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S-1 Supplementary Material for the cell experiments

Additional force-deformation curves for our FluidFM R© measurements on REF52
cells are shown in figure S-1. Compared to the curves depicted in the manuscript in
figure 4, these measurements show an earlier upturn of the force. Thus, our model
overestimates the force necessary for a small deformation of the cell and slightly un-
derestimates the force for larger deformations. Nevertheless, all measurements fit in
the simulated range of E = 220±100Pa for w = 0.25 and an averaged cell radius of
8.6(7)µm, as figure S-1 shows. The cell radii and Young’s moduli for all measure-
ments are listed in table S-1.

Table S-1 Measured cell radii R and fitted Young’s moduli E and w for our FluidFM R© experiments.

Number 1 2 3 4 5 6 7 8 9

R [µm] 7.1 9.2 8.3 8.0 9.5 9.1 8.4 9.4 8.3
E [Pa] 160 190 220 170 210 290 210 220 125
w 1 0.25 0.25 0.5 0.25 0.25 0.25 0.25 0.25
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Fig. S-1 Our numerical model in comparison to our FluidFM R© measurements on REF52 cells. The ratio
of the shear moduli is chosen as w = 0.25 for all curves. The gray area shows the simulation of a cell with
an averaged cell radius of 8.6(7)µm and Young’s modulus range 220±100Pa.
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S-2 Supporting Information for the numerical model

S-2.1 Convergence of single cell deformation in shear flow

The temporal development of the deformation D of a single cell in a Couette flow
can be seen in figure S-2. Starting from a spherical shape (D = 0), the cell experi-
ences a shape change during an initial transient timespan, after which it assumes a
steady shape. For capillary numbers Ca > 0.2, we first find an overrelaxation of the
deformation before it converges towards a constant value.
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Fig. S-2 Single cell deformation in Couette flow for different capillary numbers. After an initial transient
timespan, the deformation converges to a constant value.

S-2.2 Reduction of the system resolution

In figure S-3 we show that a system with reduced cell resolution (from RCell = 10 to
RCell = 6 grid cells) and a smaller simulation box (from 100×150×100 to 60×90×
30 grid cells) produces the same deformation versus capillary number behavior as the
system with higher resolution.

S-2.3 Translational and rotational invariance of the force calculation

As a very direct test for the correct behavior of our model, we consider a single tetra-
hedron and examine the behavior of the volume and the elastic force for an initially
applied translation, rotation and stretching. In figure S-4a, the behavior of the vol-
ume under these deformations is shown over the first time steps. While the volume
remains constant under pure translation, pure rotation, and a combination of both,
it quickly relaxes towards its reference value after an initial stretch is applied. The
same behavior is observed for the elastic force acting on one tetrahedron vertex, in
figure S-4b.
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Fig. S-3 Taylor deformation as function of the capillary number for two different cell and channel reso-
lutions. The large system (RCell = 10, box: 100×150×100 grid cells) produces the same outcome as the
down-scaled system (RCell = 6, box: 60×90×30 grid cells).

(a)

1

1.01

1.02

1.03

1.04

1.05

1.06

0 20 40 60 80 100

V
ol
u
m
e
/
re
fe
re
n
ce

vo
lu
m
e

Integration step

pure rotation
pure translation

rotation + translation
pure stretch

stretch + rotation
stretch + translation

stretch + rotation + translation

(b)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100

F
or
ce

(m
ag
n
it
u
d
e)

Integration step

pure rotation
pure translation

rotation + translation
pure stretch

stretch + rotation
stretch + translation

stretch + rotation + translation

Fig. S-4 The behavior of (a) the volume and (b) the elastic force on a single vertex of a tetrahedron after
an initial rotation, translation or stretching.

S-2.4 Mesh generation and mesh independence

The tetrahedral mesh of our spheroid is generated using the software gmsh (version
4.3.0) [1]. The Frontal2D meshing algorithm produced a mesh with highest unifor-
mity considering edge length, triangle area and tetrahedron volume distribution. Nev-
ertheless, all other available meshing algorithms produce likewise uniform meshes,
with one exception being the Frontal3D algorithm, as listed in table S-2. We de-
mand the uniformity of the mesh to increase the accuracy of our coupled Immersed-
Boundary Lattice Boltzmann simulations. Figure S-5 shows the force-deformation
curves for meshes with increasing number of tetrahedra, which are converged and
thus prove sufficient sampling of the volume mesh.
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Table S-2 Statistics of meshes created using different built-in algorithms of Gmsh [1]. Listed are edge
length L, triangle area A, and tetrahedron volume V providing average, standard deviation, minimum and
maximum value for each mesh.

