03 (0.89, 1.19)
9 1Age of household head	13 to 30		1		1
11	31 to 40		0.99 (0.85, 1.15)		1.04 (0.89, 1.21)
12 13	41 to 56		0.98 (0.84, 1.15)		1.02 (0.86, 1.20)
14 15	≥ 57		0.98 (0.83, 1.16)		1.08 (0.91, 1.28)
16 Education level of the	No education		1		1
17 1 & ousehold head	Primary		1.34 (0.67, 2.67)		1.19 (0.59, 2.40)
19 20	Secondary		0.74 (0.40, 1.36)		0.75 (0.41, 1.38)
21	Higher		2.26 (1.13, 4.54)		2.21 (1.12, 4.36) ^b
22 2© urrent marital status	Never married		1		1
24 household head	Married		0.87 (0.71, 1.08)		0.99 (0.80, 1.22)
26	Divorced		0.69 (0.52, 0.91) ^b		0.82 (0.62, 1.08)
27 28	Widowed		0.66 (0.50, 0.86) °		0.75 (0.57, 0.98) ^b
29 Wealth index 30	Poorest			1	1
31	Poorer		· · ·	3.99 (3.00, 5.31) ^c	3.97 (2.99, 5.29) °
32 33	Middle			5.87 (4.39, 7.86) ^c	5.82 (4.35, 7.80) ^c
34	Richer			8.65 (6.46, 11.58) ^c	8.58 (6.40, 11.50) ^c
35 36	Richest			24.76 (18.08, 33.91)°	23.94 (17.45, 32.83) ^c
37 Source of drinking	Unimproved			1	1
39water	Improved			1.36 (1.12, 1.65) °	1.37 (1.12, 1.66) ^c
40 ₄Number of household	1 – 3 members			1	1
⁴ members 43	4 – 6 members			0.88 (0.78, 0.99) ^a	0.86 (0.75, 0.98) ^c
44	7+			1.07 (0.91, 1.26)	1.02 (0.86, 1.22)
45 46esidence	Urban			1	1
47	Rural			0.28 (0.21, 0.39) ^c	0.28 (0.20, 0.38) ^c
48 4 & egion	Tigray			0.27 (0.16, 0.45) °	0.28 (0.17, 0.46) ^c
50 51	Afar			0.38 (0.21, 0.68) °	0.37 (0.21, 0.67) °
52	Amhara			0.04 (0.02, 0.06) °	0.04 (0.02, 0.06) °
53 54	Oromia			0.10 (0.06, 0.17) °	0.10 (0.06, 0.17) °
55 56	Somali			1.33 (0.79, 2.22)	1.32 (0.79, 2.21)
57	I	1	1	I	

58

2 3							
		Benishangul G.			0.05 (0.03, 0.10) °	0.05 (0.03, 0.10)	
		SNNPR			0.20 (0.12, 0.34) °	0.20 (0.12, 0.33)	
		Gambella			0.15 (0.09, 0.26) °	0.15 (0.09, 0.26)	
		Harari			0.40 (0.24, 0.66) °	0.40 (0.24, 0.66)	
0		Dire Dawa			1.13 (0.69, 1.87)	1.14 (0.69, 1.89)	
1 2		Addis Ababa			1	1	
Random	Community	v level variance(SE)	8.66 (0.73) ^c	8.71 (0.74) ^c	1.21 (0.12)°	1.22 (0.12)	
4 effect	ICC (%)		72.46%	72.58%	26.95%	27.08%	
6 7	MOR		16.37	16.50	2.84	2.86	
8	PCV	0	reference	-1.07%	86.03	85.91%	
9 Model fit	Log-likelih	ood	-5621.74	-5603.26	-5029.24	-5018.39	
statistics	Deviance		11243.48	11206.52	11036.78	10058.48	
Model II- (Model III- PCV: Prop	Only community		riables included in	the model;	ariables		
7 8 240 9					0		
0 1 241	Random-	effects analysis					
2 3 242 4	The preva	alence rate of acce	ss to improved	drinking water s	sources varied across	communities	
5 243 5	(commun	(community-level variance = 12.24, $p = \langle 0.001 \rangle$ [Table 2]. The null model revealed that 78.81%					
244	of the tota	of the total variance in the odds of access to improved drinking water sources was accounted by					
9) 245 I	between-o	cluster variation of	characteristics (ICC = 0.7881). T	he inter-cluster variabi	lity declined	
2 246 3	over succ	essive models, from	n 78.81% in the	e null model to 78	8.55% in the only indi	vidual-level,	
4 247 5	59.08% in the only community-level, and 58.97% in the final (combined) models. The proportional						

Page 19 of 30

BMJ Open

change in variance indicated that the addition of predictors to the empty model explained an increased proportion of variation in access to improved drinking water sources. The combined model showed that a higher PCV, i.e., 61.36% of the variance in access to improved drinking water sources could be explained by the combined factors at the individual- and community-levels. In [Table 3] the final model (Model III), ICC value of 0.2708 indicates that 27.08% of the total variation in access to improved toilet facilities is accounted for the community-level factors. The remaining 72.92% variation is therefore triggered by the individual- level and other unknown factors. The proportional change in variance indicated that the addition of predictors to the empty model explained an increased proportion of variation in access to improved toilet facilities. The combined model showed a higher PCV, i.e., 85.91% of the variance in access to improved toilet facilities could be explained by the combined factors at the individual- and community-levels. 2. **Model fit statistics** As shown in [Tables 2 & 3] (model fit statistics), the values of log-likelihood and Deviance showed a subsequent reduction which indicates that each model represents a significant improvement over the previous model and it points to the goodness of fit for the final model built in the analysis.

DISCUSSION

In this study, we aimed to assess access to improved drinking water sources and sanitation facilities and their associated factors in Ethiopia. Accordingly, the proportion of households' access to improved drinking water sources was 69.94%, [95% CI: (69.23, 70.63)]. This finding is lower than reports from studies conducted in Ghana,⁽²⁾ Viet Nam,⁽¹⁶⁾, and Eswatini. ⁽¹⁴⁾ Whereas, it is higher than a reported proportion from a study conducted in Nepal. (15) The proportion of households' access to toilet facilities was 25.36%, [95% CI: (24.69, 26.03)]. This result is higher than the one reported from Ghana,⁽²⁾ However, lower than studies from Nigeria,⁽²⁹⁾ and Viet Nam. ⁽¹⁶⁾ The variation could be the disparities in GDP status and literacy rate among countries, study period, and setting.

Individual-level factors were associated with access to improved drinking water sources and toilet facilities in the present study. Female-headed households were 1.18 times more likely than male-headed households to access improved drinking water sources. Similar findings were reported from Ghana, Vietnam, and Nigeria. (2, 16, 30) Gender differences may play an important role in the work division in developing countries. Most of the time women have higher household responsibilities such as fetching water, cleaning compounds, childcare, and food preparation, etc. Therefore, this might be directly linked with water and sanitation in the sense that women may be preoccupied with other daily routines than WASH.

Those households with heads having better educational status were 2.21 times more likely to access improved toilet facilities. This study finding is supported by evidence from previous studies. (14, 29, 31) Households who are led by heads who have no education had a lower probability of access to improved toilet facilities. In sub-Saharan Africa, education is a resource factor of quality health

Page 21 of 30

BMJ Open

outcomes, and educated people usually are more aware of the condition that guarantees their well
beings. This implies that educated household heads in this study may have utilized their resources
to provide their households with improved toilet facilities.

In addition to individual level factors, community-level factors were also associated with access to improved drinking water sources and toilet facilities. When compared to households within the poorest category, households within poorer, middle, richer, and richest wealth index category were 1.48, 2.42, 3.26, and 6.97 times more likely to have access to improved sources of drinking water and 3.97, 5.82, 8.58, and 23.94 times higher odds to access improved toilet facilities, respectively. This result is consistent with results from previous studies. (13, 14, 32) People who have better incomes would intend to fulfill the necessities of life. Economically, the rich can afford the initial high cost of both water and sanitation facilities and the poor may be disproportionately underserved in the distribution of public utility, and hence consume poor quality water and use unimproved sanitation facilities.

Compared with households that got drinking water < 30 minutes, households which obtained drinking water \ge 30 minutes were 35% less likely to access improved drinking water sources. Hence, the length of time to get drinking (proximity of a house to a drinking water source) water might make difference in access to improved sources of drinking water and coverage (%) with improved water supply (HH connection, public standpipes, protected underground water sources, rainwater collection). This is not surprising as the physical distance is one of the reasons of WASH service inaccessibility.

The adjusted odds of access to improved drinking water sources and toilet facilities were 94.00% and 72.00% less likely among rural households as compared to urban households, respectively. The rural-urban disparity in access to improved sources of drinking water and toilet facilities have

been reported by several other previous studies, too. ^(12, 33, 34). The disparity might be, in subSaharan Africa, most of the people live in rural areas and their economic status is poor. Therefore,
they do not have adequate financial resources to acquire improved drinking water sources and
toilet facilities.

