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Supplementary Figures and Tables

Supplementary Figure 1: SEM (a) and TEM (b) images of FeMn/N-C. EDS-mapping
images of (c) Fe/N-C (d) Mn/N-C
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Supplementary Figure 2: (a) and (b) HAADF-STEM image of Fe/N-C. (c) and (d) Several

single atoms have been highlighted and different intensity profiles have been obtained on

them.
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Supplementary Figure 3: (a) HAADF-STEM image of Mn/N-C. (b) and (c) Several single

atoms have been highlighted and different intensity profiles have been obtained on them.
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Supplementary Figure 4: (a-d) Several Fe-Mn dual atoms have been highlighted and

different intensity profiles have been obtained on them
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Supplementary Figure 5: Energy dispersive X-ray Spectroscopy image
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Supplementary Figure 6: XRD pattern of Fe,Mn/N-C, Fe/N-C and Mn/N-C
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Supplementary Figure 7: Raman spectra of different samples
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Supplementary Figure 8:N, adsorption/desorption isotherms of Fe,Mn/N-C, inset is pore

size distribution of the Fe,Mn/N-C.
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Supplementary Figure 9: (a) High-resolution N 1s spectrum of Fe,Mn/N-C, High-resolution
XPS spectra for Fe 2p (b) and Mn 2p (c) for Fe,Mn/N-C.
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Supplementary Figure 10:High-resolution XPS spectra for Fe 2p for Fe/N-C.
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Fe foil and (b)MnPc , Mn foil.
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Supplementary Figure 12: Comparison between the K-edge XANES experimental spectra

of Fe,Mn/N-C (black lines) and the theoretical spectra calculated with the depicted structures

(red lines).
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Supplementary Figure 13: (a, b) The Fe k-edge Fourier-transform EXAFS (a) and k space

curves (b) of Fe,Mn/N-C and corresponding fitting curves. (c,d) The Mn k-edge

Fourier-transform EXAFS (c) and k space curves (d) of of Fe,Mn/N-C and corresponding

fitting curves
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Supplementary Figure 14:0,-TPD of Fe/N-C and Fe,Mn/N-C.
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Supplementary Figure 15: (a) Magnetic susceptibility of Mn/N-C. (b) DOS of Fe@Fe/N-C

and Fe@Fe,Mn/N-C. (c) DOS of Mn@Mn/N-C and Mn@Fe,Mn/N-C.
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Supplementary Figure 16: CVs of Fe, Mn/N-C, Fe/N-C, Mn/N-C and Pt/C for ORR

catalysis in 0.1M HCIO,.
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Supplementary Figure 17: LSV curves and K-L plots of (a. b) Fe,Mn/N-C, (c. d) Fe/N-C, (e.

f) Mn/N-C in O,-saturated 0.1 M HCIQ, solution.
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Supplementary Figure 18: ORR polarization LSV and CV curves of Fe/N-C (a) and
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Mn/N-C (b), measurement before and after 8000 potential cycles at the scan rate of 50 mV s™

with the rotation speed of 1600 rpm in 0.1M HCIO,.
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Supplementary Figure 19: The chronoamperometric response of Fe,Mn/N-C, Fe/N-C,

Mn/N-C and Pt/C in an O,-saturated 0.1 M HCIO, solution at a potential of 0.6 V.
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Supplementary Figure 20: (a) Chronoamperometric response for Fe,Mn/N-C, Fe/N-C,

Mn/N-C and Pt/C electrode at 0.6 V (vs. RHE) after the introduction of 9.7 ml of CH30H into

230.3 ml of 0.1M HCIQ, solution. (b) Poisoning experiments of Fe,Mn/N-C measured by

RDE in an O,-saturated 0.1 M HCIO, electrolyte with and without KSCN in the electrolyte.
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Supplementary Figure 21: CVs of Fe,Mn/N-C, Fe/N-C, Mn/N-C and Pt/C for ORR catalysis

in 0.1M KOH.
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Supplementary Figure 22: LSV curves and K-L plots of (a. b) Fe,Mn/N-C, (c. d) Fe/N-C, (e.