Algorithm Frontal2D MeshAdapt Delaunay2D Delaunay3D Frontal3D

L̄ 1.252 1.362 1.292 1.362 1.484
σL 0.243 0.301 0.299 0.301 0.530
Lmin 0.616 0.588 0.592 0.588 0.510
Lmax 2.138 2.345 2.462 2.345 3.622

Ā 0.348 0.422 0.382 0.422 0.565
σA 0.377 0.473 0.436 0.473 0.837
Amin 0.218 0.228 0.192 0.228 0.204
Amax 1.577 1.851 1.709 1.851 4.444

V̄ 0.218 0.291 0.252 0.291 0.473
σV 0.078 0.121 0.112 0.121 0.405
Vmin 0.049 0.051 0.043 0.051 0.049
Vmax 0.600 0.881 0.840 0.881 2.353
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Fig. S-5 Force-deformation behavior of meshes with increasing number of tetrahedra. Meshes with N ≥
1658 tetrahedra are stable in the investigated range of deformation. Above 6230 tetrahedra, all meshes
produce the same converged output. The following parameters were used: cell radius R = 7.5µm, Young’s
modulus E = 300Pa, and Poisson ratio ν = 0.48.

S-2.5 Hertz theory

Although originally designed for the contact between two linear elastic spheres, the
Hertz theory can be applied to the contact between a linear elastic sphere and a flat
plate [2]. The general assumptions for the Hertz-theory are the following [3, p. 91-
92]:

– frictionless, smooth contact surfaces
– contact area small compared to sphere dimension
– homogeneous, isotropic and linear elastic material

S-2.5.1 Sphere-sphere contact

The following quantities are necessary to describe the normal contact of two elastic
spheres. The radii R1 and R2 of the spheres define the effective radius of curvature R
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of the bodies by

1
R
=

1
R1

+
1

R2
. (S-1)

Through their Young’s moduli and the Poisson ratios, E1,E2 and ν1,ν2, the effective
stiffness K is defined as:

1
K

=
1−ν2

1
E1

+
1−ν2

2
E2

(S-2)

The displacement δ , which measures the distance that the sphere centers approach
each other due to a normal force N acting on each sphere, can be expressed in terms
of the above parameters [2]:

δ =

(
9N2

16RK2

) 1
3

(S-3)

Therefore, the force–displacement relation according to the Hertzian theory for a
sphere-sphere contact is given by

N (δ ) =
4
3

KR
1
2 δ

3
2 . (S-4)

S-2.5.2 Sphere-plane contact

The analytical solution for the force–displacement relation according to the Hertzian
theory for the contact of a linear elastic sphere with a rigid plane can be obtained
from (S-4) by applying the following modifications: the plane has no curvature, thus
R2→ ∞ and (S-1) simply yields R = R1. Since the plane is assumed rigid, i. e. E2�
E1, (S-2) reduces to K = E1

1−ν2
1

. In this case, N is the force acting on the sphere and δ

is the distance between the center of the sphere and the plane.

S-2.6 Influence of the Mooney-Rivlin ratio w

To clarify the influence of w, we plot in figure S-6 the force versus deformation be-
havior of our cell model for different values of w. With decreasing w, i. e. decreasing
µ1 while increasing µ2, the strain hardening effect clearly increases and the upturn of
the force curve begins at lower deformations. This is due to µ2 scaling the term in the
strain energy density that is quadratic with the deformation (cf. equations (4) and (5)
of the manuscript).