Furthermore, households who had improved sources of drinking water were 1.37 times more likely to access an improved toilet facilities. This study finding is consistent with an earlier study. ⁽²⁹⁾ The possible explanation could be a lack of access to adequate sanitation is also linked to the limited access to water supply and households who had improved water sources may be practicing more in hygiene and sanitation.

Lastly, those households with four to six were 24% less likely access to improved toilet facilities compared to households with a family size of one to three. This is contrary to that of an earlier study. ⁽²⁾ The possible explanation could be the highest number of household members, the fewer resources they could have to build improved toilet facilities.

BMJ Open

CONCLUSIONS

The proportion of households' access to an improved source of drinking water and sanitation facility was low in the country. Sex of household head, wealth index, time to get drinking water, residence, and region were associated with access to improved drinking water sources. Educational level of the household head, wealth index, being widowed, source of drinking water, number of household members, residence, and region were factors associated with access to improved toilet facilities. Thus, governmental and non-governmental organizations working on water, hygiene, and sanitation should consider a multi-faceted policy approach that accounts for the regions and residence variations and other identified factors to ease up the problem.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1

336 Acknowledgments

337 We would like to thank the Demographic and Health Survey (DHS) programme for allowing the

- 338 use of Ethiopian Demographic and Health Survey (EDHS) data for this study.
- 339 **Competing interests:** None declared.
- 340 **Patient consent for publication:** Not required.

Ethics approval: The EDHS 2016 was approved by the National Research Ethics Review
Committee of Ethiopia and ICF Macro International. The approval letter was obtained from the
measure DHS for the use of this data, and the dataset was downloaded from <u>www.meauredhs.com</u>.
This analysis was approved by the Department of Environmental and occupational health and

- 345 safety, University of Gondar.
- 346 Funding
- 347 The author(s) received no specific funding for this work.
- 348 Availability of data and materials
- 349 The dataset analyzed during the current study available from the corresponding author upon 350 reasonable request.
- 3 351 Authors' contributions
- 352 ZA wrote the analyzed data, drafted the paper, and prepared the manuscript. HD, ZNA, AAT, BD,
- $\frac{2}{3}$ 353 RF, AGM, and YY drafted the paper, writing review & editing, and commented on the
- 354 manuscript. All the authors read and approved the final manuscript.

60

BMJ Open

1 2		
2 3 4	356	REFERENCES
5 6	357	1. Prüss-Ustün A, Wolf J, Bartram J, Clasen T, Cumming O, Freeman MC, et al. Burden of
7	358	disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An
8 9	359	updated analysis with a focus on low-and middle-income countries. International journal of
10 11	360	hygiene and environmental health. 2019;222(5):765-77.
12 13	361	2. Agbadi P, Darkwah E, Kenney PL. A Multilevel Analysis of Regressors of Access to
14	362	Improved Drinking Water and Sanitation Facilities in Ghana. Journal of environmental and
15 16	363	public health. 2019;2019.
17 18	364	3. Assembly UG. Resolution on Human Right to Water and Sanitation. New York: United
19	365	Nations. 2010.
20 21	366	4. Brookes JD, Carey CC. Ensure availability and sustainable management of water and
22 23	367	sanitation for all. UN Chronicle. 2015;51(4):15-6.
24 25	368	5. Mills JE, Cumming O. The impact of water, sanitation and hygiene on key health and
26	369	social outcomes. URL: https://www lshtm ac uk/sites/default/files/2017-
27 28	370	07/WASHEvidencePaper_HighRes_01. 2016;23.
29 30	371	6. Saxena SK, Kumar S, Haikerwal A, Bhatt ML. Introductory chapter: Neglected tropical
31 32	372	waterborne infectious diseases-strategies for mitigation. Water Challenges of an Urbanizing
33	373	World. 2018:1.
34 35	374	7. Organization WH. Water, sanitation, hygiene, and waste management for the COVID-19
36 37	375	virus: interim guidance, 23 April 2020. World Health Organization, 2020.
38 39	376	8. Organization WH. Progress on drinking water, sanitation and hygiene: 2017 update and
40	377	SDG baselines. 2017.
41 42	378	9. Organization WH. Water, sanitation, hygiene and health: a primer for health
13 14	379	professionals. World Health Organization, 2019.
45	380	10. Organization WH. Safer water, better health. 2019.
46 47	381	11. UNICEF. Water, sanitation and hygiene (WASH) 2020 [cited 2020 April, 14]. Available
48 49	382	from: https://www.unicef.org/ethiopia/water-sanitation-and-hygiene-wash.
50 51	383	12. Mulenga JN, Bwalya BB, Kaliba-Chishimba K. Determinants and inequalities in access
52	384	to improved water sources and sanitation among the Zambian households. International Journal
53 54	385	of Development and Sustainability. 2017;6(8):746-62.
55 56		
57 58		
59 60		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

2 3	200	
4 5 6	386	13. Morakinyo OM, Adebowale SA, Oloruntoba EO. Wealth status and sex differential of
	387	household head: implication for source of drinking water in Nigeria. Archives of Public Health.
7 8	388	2015;73(1):58.
9	389	14. Simelane MS, Shongwe MC, Vermaak K, Zwane E. Determinants of Households'
10 11 12 13 14 15 16	390	Access to Improved Drinking Water Sources: A Secondary Analysis of Eswatini 2010 and 2014
	391	Multiple Indicator Cluster Surveys. Advances in Public Health. 2020;2020.
	392	15. Wang C, Pan J, Yaya S, Yadav RB, Yao D. Geographic Inequalities in Accessing
	393	Improved Water and Sanitation Facilities in Nepal. International journal of environmental
17	394	research and public health. 2019;16(7):1269.
18 19	395	16. Tuyet-Hanh TT, Long TK, Van Minh H, Huong LTT. Longitudinal household trends in
20 21	396	access to improved water sources and sanitation in Chi Linh town, Hai Duong province, Viet
22	397	Nam and associated factors. AIMS public health. 2016;3(4):880.
23 24	398	17. Organization WH, UNICEF. Progress on drinking water and sanitation: special focus on
25 26	399	sanitation. Progress on drinking water and sanitation: special focus on sanitation2008.
27 28	400	18. Beyene A, Hailu T, Faris K, Kloos H. Current state and trends of access to sanitation in
29	401	Ethiopia and the need to revise indicators to monitor progress in the Post-2015 era. BMC Public
30 31	402	Health. 2015;15:451
32 33	403	19. Pullan RL, Freeman MC, Gething PW, Brooker SJ. Geographical inequalities in use of
34	404	improved drinking water supply and sanitation across sub-Saharan Africa: mapping and spatial
35 36	405	analysis of cross-sectional survey data. PLoS Med. 2014;11(4):e1001626.
37 38	406	20. Central Statistical Agency (CSA). Central Statistical Agency (CSA) [Ethiopia] and ICF
39 40	407	Ethiopia demographic and health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland,
41	408	USA: CSA and ICF,2017.
42 43	409	21. Simelane M, Shongwe M, Vermaak K, Zwane E. Determinants of Households' Access to
44 45	410	Improved Drinking Water Sources: A Secondary Analysis of Eswatini 2010 and 2014 Multiple
46 47	411	Indicator Cluster Surveys. 2020;2020.
48	412	22. Ribeiro Sarmento MPH D. An Analysis of Access to Improved Drinking Water and
49 50 51 52 53 54 55	413	Sanitation and Distance to the Water Source in a Newly Independent Country, Timor-Leste:
	414	Assessing Geographical and Socioeconomic Disparities. 2015.
	415	23. Supply WUJW, Programme SM, Organization WH, Supply WUJMPfW, Sanitation,
	416	UNICEF. Water for life: making it happen: World health organization; 2005.
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 30