f) Mn/N-C in O,-saturated 0.1 M KOH solution.
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Supplementary Figure 23: (a) Corresponding Tafel plots obtained from the RDE
polarization curves (b) H,O, yield and electron transfer number .(c) ORR polarization of
Fe,Mn/N-C measurement before and after 10000 and 40000 potential cycles at the scan rate of
50 mV s with the rotation speed of 1600 rpm. (d) The chronoamperometric response of
Fe,Mn/N-C, Fe/N-C, Mn/N-C and Pt/C in an O,-saturated 0.1 M KOH solution at a potential
of 0.6V. (e)Chronoamperometric response for Fe,Mn/N-C, Fe/N-C, Mn/N-C and Pt/C
electrode at 0.6 V (vs. RHE) after the introduction of 9.7 ml of CH3OH into 230.3 ml of 0.1M
KOH solution.(f)Poisoning experiments of Fe,Mn/N-C measured by RDE in an O,-saturated
0.1 M HCIO4 electrolyte with and without KSCN in the electrolyte
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Supplementary Figure 24: ORR polarization LSV and CV curves of (a) Fe/N-C and (b)

Mn/N-C, measurement before and after 8000 potential cycles at the scan rate of 50 mV s*

with the rotation speed of 1600 rpm in 0.1M KOH.
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Supplementary Figure 25: (a) Charge and discharge polarization curves of Zn—air batteries.

(b) Galvanostatic discharge curves of the primary Zn-air battery with Fe,Mn/N-C as catalyst

at different current densities, which was normalized to the area of air-cathode. (c)

Galvanostatic discharge curves of the primary Zn-air battery with Fe,Mn/N-C as catalyst at 5

mA cm’

2 current densities.
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Supplementary Figure 26: The optimized structure of different models: Fe,Mn/Ng-2(a),
Fe,Mn/Ng(b), FeN4(c), MnN4(d).

Fe,Mn/Ng includes two models, Fe,Mn/Ng-a represents ORR active site is Fe, Fe,Mn/Ng-b
represents ORR active site is Mn.
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Supplementary Figure 27: (a) The Gibbs free-energy path pathways of both four-electron

based alkaline ORR at U = 0 V. (b) The pathways for Fe/N-C, Mn/N-C and Fe,Mn/N-C are
summarized at U = 0.36 V, 0.42 V, and 0.72 V, respectively.
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Supplementary Figure 28: Free-energy path of ORR for Fe,Mn/Ng-2 , Fe,Mn/Ng-a and

Fe,Mn/Ng-b in an alkaline solution.
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Supplementary Figure 29: Free energy diagrams for associative and dissociative

mechanisms of Fe,Mn/N6-1.

We have considered different reaction pathway (4e- associative mechanism, 2e- associative
mechanism and dissociative mechanism) in our pre-calculations. Take Fe,Mn/Ng-1 as an
example, we have made different free energy diagrams for different kinetic mechanisms, and
accordingly calculated the theoretical overpotentials. It can be seen that among them, the 4e-
associative mechanism possesses the smallest overpotential (0.511 V vs. 0.552 V for 2e-
associative mechanism and 0.656 V for dissociative mechanism), namely, it is more likely to
happen from the point of thermodynamics. Thus, we only display the most common 4e-

associative mechanism in our manuscript.
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Supplementary Figure 30: Optimized atomic structures for the main process of an ORR:

Mn/N-C
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Supplementary Figure 31: The Gibbs free-energy path pathways of both four-electron based

alkaline OER.
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Supplementary Tables

Supplementary Table 1. Raman results analysis for the prepared samples .

Sample Name Fe,Mn/N-C Fe/N-C Mn/N-C

I 0.94 1.01 1.03

Supplementary Table 2. XPS results analysis for the prepared samples (at. %).

Sample C N o] Fe Mn
Name (at. %) (at. %0) (at. %0) (at. %) (at. %)
Fe,Mn/N-C 79.8 8.66 9.82 0.06 0.05
Fe/N-C 80.55 4.73 12.98 0.36 0
Mn/N-C 74.16 9.94 14.06 0 0.15

Supplementary Table 3. XPS results analysis of high-resolution N 1s spectrum for the

prepared samples (at. %).

pyridinic
pyridinic-N  pyrrolic-N  graphitic-N + - metal-N
Sample Name ™ - o5 (at. %) (at. %) N-O  (at %)
(at. %)
Fe,Mn/N-C 33.10 26.16 17.76 6.81 16.17
Fe/N-C 29.22 24.68 14.26 5.13 26.71

Mn/N-C 33.36 27.16 12.72 5.95 20.77




Supplementary Table 4. EXAFS fitting parameters at the Mn and Fe K-edge various

samples.
Scattering
Sample oair CN R(A) 62(10-3A2) R factor
Fe-N1 18403 1974002 57405
Fein Fe-N2 20404 2024002  62+07 0.005
Fe,Mn/N-C V=D Va0, Sl '
Fe-Mn 09+02  259+003 6.8+05
Mn-N1 19403  195+002 53+04
Mn in Mn-N2 22404 2004002 59406 0.008
Fe,Mn/N-C e WU Sane '
Mn-Fe 11402 2624003 65+07

S0? is the amplitude reduction factor; CN is the coordination number; R is interatomic

distance (the bond length between central atoms and surrounding coordination atoms); o’ is

Debye-Waller factor (a measure of thermal and static disorder in absorber-scatter distances).