S-2.7 Influence of the Poisson ratio ν

In figure S-7 we demonstrate that variations of the Poisson ratio ν within the range
of an approximately incompressible material do not notably influence the force-
deformation curves.
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Fig. S-6 Variation of w: The lower w (the lower µ1 compared to µ2), the stronger the non-linear upturn of
the force becomes. The curve with w = 1 corresponds to the one in Fig. 4 of the manuscript with a Young’s
modulus of E = 160Pa.
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Fig. S-7 Force versus deformation curves for different Poisson ratios ν . The following parameters were
used: cell radius R = 7.5µm and Young’s modulus E = 300Pa.
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S-3 Compression and indentation simulations

After initialization, each time step of our overdamped relaxation simulation consists
of the following two steps: the movement of the upper wall to compress – or the
sphere to indent – the cell and the integration of the equation of motion of the cell
vertices,

ẏα = γ
−1(fα + fα

probe) . (S-5)

The vertex velocity ẏα is obtained from the elastic restoring forces (fα (12) and the
probe repulsion fα

probe), considering a friction factor γ . Since here we are only look-
ing at a sequence of equilibrium states, the value of γ is irrelevant for the resulting
force-deformation curves and only influences the performance and stability of the
simulations. The equation of motion is integrated using a fourth order Runge-Kutta
algorithm. The repulsive cell-probe interaction, preventing the cell vertices from pen-
etrating the plates or the indenter, has the form

fprobe (d) =
cF

d2 n , (S-6)

with the cell-probe distance d and a proportionality factor cF. The force points normal
to the probe, resulting in a compression between two plates and a radial displacement
away from the indenter. Physically, this corresponds to a free-slip boundary condition
which does not restrict tangential motions of the cell along the probe.
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S-4 Flow simulations with Lattice Boltzmann

S-4.1 Method

This section briefly summarizes the Lattice Boltzmann method implemented in the
open-source package ESPResSo [4]. For an introduction into the Lattice Boltzmann
method we refer the interested reader to the book by Krüger et al. [5]. The Lattice
Boltzmann equation for the multiple relaxation time scheme used in ESPResSo reads:

fi (x+ ci∆ t, t +∆ t)− fi (x, t) =
18

∑
j=0

(
M−1

ω M
)

i j

(
f j (x, t)− f eq

j (x, t)
)

(S-7)

It describes the collision and streaming of the population distribution fi (i= 0, . . . ,18)
during one time step ∆ t. Here, ci are the discretized lattice velocities, M denotes trans-
formation matrix that maps the populations onto moment space, ω is the diagonal
relaxation frequency matrix, and f eq

i denote the equilibrium population distributions.
The relaxation frequency for the shear moments ωS is related to the dynamic viscosity
of the fluid via [6]

η = ρc2
s

(
1

ωS
− 1

2

)
∆ t , (S-8)

with the fluid mass density ρ and the lattice speed of sound cs. In order to ensure
simulation stability, we choose the time step globally according to Krüger et al.[5,
p. 273] as

∆ t = c2
s
(
τ− 1

2

) ∆x2

ν
t̃ =

∆x2

6ν
t̃ , (S-9)

with c2
s =

1
3 , a global relaxation parameter τ = 1, the kinematic viscosity ν , and an

additional factor t̃ in the range 1–2 to manually tune the time step.
We further introduce a scaling factor r by which we divide both the viscosity and the
Young’s modulus. According to eq. (S-9), this leads to a larger time step and thus to a
speed-up of the simulations. At the same time it leaves the important Capillary num-
ber unchanged and only increases the Reynolds number, which nevertheless remains
� 1. The parameter r thus does not affect the physics of the simulation which we
have carefully checked by a number of test runs with r = 1.
At the boundaries of the channel a bounce-back algorithm is applied to realize a
no-slip boundary condition. For the plane Couette setup, the bounce-back algorithm
additionally allows for a fixed tangential velocity component.
We use a combined CPU/GPU implementation which enables the calculation of the
flow field on the GPU, while the calculation of the cell motion is done in parallel
on multiple (4 to 20) CPUs. In lattice units, our simulation box for the single cell in
shear flow setup (cf. section 6.1) has the dimensions 60×90×30 (x× y× z), for the
multiple cell simulation (cf. section 6.2) it is 50× 80× 40. The dynamic viscosity,
chosen as ν = 1 in simulation units, determines the time step in our simulations as
∆ t = 1

3 with t̃ = 2.
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Fig. S-8 The trajectory of a surface node (here: starting at y = R and x,z = 0) for different capillary
numbers traces the ellipsoidal contour of the deformed particle. The non-elliptical part of the trajectory in
the upper-right corner represents the approach from the initially spherical to the final shape.

S-4.2 Tank-treading motion

Figure S-8 shows the trajectories of selected vertices on the outer surface of the par-
ticle for different capillary numbers. They describe an ellipsoidal motion tracing the
outer contour of the deformed particle thus demonstrating that in our simulations the
particle exhibits tank-treading.
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