BMJ Open

1 2		
3 4	417	24. Merlo J, Chaix B, Ohlsson H, Beckman A, Johnell K, Hjerpe P, et al. A brief conceptual
5	418	tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel
6 7	419	logistic regression to investigate contextual phenomena. Journal of Epidemiology & Community
8 9	420	Health. 2006;60(4):290-7.
10 11 12 13 14 15 16	421	25. Merlo J, Yang M, Chaix B, Lynch J, Råstam L. A brief conceptual tutorial on multilevel
	422	analysis in social epidemiology: investigating contextual phenomena in different groups of
	423	people. Journal of Epidemiology & Community Health. 2005;59(9):729-36.
	424	26. Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health:
17 18	425	integrating random and fixed effects in multilevel logistic regression. American journal of
19	426	epidemiology. 2005;161(1):81-8.
20 21	427	27. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model
22 23	428	complexity and fit. Journal of the royal statistical society: Series b (statistical methodology).
24 25	429	2002;64(4):583-639.
26	430	28. Joseph F. Hair, Jr. William, Black Barry J., Babin Rolph, E. Anderson. Multivariate Data
27 28	431	Analysis Edition S, editor2018.
29 30	432	29. Abubakar IR. Access to sanitation facilities among Nigerian households: determinants
31	433	and sustainability implications. Sustainability. 2017;9(4):547.
32 33	434	30. Morakinyo OM, Adebowale SA, Oloruntoba EO. Wealth status and sex differential of
34 35	435	household head: implication for source of drinking water in Nigeria. Archives of public health =
36 37	436	Archives belges de sante publique. 2015;73:58.
38	437	31. Akpakli DE, Manyeh AK, Akpakli JK, Kukula V, Gyapong M. Determinants of access to
39 40	438	improved sanitation facilities in rural districts of southern Ghana: evidence from Dodowa Health
41 42	439	and Demographic Surveillance Site. BMC Res Notes. 2018;11(1):473
43 44	440	32. Njuguna J. Progress in sanitation among poor households in Kenya: evidence from
45	441	demographic and health surveys. BMC Public Health. 2019;19(1):135.
46 47	442	33. Irianti S, Prasetyoputra P, Sasimartoyo TP. Determinants of household drinking-water
48 49	443	source in Indonesia: An analysis of the 2007 Indonesian family life survey. Cogent Medicine.
50	444	2016;3(1).
51 52	445	34. Prasetyoputra P, Irianti S. Access to improved sanitation facilities in indonesia: An
53 54	446	econometric analysis of geographical and socioeconomic disparities. Journal of Applied Sciences
55 56 57 58	447	in Environmental Sanitation. 2013;8(3).
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table 1: Regional distribution of access to improved drinking water sources and toilet facilities in Ethiopia, EDHS, 2016.

Region Source of drinking water		inking water	Toilet facilities		
-	Unimproved	Improved	Unimproved	Improved	
Tigray	410 (23.64%)	1,324 (76.36%)	1,380 (79.58%)	354 (20.42%)	
Afar	627 (51.39%)	593 (48.61%)	1,032 (84.59%)	188 (15.41%)	
Amhara	741 (38.96%)	1,161 (61.04%)	1,782 (93.69%)	120 (6.31%)	
Oromia	746 (37.53%)	1,242 (62.47%)	1,785 (89.79%)	203 (10.21%)	
Somali	884 (56.52%)	680 (43.48%)	1,145 (73.21%)	419 (26.79%)	
Benishangul Gumuz	271 (21.17%)	1,009 (78.83%)	1,225 (95.70%)	55 (4.30%)	
SNNPR	775 (40.85%)	1,122 (59.15%)	1,650 (86.98%)	247 (13.02%)	
Gambella	246 (19.22%)	1,034 (80.78%)	1,098 (85.78%)	182 (14.22%)	
Harari	179 (15.77%)	956 (84.23%)	619 (54.54%)	516 (45.46%)	
Dire Dawa	117 (10.08%)	1,044 (89.92%)	404 (34.80%)	757 (65.20%)	
Addis Ababa	9 (0.60%)	1,480 (99.40%)	308 (20.69%)	1,181 (79.31%)	
Total	5005(30.06%)	11,645	12,428	4,222	
		(69.94%)	(74.64%)	(25.36%)	

BMJ Open

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.annals.org/, and Epidemiology at http://www.strobe-statement.org.

Section and Item	ltem No.	Recommendation	Reported Page N
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/Rationale	2	Explain the scientific background and rationale for the investigation being	
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Methods Study Design	4	Present key elements of study design early in the paper	
Study Design	-	Tresent key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of	
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
		selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	
		exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number	
		of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	
		effect modifiers. Give diagnostic criteria, if applicable	

	No.	Recommendation	Reported Page No
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Mathada	12	(<i>a</i>) Describe all statistical methods, including those used to control for	
Statistical Methods	12		
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was	
		addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results			1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
·		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		<i>Case-control study</i> —Report numbers in each exposure category, or summary	
		measures of exposure	
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures	

1 2	Section and Item	ltem No.	Recommendation	Reported on Page No.	
3	Main Results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates		
4			and their precision (eg, 95% confidence interval). Make clear which confounders		
5 6			were adjusted for and why they were included		
7 8			(b) Report category boundaries when continuous variables were categorized		
9			(c) If relevant, consider translating estimates of relative risk into absolute risk for a		
10 11			meaningful time period		
12 13	Other Analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and		
14 15			sensitivity analyses		
15 16 17	Discussion				
18 19	Key Results	18	Summarise key results with reference to study objectives		
20	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or		
21 22			imprecision. Discuss both direction and magnitude of any potential bias		
23	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,		
24 25			multiplicity of analyses, results from similar studies, and other relevant evidence		
26 27	Generalisability	21	Discuss the generalisability (external validity) of the study results		
28 29	Other Information				
30 31	Funding	22	Give the source of funding and the role of the funders for the present study and, if		
32			applicable, for the original study on which the present article is based		
33 34					
35	 36 cohort and cross-sectional studies. 37 38 Once you have completed this checklist, please save a copy and uplead it as part of your submission. DO NOT include this 			ed groups in	
37					
38 39				e this	
39 40	checklist as part of the r	nain ma	nuscript document. It must be uploaded as a separate file.		
41					
42					
43					

BMJ Open

Households' access to improved drinking water sources and toilet facilities in Ethiopia: A multilevel analysis based on 2016 Ethiopian Demographic and Health Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042071.R3
Article Type:	Original research
Date Submitted by the Author:	26-Feb-2021
Complete List of Authors:	Andualem , Zewudu ; University of Gondar College of Medicine and Health Sciences, Department of Environmental and Occupational health and Safety Dagne, Henok; University of Gondar College of Medicine and Health Sciences, Environmental and Occupational Health and Safety; University of Gondar, Environmental and Occupational Health and Safety Azene, Zelalem; University of Gondar College of Medicine and Health Sciences, Department of Women's and family health, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia.; University of Gondar, Ethiopia taddese, Asefa; University of Gondar College of Medicine and Health Sciences, Epidemiology and Biostatistics Dagnew, Baye ; University of Gondar College of Medicine and Health Sciences, Human Physiology; Mr. Fisseha, Roman ; Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia. Muluneh, Atalay; University of Gondar College of Medicine and Health Sciences, Epidemiology and Bio statistics ; Yeshaw, Yigizie; University of Gondar College of Medicine and Health Sciences, Redical Physiology
Primary Subject Heading :	Public health
Secondary Subject Heading:	Occupational and environmental medicine
Keywords:	PUBLIC HEALTH, PREVENTIVE MEDICINE, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Households access to improved drinking water sources and toilet facilities in Ethiopia: A multilevel analysis based on 2016 Ethiopian Demographic and Health Survey

Zewudu Andualem^{1*}, Henok Dagne¹, Zelalem Nigussie Azene², Asefa Adimasu Taddese³, Baye Dagnew⁴,

Roman Fisseha⁵, Atalay Goshu Muluneh³, and Yigizie Yeshaw⁴

- ¹Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of
- Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia
- ²Department of Women's and Family Health, School of Midwifery, College of Medicine and Health
- Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia.
- ³Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health
- Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia
- ⁴Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences,
- University of Gondar, P. O. Box 196 Gondar, Ethiopia
 - ⁵Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196 Gondar, Ethiopia.
 - *Corresponding author

Authors' email address

- [ZA] Zewudu Andualem: zewuduandualem12@gmail.com, [HD] Henok Dagne: enoch2313@gmail.com,
- [ZNA] Zelalem Nigussie Azene: znigussie35@gmail.com, [AAT] Asefa Adimasu Taddese:
- adimasuasefa@gmail.com, [BD] Baye Dagnew: bayedagnew7@gmail.com, [RF] Roman Fisseha:
- romanfisseha85@gmail.com, [AGM] Atalay Goshu Muluneh: atalayg1921@gmail.com, and [YY] Yigizie
 - Yeshaw: yigizieyeshaw29@gmail.com

BMJ Open

24 ABSTRACT

Objective: This study aimed to assess households access to improved drinking water sources and
 sanitation facilities and their associated factors in Ethiopia.

Design: Cross-sectional study

Setting: Ethiopia

29 Participants: Household heads

Primary outcomes: Access to improved drinking water sources and toilet facilities

Methods: We conducted an in-depth secondary data analysis of 2016 Ethiopian Demographic and Health Survey (EDHS). Data from a total of 16650 households and 645 clusters were included in the analysis. The households were selected using a stratified two-stage cluster sampling technique. Multilevel binary logistic regression analyses were performed to identify factors associated with access to an improved drinking water source and toilet facilities. Adjusted odds ratio with a 95% CI was reported with p-value < 0.05 was used to declare a significant association between the covariates and the outcome variables.

Results: The proportions of households' access to improved sources of drinking water and toilet facilities were 69.94%, [95% CI: (69.23, 70.63)], and 25.36%, [95% CI: (24.69, 26.03)], respectively. Households headed by females and households with a better wealth index were positively associated with access to improved drinking water sources. Whereas rural households, ≥ 30 minutes round trip to obtain drinking water and region were factors negatively associated with households access to improved drinking water sources. A higher probability of having access to improved toilet facilities: households with heads who had attained higher education, households

2 3	
4 5	
5 6	
0 7	
7 8	
8 9	
9 10	
11	
12	
12	
14	
15	
12 13 14 15 16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38 39	
40 41	
41 42	
42 43	
45 44	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

54

56

57

60

61

62

1

having better access to improved sources of drinking water, and households with better wealth
index. While the following households were less likely to have access to improved toilet facilities:
households with heads were widowed, households with four to six members, rural households, and
region

49 Conclusion: The study found that the proportions of households' access to improved drinking 50 water sources and toilet facilities in Ethiopia were relatively low, which demands the need to tailor 51 strategies to increase the coverage of access to improved drinking water sources and toilet 52 facilities.

53 Keywords: Improved toilet facilities, improved water sources, multilevel analysis, Ethiopia

55 Strength and limitations of the study

The use of nationally representative data that can enhance the generalizability of the findings is one of the strengths of this study.

This study used data from a cross-sectional survey; as a result, the results from analyzing the data
cannot establish causal relationships.

Moreover, important variables such as culture, traditions, and social norms were not available in EDHS data which could influence the use of toilet facility type.

BMJ Open

63 INTRODUCTION

Access to safe water and basic sanitation is one of the fundamental human rights, and an essential step towards improving living standards to maintain and improve health, human growth, and development. ⁽¹⁻³⁾ It is one of the critical sustainable development challenges. Sustainable Development Goal (SDG) 6 aims to ensure the availability and sustainable management of water and sanitation for all by 2030. ⁽⁴⁾

Unimproved sources of drinking water and sanitation facilities are responsible for increased risks of various infectious diseases such as; cholera, typhoid, schistosomiasis, infections of the respiratory systems, skin, and eye. (1, 5, 6) The currently available evidences also indicate that to prevent the novel coronavirus disease (COVID-19) outbreak, the provision of safe water, sanitation, and hygienic conditions is crucial. (7)

Globally, 2 billion people lack basic sanitation services and 785 million people have no access to clean water. ⁽⁸⁾ More than 1.9 million deaths and 123 million disability-adjusted life-years (DALYs) could have been prevented by the provision of adequate access to water, hygiene, and sanitation (WASH) worldwide. The WASH-attributable disease burden accounts for 4.6% of global DALYs and 3.3% of global mortality. ⁽⁹⁾ 13% of under 5 mortality was accounted by WASH-attributable disease. ⁽¹⁰⁾ In Ethiopia, 60 to 80 % of communicable diseases are attributed to limited access to safe water, inadequate sanitation, and hygiene services. ⁽¹¹⁾

Regarding factors associated with improved drinking water sources and toilet facilities: Sex of household heads, region, residence, family size, and time to get to drinking water source, age of household head, educational level, and marital status of the household heads were predictors linked to access to improved drinking water sources and toilet facilities reported by previous studies. ⁽²⁾

85 <u>12-16</u>)

In Sub-Saharan Africa, particularly in Ethiopia, access to improved sources of drinking water and toilet facilities is still lacking and people are practicing open defecation. (17, 18) There is no study in Ethiopia using nationally representative data (2016 Ethiopian Demographic and Health Survey (EDHS) data), which accounts for the hierarchical nature of the data. However, national studies conducted in Sub-Saharan African countries in 2014 indicated the spatial variation in the coverage of households' use of improved drinking water supply and sanitation. (19) Therefore, the current study aimed to assess access to improved drinking water sources and toilet facilities and their associated factors in Ethiopia using EDHS 2016 data.

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32 33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

METHODS

Patient and public involvement 95

This study was based on a publicly available data set (EDHS 2016). Thus, there were no patients 96 or members of the public involved. 97

98 Study design and area

The 2016 main EDHS was a cross-sectional survey conducted from 18 January 2016 to 27 June 99 2016 in Ethiopia by the Ethiopian Central Statistical Agency (ECSA). For our case, we used an 100 in-depth secondary data analysis of the survey. It was the fourth survey conducted in each of the 101 11 regions of Ethiopia (9 regional states and 2 administrative cities). Administratively, each region 102 103 in Ethiopia is divided into Zones, each Zone, in turn, is divided into Woredas, and each Woreda into Kebeles (the lowest administrative units in the country). (20) 104

105 **Data sources**

Data were obtained from 2016 Ethiopian Demographic and Health Survey (EDHS-2016) after 106 being registered as an authorized user. The survey collects data on key indicators of health and 107 108 health-related events including access to improved drinking water sources and toilet facilities. A total of 16,650 households from 645 Enumeration Areas (EAs) were included in the survey. (20) 109

Sample size and sampling procedure 110

A two-stage stratified cluster sampling technique was employed to select study participants. 111 Sampling frame of the 2007 Population and Housing Censuses in which EAs were the sampling 112 units for the first stage and households for the second stage was used. A total of 18,008 households 113 were selected for the sample, of which 17,067 were occupied. Of the occupied households, 16,650 114

were successfully interviewed, yielding a response rate of 98%. (20) The current study included individual-level data for 16650 household heads as well as community characteristics of 645 clusters. Variables of the study **Outcome variables** Access to improved drinking water sources and improved toilet facilities. **Explanatory** variables The explanatory variables for this study were classified as individual and community level factors for both outcome variables. The individual-level factors for the outcome variables were; Sex, age, educational level, and marital status of the household head. Whereas, the community-level factors for the first outcome variable (access to improved drinking water sources) were; household wealth index, time to get to drinking water sources, family size, place of residence, and region. While, for the second outcome variable (access to improved toilet facilities) the community-level factors were household wealth index, household size, sources of drinking water, place of residence, and region. The variables were selected based on the literature review for factors affecting access to improved drinking water sources and improved toilet facilities. The basis of the classification of explanatory variables into the individual level, household level, and community level variables were based on previous studies (2, 21, 22) and our professional judgments.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

136 **Operational definitions**

Improved sources of drinking water: a household is said to have access to an improved drinking
water source if it has water piped into its dwelling, water piped to a yard/plot, a public
tap/standpipe, a tube well/borehole, a protected dug well, a protected spring, rainwater, bottled
water, or sachet water. ⁽²³⁾

141 Improved types of toilet facilities: a household is said to have access to improved toilet facilities
142 if it has unshared flush/pour flush to piped sewer systems, septic tanks or pit latrines, ventilated
143 improved pit latrines, composting toilets, or pit latrines with slabs. ⁽²³⁾

144 Data processing and analysis

Statistical analysis was performed using Stata 16.00 software. The weighted frequencies and the
percentages (based on the population size of each region) were computed. The detailed weighting
procedure is described elsewhere. ⁽²⁰⁾

Multilevel binary logistic regression model was used to assess the impact of individual and 148 community-level factors on households' access to improved sources of drinking water and 149 improved toilet facilities. The model, which is most appropriate to consider the cluster random 150 151 effect in a multivariate setting and the reason to apply multilevel modeling was the nature of the data collected which have a hierarchical or clustered structure. The first level represents the 152 individual and household and the second level factor is the clusters. Four models were tested in 153 each of the cases (access to improved sources of drinking water and toilet facilities). Model 0 (the 154 null model) was fitted without explanatory variables to test random variability in the intercept and 155 to estimate the intraclass correlation coefficient (ICC). Model I was used to investigate the impact 156 of individual-level factors on the likelihood of having access to improved sources of drinking water 157

and toilet facilities. Model II was used to assess the impact of community-level factors on the
likelihood of having access to improved sources of drinking water and toilet facilities. Model III
was employed to assess the impact of individual and community-level factors altogether on access
to improved sources of drinking water and toilet facilities.

The random effects (variation of effects) were measured by ICC, percentage change in variance (PCV), Median Odds Ratio (MOR), and deviance (-2log likelihood), which measure the variability between clusters in the multilevel models. The ICC explains the cluster variability, while MOR is used to quantify unexplained cluster variability (heterogeneity). The MOR was used to translate cluster variance into OR scale. ⁽²⁴⁻²⁶⁾ In the multilevel model, deviance can measure the total variation due to factors at the community and individual levels. ^(25, 27)

Adjusted odds ratio with a 95% confidence interval was reported with p-value < 0.05 was used to
declare a significant association among covariates and outcome variables. A multicollinearity test
was performed to rule out if there was a significant correlation between explanatory variables. If
the values of variance inflation factor (VIF) was lower than 10, then the collinearity problem was
considered less likely. ⁽²⁸⁾

RESULTS

174 Socio-demographic characteristics of the study participants

A total of 16650 study participants were included in the study. The median (\pm SD) age of the household heads was 40 years (\pm 16.22 years, range 15 - 95). Approximately, seven out of ten (69.94%) of the households had access to improved sources of drinking water and only one-fourth (25.36%) of households had access to improved sources of toilet facilities. Majority (98.37%) of respondents had no formal education. About 68.55% of households were male-headed. [**Table 1**].

Variables	Frequency	ncy Percent (%)	
Source of drinking water	Improved	11,645	69.94
	Unimproved	5,005	30.06
Toilet facilities	Improved	4,222	25.36
	Unimproved	12,428	74.64
Sex of household head	Male	11,413	68.55
	Female	5,237	31.45
Age of household head (years)	13 to 30	4,257	25.57
	31 to 40	4,132	24.82
	41 to 56	4,230	25.41
	□ 57	4,031	24.21
Education level of the household head	No education	16,378	98.37
	Primary education	93	0.56
	Secondary education	114	0.68
	Higher education	65	0.39
Current marital status household head	Never married	1,046	6.29
	Married	12,064	72.50
	Widowed	2,108	12.67
	Divorced	1,423	8.55
Wealth index	Poorest	4,676	28.08
	Poorer	2,348	14.10
	Middle	2,057	12.35
	Richer	2,020	12.13
	Richest	5,549	33.33
Time to get drinking water	\leq 30 minutes	9,821	58.98
	> 30 minutes	6,829	41.02
Number of household members	1-3 members	6,258	37.59
	4 – 6 members	7,031	42.23

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
57
58

1 2

	7 members and above	3,361	20.19
Residence	Urban	5,232	31.42
	Rural	11,418	68.58
Region	Tigray	1,734	10.41
	Afar	1,220	7.33
	Amhara	1,902	11.42
	Oromia	1,988	11.94
	Somali	1,564	9.39
	Benishangul-Gumuz	1,280	7.69
	SNNPR	1,897	11.39
	Gambella	1,280	7.69
	Harari	1,135	6.82
	Dire Dawa	1,161	6.97
	Addis Ababa	1,489	8.94

182

183

Regional distribution in terms of improved drinking water and toilet facility sources in Ethiopia

Among Ethiopian regions, nearly all households in Addis Abeba (99.40%) had access to improved sources of drinking water. On the contrary, Somali (56.52%) and Afar regions (51.39%) had the least access to improved sources of drinking water. Households in Benishangul-Gumuz and Amhara regions were lowest in access to toilet facilities with 4.30% and 6.31%, respectively while households in Dire Dawa and Addis Ababa had the highest access to improved toilet facilities with 65.20% and 79.31%, respectively **[S1 Table 1]**.

190 Factors associated with access to improved drinking water sources

The proportion of households which had access to improved sources of drinking water was 69.94%
at [95% CI: (69.23, 70.63)]. Both individual-level and community-level factors had an impact on

Page 13 of 30

1

BMJ Open

2	
3 4	193
5 6	194
7 8	195
9 10	196
11 12	190
13 14	197
15 16	198
17 18	199
19 20	200
21 22	
23 24	201
25 26 27	202
27 28 29	203
30 31	204
32 33	205
34 35	
36 37	206
38 39	207
40 41	208
42 43	209
44 45	
46 47	210
48 49	211
50 51	212
52 53 54	213
54 55 56	214
57	
58 59	
60	

193 accessing improved drinking water sources in this study. Among individual-level factors; sex of 194 the household head and from community-level factors; wealth index, time to get to drinking water 195 sources, residence, and region were significantly associated with access to improved drinking 196 water sources.

Female-headed households were 1.18 [AOR = 1.18, CI: (1.01, 1.37)] times more likely to have
access to improved drinking water sources than male-headed households.

Compared to poorest households, poorer [AOR = 1.48, CI: (1.26, 1.74)], middle-income [AOR =
2.42, CI: (2.03, 2.90)], richer [AOR = 3.26, CI: (2.68, 3.97)] and richest [AOR = 6.97, CI: (5.17,
9.41)] households were 1.48, 2.42, 3.26, and 6.97 times higher probability to have access to
improved drinking water sources, respectively.

In contrast to households who got drinking water in \Box 30 minutes, households who got drinking water \Box 30 minutes were 35% less likely to access to improved drinking water sources [AOR = 0.65, CI: (0.58, 0.73)].

The adjusted odds of access to improved drinking water sources in rural households was 94.00%
less likely compared to urban households [AOR = 0.06, CI: (0.03, 0.11)].

208 The likelihood of access to improved sources of drinking water was 95.00% [AOR = 0.05, (0.01,

209 (0.21) in Afar, 94.00% [AOR = 0.06, (0.01, 0.27)] in Amhara, 92.00% [AOR = 0.08, (0.02, 0.35)]

210 in Oromia, 98.00% [AOR = 0.02, (0.01, 0.10)] in Somalia, 93.00% [AOR = 0.07, (0.02, 0.30)] in

SNNPR, and 82.00% [AOR = 0.18 (0.04, 0.89)] in Harari compared to access to improved water
sources in Addis Ababa city [Table 2].

Table 2: Multivariable multilevel logistic regression model of the effects of individual- and
community-level factors on improved drinking water sources in Ethiopia, EDHS 2016

Variables		Null Model	Model I	Model II	Model III
			AOR(95% CI)	AOR(95% CI)	AOR(95% CI)
Sex of household	Male		1		1
head	Female		1.13 (0.97, 1.32)		1.18 (1.01, 1.37)*
Age of household	13 to 30		1		1
head	31 to 40		0.99 (0.85, 1.14)		1.04 (0.89, 1.22)
	41 to 56		1.07 (0.92, 1.24)		1.13 (0.96, 1.33)
	□ 57		0.93 (0.80, 1.09)		1.00 (0.85, 1.17)
Education level of the	No education		1		1
household head	Primary		0.93 (0.50, 1.73)		0.98 (0.52, 1.83)
	Secondary		1.69 (0.82, 3.49)		1.74 (0.83, 3.65)
	Higher	5	1.51 (0.40, 5.70)		1.37 (0.34, 5.55)
Current marital status	Never married	0	1		1
household head	Married	N/	0.74 (0.54, 1.02)		1.02 (0.72, 1.43)
	Divorced		0.71 (0.49, 1.04)		1.01 (0.68, 1.50
	Widowed		0.72 (0.49, 1.05)		0.98 (0.66, 1.45)
Wealth index	Poorest			1	1
	Poorer		6.	1.47 (1.25, 1.73) ^b	1.48 (1.26, 1.74)
	Middle			2.41 (2.01, 2.88) ^b	2.42 (2.03, 2.90)
	Richer		4	3.23 (2.66, 3.92) ^b	3.26 (2.68, 3.97)
	Richest		6	6.84 (5.07, 9.22) ^b	6.97 (5.17, 9.41)
Time to get drinking	\Box 30 minutes			1	1
water	\Box 30 minutes			0.66 (0.58, 0.74) ^b	0.65 (0.58, 0.73)
Number of household	1 - 3 members			1	1
members	4 – 6 members			0.86 (0.77, 0.97) ^a	0.88 (0.77, 1.00)
	7+			0.88 (0.76, 1.01)	0.88 (0.75, 1.04)
Residence	Urban			1	1
	Rural			0.06 (0.03, 0.10) ^b	0.06 (0.03, 0.11) ¹
Region	Tigray			0.26 (0.06, 1.18)	0.26 (0.06, 1.17)
	Afar			0.05 (0.01, 0.21) ^b	0.05 (0.01, 0.21)
	Amhara			0.06 (0.01, 0.27) ^b	0.06 (0.01, 0.27)
	Oromia			0.08 (0.02, 0.35) ^b	0.08 (0.02, 0.35)
	Somali			0.02 (0.01, 0.10) ^b	$0.02 (0.01, 0.10)^{10}$

1

	Benishangul Gumuz			0.39 (0.08, 1.80)	0.39 (0.08, 1.81		
	SNNPR			0.07 (0.02, 0.30) ^b	0.07 (0.02, 0.30)		
	Gambella			0.30 (0.06, 1.35)	0.29 (0.06, 1.33		
	Harari			0.18 (0.04, 0.88) ^a	0.18 (0.04, 0.89)		
	Dire Dawa			0.33 (0.07, 1.64)	0.33 (0.07, 1.63		
	Addis Ababa			1			
Random	Community level variance(SE)	12.24 (1.13) ^b	12.05 (1.11) ^b	4.75 (0.42) ^b	4.73 (0.41)		
effect	ICC (%)	78.81%	78.55%	59.08%	58.97%		
	MOR	9.05	8.96	5.64	5.6		
	PCV	Reference	1.55%	61.19	61.36%		
Model fit	Log-likelihood	-5997.01	-5987.89	-5619.38	-5611.4		
statistics	Deviance	11994.02	11975.78	11238.76	11222.9		
Note: ^{a, b} significat							
Model III- PCV: Propo MOR: Med	Only community-level explanatory vari Combined model; both individual-leve ortional Change in Variance, ian Odds Ratio			ables			
215 216	Factors associated with access	to improved toil	et facilities				
	The proportion of households w	with access to an in	nproved sources	of toilet facility wa	s 25.36% at		
218	[95% CI: (24.69%, 26.03%)]. In	ndividual-level fac	tors such as edu	cational level and m	narital status		
219	of the household head, and community level factors such as wealth index, sources of drinking						
	water, number of household members, residence, and region were factors significantly impacting						
	households' access to improved	toilet facilities.					
3 9	For peer review or	lly - http://bmiopen.k	omi.com/site/abou	t/quidelines.xhtml			

Compared to household heads that had no formal education, households with heads who attained higher education were 2.21 times more likely to have access to improved toilet facilities at [AOR = 2.21 CI: (1.12, 4.36)]. The likelihood of access to improved toilet facilities was 25% [AOR = 0.75, CI: (0.57, 0.98)] lower in households with heads who were widowed compared to those who never married. Compared to poorest households' access to improved toilet facilities, households with the following wealth indices have the following positive associations: poor households had [AOR = 3.97 CI: $(2.99, 5.29 \text{ higher probability, middle households had a [AOR = 5.82 CI: (4.35, 7.80)]$ higher probability, richer households had a [AOR = 8.58 CI: (6.40, 11.50)] higher probability, and richest households had an [AOR = 23.94 CI: (17.45, 32.83) higher probability.

Households who had improved sources of drinking water were 1.37 [AOR = 1.37 CI: (1.12, 1.66)]
times more likely to have access to improved toilet facilities compared to their counterparts.

Households with more members were less likely to have access to improved toilet facilities. Compared to households with one to three members, households with four to six members had a 24% [AOR = 0.86 (0.75, 0.98)] lower probability to have access to improved toilet facilities.

In this study, a decrease in the probability of access to improved toilet facilities was observed for
rural households contrary to urban households by 72% [AOR = 0.28 CI: (0.20, 0.38)].

240 About 72.00% in Tigray [AOR = 0.28, CI: (0.17, 0.46)], 63.00% in Afar [AOR = 0.37, CI: (0.21, 0.21)

241 0.67)], 96.00% in Amhara [AOR = 0.04, (0.02, 0.06)], 90.00% in Oromia [AOR = 0.10, CI: (0.06,

(0.17)], 95.00% in Benishangul Gumuz [AOR = 0.05 CI: (0.03, 0.10)], 80.00% in SNNPR [AOR

243 = 0.20 CI: (0.12, 0.33)], 85% in Gambella [AOR = 0.15 CI: (0.09, 0.26)], and 60.00% in Harari

[AOR = 0.40 CI: (0.24, 0.66)] households had a higher probability to have access to improved

toilet facilities as compared to households in Addis Ababa city [Table 3].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

246	Table 3: Multivariable multilevel	logistic	regression	model	of the	effects	of individual- and
-----	-----------------------------------	----------	------------	-------	--------	---------	--------------------

community-level factors on improved sources of toilet facilities in Ethiopia, EDHS 2016

8 9 10 Variables 11		Null Model	Model I	Model II	Model III
			AOR(95% CI)	AOR(95% CI)	AOR(95% CI)
Sex of the household	Male		1		1
a head	Female		1.01 (0.88, 1.16)		1.03 (0.89, 1.19)
Age of the household	13 to 30		1		1
6 Þæad	31 to 40		0.99 (0.85, 1.15)		1.04 (0.89, 1.21)
8 9	41 to 56		0.98 (0.84, 1.15)		1.02 (0.86, 1.20)
20	□ 57		0.98 (0.83, 1.16)		1.08 (0.91, 1.28)
Education level of the	No education		1		1
Phousehold head	Primary		1.34 (0.67, 2.67)		1.19 (0.59, 2.40)
25	Secondary		0.74 (0.40, 1.36)		0.75 (0.41, 1.38)
26 27	Higher		2.26 (1.13, 4.54)		2.21 (1.12, 4.36) ^b
Current marital status	Never married		1		1
²⁹ of the household head	Married		0.87 (0.71, 1.08)		0.99 (0.80, 1.22)
31 32	Divorced		0.69 (0.52, 0.91) ^b		0.82 (0.62, 1.08)
33	Widowed		0.66 (0.50, 0.86) ^c		0.75 (0.57, 0.98) ^b
Household wealth	Poorest		4	1	1
9 9 97	Poor		6	3.99 (3.00, 5.31) °	3.97 (2.99, 5.29) °
38	Middle			5.87 (4.39, 7.86) °	5.82 (4.35, 7.80) ^c
39 10	Richer			8.65 (6.46, 11.58) °	8.58 (6.40, 11.50) °
11	Richest			24.76 (18.08, 33.91)°	23.94 (17.45, 32.83) ^c
12 Source of drinking	Unimproved			1	1
Hwater 15	Improved			1.36 (1.12, 1.65) °	1.37 (1.12, 1.66) °
Household size	1-3 members			1	1
17 18	4 – 6 members			0.88 (0.78, 0.99) ^a	0.86 (0.75, 0.98) ^c
19	7+			1.07 (0.91, 1.26)	1.02 (0.86, 1.22)
50 Place of residence	Urban			1	1
52 53	Rural			0.28 (0.21, 0.39) °	0.28 (0.20, 0.38) ^c
Region	Tigray			0.27 (0.16, 0.45) °	0.28 (0.17, 0.46) °
55 56	Afar			0.38 (0.21, 0.68) ^c	0.37 (0.21, 0.67) °

3 4		Amhara			0.04 (0.02, 0.06) ^c	0.04 (0.02, 0.06) °
5		Oromia			0.10 (0.06, 0.17) °	0.10 (0.06, 0.17)
5		Somali			1.33 (0.79, 2.22)	1.32 (0.79, 2.21)
3		Benishangul G.			0.05 (0.03, 0.10) °	0.05 (0.03, 0.10)
0		SNNPR			0.20 (0.12, 0.34) °	0.20 (0.12, 0.33)
1 2		Gambella			0.15 (0.09, 0.26) °	0.15 (0.09, 0.26)
3		Harari			0.40 (0.24, 0.66) °	0.40 (0.24, 0.66)
4 5		Dire Dawa			1.13 (0.69, 1.87)	1.14 (0.69, 1.89)
6 7		Addis Ababa			1	1
Random	Community	level variance(SE)	8.66 (0.73) ^c	8.71 (0.74) ^c	1.21 (0.12) ^c	1.22 (0.12)
effect	ICC (%)		72.46%	72.58%	26.95%	27.08%
21	MOR		16.37	16.50	2.84	2.86
22 23	PCV Log-likelihood		reference	-1.07%	86.03	85.91%
Model fit			-5621.74	-5603.26	-5029.24	-5018.39
26tatistics 27	Deviance		11243.48	11206.52	11036.78	10058.48
Note: 2 ^{9, b, c} signific 0 AOR: Adju	sted Odds Rati	5; ^b p < 0.01, ^c P < 0.00 o,	01;	Q.		
3	ence Interval, mpty (null) mo	del				
		level explanatory varia				
· ·		y-level explanatory var				
		lel; both individual-lev	vel and community	-level explanatory va	riables	
0	ortional Change lian Odds Ratio					
	han ()dda Datia					

Random-effects analysis

47 48	250	The prevalence of access to improved drinking water sources varied across communities
49 50 51	251	(community-level variance = 12.24, $p = \langle 0.001 \rangle$ [Table 2]. The null model (Model 0) revealed
52 53	252	that 78.81% of the total variance in the odds of access to improved drinking water sources was
54 55 56	253	accounted by between-cluster variation of characteristics (ICC = 0.7881). The inter-cluster

Page 19 of 30

BMJ Open

variability declined over successive models, from 78.81% in the null model to 78.55% in the only
individual-level, 59.08% in the only community-level, and 58.97% in the final (combined) models.
The proportional change in variance indicated that the addition of predictors to the empty model
explained an increased proportion of variation in access to improved drinking water sources. The
combined model showed that a higher PCV, i.e., 61.36% of the variance in access to improved
drinking water sources could be explained by the combined factors at the individual- and
community-level factors.

In [Table 3] the final model (Model III), ICC value of 0.2708 displayed that 27.08% of the total variation in access to improved toilet facilities is accounted for the community-level factors. The remaining 72.92% variation is therefore triggered by the individual- level and other unknown factors. The proportional change in variance indicated that the addition of predictors to the empty model explained an increased proportion of variation in access to improved toilet facilities. The combined model showed a higher PCV, i.e., 85.91% of the variance in access to improved toilet facilities could be explained by the combined factors at the individual- and community-level factors.

Model fit statistics

As shown in [**Tables 2 & 3**] (model fit statistics), the values of log-likelihood and Deviance showed a subsequent reduction which demonstrated that each model represents a significant improvement over the previous model and it points to the goodness of fit for the final model built in the analysis.

DISCUSSION

In this study, we aimed to assess access to improved drinking water sources and toilet facilities and their associated factors in Ethiopia. Accordingly, the proportion of households' access to improved drinking water sources was 69.94%, [95% CI: (69.23, 70.63)]. This finding is lower than reports from studies conducted in Ghana,⁽²⁾ Viet Nam,⁽¹⁶⁾, and Eswatini. ⁽¹⁴⁾ Whereas, it is higher than a reported proportion from a study conducted in Nepal. (15) The proportion of households' access to toilet facilities was 25.36%, [95% CI: (24.69, 26.03)]. This result is higher than the one reported from Ghana,⁽²⁾ However, lower than studies from Nigeria ⁽²⁹⁾ and Viet Nam. ⁽¹⁶⁾ The variation could be the disparities in GDP status and literacy rate among countries, study period, and setting.

Individual-level factors were associated with both access to improved drinking water sources and toilet facilities in the present study. Female-headed households were 1.18 times more likely than male-headed households to access improved drinking water sources. Similar findings were reported from Ghana, Vietnam, and Nigeria. ^(2, 16, 30) Gender differences may play an important role in the work division in developing countries. Most of the time women have higher household responsibilities such as fetching water, cleaning compounds, childcare, and food preparation, etc. Therefore, this might be directly linked with water and sanitation in the sense that women may be preoccupied with other daily routines than WASH.

Those households with heads having better educational status were 2.21 times more likely to access improved toilet facilities. This study finding is supported by evidences from previous studies. (14, 29, 31) Households who are led by heads who have no education had a lower probability of access to improved toilet facilities. In sub-Saharan Africa, education is a resource factor of

Page 21 of 30

BMJ Open

quality health outcomes, and educated people usually are more aware of the condition that
guarantees their well beings. This implies that educated household heads in this study may have
utilized their resources to provide their households with improved toilet facilities.

In addition to individual-level factors, community-level factors were also a significant factor in determining access to improved drinking water sources and toilet facilities. Compared to households within the poorest category, households within the poor, middle, richer, and richest wealth index category were 1.48, 2.42, 3.26, and 6.97 times more likely to have access to improved sources of drinking water and 3.97, 5.82, 8.58, and 23.94 times higher odds to access to improved toilet facilities, respectively. This result is consistent with results from previous studies. (13, 14, 32) People who have better incomes would intend to fulfill the necessities of life. Economically, the rich can afford the initial high cost of both water and sanitation facilities and the poor may be disproportionately underserved in the distribution of public utility, and hence consume poor quality water and use unimproved toilet facilities.

311 Compared to households that got drinking water < 30 minutes, households which obtained
312 drinking water ≥ 30 minutes were 35% less likely to access improved drinking water sources.
313 Hence, the length of time to get drinking (proximity of a house to a drinking water sources) water
314 might make difference in access to improved sources of drinking water and coverage (%) with
315 improved water supply (HH connection, public standpipes, protected underground water sources,
316 rainwater collection). This is not surprising as physical distance is one of the reasons of WASH
317 service inaccessibility.

The adjusted odds of access to improved drinking water sources and toilet facilities were 94.00%
and 72.00% less likely among rural households as compared to urban households, respectively.
The rural-urban disparity in access to improved sources of drinking water and toilet facilities have

been reported by several other previous studies, too. (12, 33, 34). The disparity might be, in Sub-

Saharan Africa, most of the people live in rural areas and their economic status is poor. Therefore, they do not have adequate financial resources to acquire improved drinking water sources and toilet facilities. Furthermore, households who had improved sources of drinking water were 1.37 times more likely to access an improved toilet facilities. This study finding is consistent with an earlier study. (29) The possible explanation could be a lack of access to adequate sanitation is also linked to the limited access to water supply and households who had improved water sources may be practicing more in hygiene and sanitation. Lastly, those households with four to six members were 24% less likely to have access to improved toilet facilities compared to households with one to three members. This is contrary to that of an earlier study. ⁽²⁾ The possible explanation could be the highest number of household members, the fewer resources they could have to build improved toilet facilities. The results of our study should be interpreted with the following limitations. Since the information is recorded retrospectively, it might be prone to recall bias, and the analyses were conducted using data collected in a cross-sectional survey, which prevents causal inferences.

BMJ Open

338 CONCLUSIONS

The proportion of households' access to an improved sources of drinking water and toilet facilities was low in Ethiopia. Sex of the household head, household wealth index, time to get drinking water, place of household/ urban/ rural residence, and region were factors impacting access to improved drinking water sources. Educational level of the household head, household wealth index, marital status of the household head (widowed), sources of drinking water, number of household members, household or rural/urban residence, and region were factors associated with access to improved toilet facilities. Thus, we authors recommend governmental and nongovernmental organizations working on water, hygiene, and sanitation should consider a multi-faceted policy approach that accounts for the regions and residence variations and other identified factors to ease up the problem.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
22	

60

1

350 Acknowledgments

351 We would like to thank the Demographic and Health Survey (DHS) programme for allowing the

352 use of Ethiopian Demographic and Health Survey (EDHS) data for this study.

353 **Competing interests:** None declared.

354 **Patient consent for publication:** Not required.

Ethics approval: The EDHS 2016 was approved by the National Research Ethics Review
Committee of Ethiopia and ICF Macro International. The approval letter was obtained from the
measure DHS for the use of this data, and the dataset was downloaded from www.meauredhs.com.
This analysis was approved by the Department of Environmental and occupational health and

359 safety, University of Gondar.

360 Funding

361 The author(s) received no specific funding for this work.

362 Availability of data and materials

363 The dataset analyzed during the current study available from the corresponding author upon 364 reasonable request.

365 **Authors' contributions**

366 ZA wrote the analyzed data, drafted the manuscript, and prepared the manuscript. HD, ZNA, AAT,

BD, RF, AGM, and YY involved in drafting, writing – review & editing, and commenting the

368 manuscript. All authors read and approved the final manuscript.

60

BMJ Open

1 2		
3 4	370	REFERENCES
5 6	371	1. Prüss-Ustün A, Wolf J, Bartram J, Clasen T, Cumming O, Freeman MC, et al. Burden of
7	372	disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An
8 9	373	updated analysis with a focus on low-and middle-income countries. International journal of
10 11	374	hygiene and environmental health. 2019;222(5):765-77.
12 13	375	2. Agbadi P, Darkwah E, Kenney PL. A Multilevel Analysis of Regressors of Access to
14	376	Improved Drinking Water and Sanitation Facilities in Ghana. Journal of environmental and
15 16	377	public health. 2019;2019.
17 18	378	3. Assembly UG. Resolution on Human Right to Water and Sanitation. New York: United
19 20	379	Nations. 2010.
21	380	4. Brookes JD, Carey CC. Ensure availability and sustainable management of water and
22 23	381	sanitation for all. UN Chronicle. 2015;51(4):15-6.
24 25	382	5. Mills JE, Cumming O. The impact of water, sanitation and hygiene on key health and
26	383	social outcomes. URL: https://www lshtm ac uk/sites/default/files/2017-
27 28	384	07/WASHEvidencePaper_HighRes_01. 2016;23.
29 30	385	6. Saxena SK, Kumar S, Haikerwal A, Bhatt ML. Introductory chapter: Neglected tropical
31 32	386	waterborne infectious diseases-strategies for mitigation. Water Challenges of an Urbanizing
33	387	World. 2018:1.
34 35	388	7. Organization WH. Water, sanitation, hygiene, and waste management for the COVID-19
36 37	389	virus: interim guidance, 23 April 2020. World Health Organization, 2020.
38 39	390	8. Organization WH. Progress on drinking water, sanitation and hygiene: 2017 update and
40	391	SDG baselines. 2017.
41 42	392	9. Organization WH. Water, sanitation, hygiene and health: a primer for health
43 44	393	professionals. World Health Organization, 2019.
45	394	10. Organization WH. Safer water, better health. 2019.
46 47	395	11. UNICEF. Water, sanitation and hygiene (WASH) 2020 [cited 2020 April, 14]. Available
48 49	396	from: https://www.unicef.org/ethiopia/water-sanitation-and-hygiene-wash.
50 51	397	12. Mulenga JN, Bwalya BB, Kaliba-Chishimba K. Determinants and inequalities in access
51 52	398	to improved water sources and sanitation among the Zambian households. International Journal
53 54 55	399	of Development and Sustainability. 2017;6(8):746-62.
56 57 58		
59 60		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

2								
3 4 5 6 7 8 9 10 11 12	400	13. Morakinyo OM, Adebowale SA, Oloruntoba EO. Wealth status and sex differential of						
	401	household head: implication for source of drinking water in Nigeria. Archives of Public Health.						
	402	2015;73(1):58.						
	403	14. Simelane MS, Shongwe MC, Vermaak K, Zwane E. Determinants of Households'						
	404	Access to Improved Drinking Water Sources: A Secondary Analysis of Eswatini 2010 and 2014						
	405	Multiple Indicator Cluster Surveys. Advances in Public Health. 2020;2020.						
13 14	406	15. Wang C, Pan J, Yaya S, Yadav RB, Yao D. Geographic Inequalities in Accessing						
15 16	407	Improved Water and Sanitation Facilities in Nepal. International journal of environmental						
17	408	research and public health. 2019;16(7):1269.						
18 19	409	16. Tuyet-Hanh TT, Long TK, Van Minh H, Huong LTT. Longitudinal household trends in						
20 21	410	access to improved water sources and sanitation in Chi Linh town, Hai Duong province, Viet						
22 23	411	Nam and associated factors. AIMS public health. 2016;3(4):880.						
24	412	17. Organization WH, UNICEF. Progress on drinking water and sanitation: special focus on						
25 26	413	sanitation. Progress on drinking water and sanitation: special focus on sanitation2008.						
27 28	414	18. Beyene A, Hailu T, Faris K, Kloos H. Current state and trends of access to sanitation in						
29 30	415	Ethiopia and the need to revise indicators to monitor progress in the Post-2015 era. BMC Public						
31	416	Health. 2015;15:451						
32 33	417	19. Pullan RL, Freeman MC, Gething PW, Brooker SJ. Geographical inequalities in use of						
34 35	418	improved drinking water supply and sanitation across sub-Saharan Africa: mapping and spatial						
36	419	analysis of cross-sectional survey data. PLoS Med. 2014;11(4):e1001626.						
37 38	420	20. Central Statistical Agency (CSA). Central Statistical Agency (CSA) [Ethiopia] and ICF						
39 40 41 42	421	Ethiopia demographic and health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland,						
	422	USA: CSA and ICF,2017.						
43	423	21. Simelane M, Shongwe M, Vermaak K, Zwane E. Determinants of Households' Access to						
44 45	424	Improved Drinking Water Sources: A Secondary Analysis of Eswatini 2010 and 2014 Multiple						
46 47 48 49 50 51 52 53 54	425	Indicator Cluster Surveys. 2020;2020.						
	426	22. Ribeiro Sarmento MPH D. An Analysis of Access to Improved Drinking Water and						
	427	Sanitation and Distance to the Water Source in a Newly Independent Country, Timor-Leste:						
	428	Assessing Geographical and Socioeconomic Disparities. 2015.						
	429	23. Supply WUJW, Programme SM, Organization WH, Supply WUJMPfW, Sanitation,						
55	430	UNICEF. Water for life: making it happen: World health organization; 2005.						
56 57								
58 59								
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

Page 27 of 30

BMJ Open

1 2								
3 4	431	24. Merlo J, Chaix B, Ohlsson H, Beckman A, Johnell K, Hjerpe P, et al. A brief conceptual						
5	432	tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel						
6 7	433	logistic regression to investigate contextual phenomena. Journal of Epidemiology & Community						
8 9	434	Health. 2006;60(4):290-7.						
10 11	435	25. Merlo J, Yang M, Chaix B, Lynch J, Råstam L. A brief conceptual tutorial on multilevel						
12	436	analysis in social epidemiology: investigating contextual phenomena in different groups of						
13 14	437	people. Journal of Epidemiology & Community Health. 2005;59(9):729-36.						
15 16	438	26. Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health:						
17 18	439	integrating random and fixed effects in multilevel logistic regression. American journal of						
19	440	epidemiology. 2005;161(1):81-8.						
20 21	441	27. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model						
22 23	442	complexity and fit. Journal of the royal statistical society: Series b (statistical methodology).						
24 25	443	2002;64(4):583-639.						
26	444	28. Joseph F. Hair, Jr. William, Black Barry J., Babin Rolph, E. Anderson. Multivariate Data						
27 28	445	Analysis Edition S, editor2018.						
29 30	446	29. Abubakar IR. Access to sanitation facilities among Nigerian households: determinants						
31	447	and sustainability implications. Sustainability. 2017;9(4):547.						
32 33	448	30. Morakinyo OM, Adebowale SA, Oloruntoba EO. Wealth status and sex differential of						
34 35	449	household head: implication for source of drinking water in Nigeria. Archives of public health =						
36 37	450	Archives belges de sante publique. 2015;73:58.						
38	451	31. Akpakli DE, Manyeh AK, Akpakli JK, Kukula V, Gyapong M. Determinants of access to						
39 40	452	improved sanitation facilities in rural districts of southern Ghana: evidence from Dodowa Health						
41 42	453	and Demographic Surveillance Site. BMC Res Notes. 2018;11(1):473						
43 44	454	32. Njuguna J. Progress in sanitation among poor households in Kenya: evidence from						
45	455	demographic and health surveys. BMC Public Health. 2019;19(1):135.						
46 47	456	33. Irianti S, Prasetyoputra P, Sasimartoyo TP. Determinants of household drinking-water						
48 49	457	source in Indonesia: An analysis of the 2007 Indonesian family life survey. Cogent Medicine.						
50	458	2016;3(1).						
51 52	459	34. Prasetyoputra P, Irianti S. Access to improved sanitation facilities in indonesia: An						
53 54	460	econometric analysis of geographical and socioeconomic disparities. Journal of Applied Sciences						
55 56 57 58	461	in Environmental Sanitation. 2013;8(3).						
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

Supplementary Table 1: Regional distribution of access to improved drinking water sources and toilet facilities in Ethiopia, EDHS, 2016.

Region	Source of dr	inking water	Toilet facilities		
	Unimproved	Improved	Unimproved	Improved	
Tigray	410 (23.64%)	1,324 (76.36%)	1,380 (79.58%)	354 (20.42%)	
Afar	627 (51.39%)	593 (48.61%)	1,032 (84.59%)	188 (15.41%)	
Amhara	741 (38.96%)	1,161 (61.04%)	1,782 (93.69%)	120 (6.31%)	
Oromia	746 (37.53%)	1,242 (62.47%)	1,785 (89.79%)	203 (10.21%)	
Somali	884 (56.52%)	680 (43.48%)	1,145 (73.21%)	419 (26.79%)	
Benishangul Gumuz	271 (21.17%)	1,009 (78.83%)	1,225 (95.70%)	55 (4.30%)	
SNNPR	775 (40.85%)	1,122 (59.15%)	1,650 (86.98%)	247 (13.02%)	
Gambella	246 (19.22%)	1,034 (80.78%)	1,098 (85.78%)	182 (14.22%)	
Harari	179 (15.77%)	956 (84.23%)	619 (54.54%)	516 (45.46%)	
Dire Dawa	117 (10.08%)	1,044 (89.92%)	404 (34.80%)	757 (65.20%)	
Addis Ababa	9 (0.60%)	1,480 (99.40%)	308 (20.69%)	1,181 (79.31%)	
Total	5005(30.06%)	11,645	12,428	4,222	
		(69.94%)	(74.64%)	(25.36%)	

BMJ Open

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.annals.org/, and Epidemiology at http://www.strobe-statement.org.

Section and Item Item Recommendation		Reported o Page No.	
Title and Abstract	e and Abstract 1 (a) Indicate the study's design with a commonly used term in the title or the		
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/Rationale	2	Explain the scientific background and rationale for the investigation being	
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Methods Study Design	4	Present key elements of study design early in the paper	
Study Design	-	Tresent key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of	
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
		selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	
		exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number	
		of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	
		effect modifiers. Give diagnostic criteria, if applicable	

	No.	Recommendation	Reported o Page No.	
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of		
Measurement	assessment (measurement). Describe comparability of assessment methods if			
		there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias		
Study Size	10	Explain how the study size was arrived at		
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,		
		describe which groupings were chosen and why		
Statistical Mathada	12	(<i>a</i>) Describe all statistical methods, including those used to control for		
Statistical Methods	12			
		confounding		
		(b) Describe any methods used to examine subgroups and interactions		
		(c) Explain how missing data were addressed		
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed		
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was		
		addressed		
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of		
		sampling strategy		
		(e) Describe any sensitivity analyses		
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially		
		eligible, examined for eligibility, confirmed eligible, included in the study,		
		completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage		
		(c) Consider use of a flow diagram		
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and		
·		information on exposures and potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest		
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)		
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over		
		time		
		<i>Case-control study</i> —Report numbers in each exposure category, or summary		
		measures of exposure		
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures		

1 2	Section and Item	ltem No.	Recommendation	Reported on Page No.		
3	Main Results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates			
4			and their precision (eg, 95% confidence interval). Make clear which confounders			
5 6			were adjusted for and why they were included			
7 8			(b) Report category boundaries when continuous variables were categorized			
9			(c) If relevant, consider translating estimates of relative risk into absolute risk for a			
10 11			meaningful time period			
12 13	Other Analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and			
13 14 15			sensitivity analyses			
15 16 17	Discussion					
17 18 19 20 21 22	Key Results	18	Summarise key results with reference to study objectives			
	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or			
			imprecision. Discuss both direction and magnitude of any potential bias			
23	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,			
24 25 26 27 28 29			multiplicity of analyses, results from similar studies, and other relevant evidence			
	Generalisability	21	Discuss the generalisability (external validity) of the study results			
	Other Information					
30 31	Funding	22	Give the source of funding and the role of the funders for the present study and, if			
32			applicable, for the original study on which the present article is based			
33 34						
35	*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in					
36 37	cohort and cross-sectional studies.					
38 39	Once you have completed this checklist, please save a copy and upload it as part of your submission. DO NOT include this					
39 40	checklist as part of the main manuscript document. It must be uploaded as a separate file.					
41						
42						
43						