R factor is used to value the goodness of the fitting.

Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy

were estimated as N + 20%; R + 1%; o + 20%; AEq £20%.
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Supplementary Table 5. Summary of the Mossbauer parameters and assignments to different

Iron species in Fe,Mn/N-C.

IS QS
Fe species Area Content (%)
(mms? (mms™)
D1 0.993 3.27 8700 13.5
D3 1.058 2.09 17300 27.1
D4 0.312 0.654 38000 59.4

Supplementary Table 6. Comparison sample of the as-prepared Fe,Mn/N-C electrocatalysts

in 0.1M HCIO..
Catalysts Pote?x??:r (V) Eﬁé\g& (r:LAimé?;%) I (mA cm’)
Fe,Mn /N-C 0.989 0.804 6.77 7.75
Fe /N-C 0.778 0.702 5.76 6.29
Mn /N-C 0.823 0.730 6.07 7.13
PUC 0.866 0.807 5.90 7.22
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Supplementary Table 7. Comparison of ORR catalystic activity between Fe,Mn/N-Cproduct

and other well-developed Carbon based ORR electrocatalysts in acidic solution.

Jlimiting
Catalysts electrolyte Ein(V) (mA Reference
cm’?)
Fe,Mn/N-C 0.1M HCIO, 0.804 6.77 This work
Mn-Ng 0.5M H,SO, 0.8 <5 1
Fesa-N-C 0.1M HCIO,4 0.776 5.90 2
FePhen@MOF 0.1M HCIO,4 0.77 <6 3
Fe,-N-C 0.5M H,SO, 0.78 <6 4
Cu@Fe-N-C 0.5M H,SO4 0.761 5.2 5
Fe/OES 0.5M H,SO, 0.72 5.5 6
Fe-N-C-1 0.1M HCIO,4 0.74 5.0 7
Zn/Fe-N-C 0.1M HCIO, 0.81 5.8 8
Fe SAs/N-C 0.1M HCIO, 0.798 <6 9
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Supplementary Table 8. Comparison sample of the as-prepared Fe,Mn/N-Celectrocatalysts

in 0.1 M KOH.
Catalysts Poteonrt]iszjlt V) Elé |(4VE;/S (nJmLAimétrirnng‘z) I (mA cm’)
Fe,Mn/N-C 0.979 0.928 5.55 7.04
Fe/N-C 0.917 0.872 5.41 5.74
Mn/N-C 0.929 0.876 4.68 6.60
PHC 0.894 0.831 5.12 7.19
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Supplementary Table 9. Comparison of ORR catalystic activity between Fe,Mn/N-C

product and other well-developed Carbon based ORR electrocatalysts in alkaline solution.

Catalysts E1n(V) J”mgir”ng_z()mA Reference

Fe,Mn/N-C 0.928 5.55 This work
Mn/Fe-HIB-MOF 0.883 6.37 10
Fesa-N-C 0.891 6.0 2
Zn/Fe-N-C 91 5.9 8
Fe-N4 SAS/NPC 0.885 55 11
Mn/C-N 0.86 5.3 12
Fe SAC/N-C 0.89 5.6 13
Fe-ISAs/CN 0.90 6.1 14
Fe SAs/N-C 0.91 5.5 15
SA-Fe-NHPC 0.93 6.0 16
Fe;-HNC-500-850 0.85 5.8 17

Supplementary Table 10. The formation energy for the structural models.

Model MnN4 FeN4 Fe,Mn/N6-1 Fe,Mn/N6-2 Fe,Mn/N8
Formation
-3.38 -3.76 -8.13 -5.60 -5.29
energy(eV)
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Supplementary Table 11. The calculated total energy (eV) of different supports and O, OH,

OOH adsorbed on different active sites.

Active sites  E (support) E(OH*) E(O*) E(OOH¥)

MnN, 654515  -665.1460989  -660.74227269  -669.62659395
FeN, 653.34816337 -663.63744123 65055725226  -668.36721095
Fe,Mn/Ns-1 -642.28483595 -652.22323442  -647.83087899  -657.10386515
Fe,Mn/Ns-2 -652.22864543 -662.5056048  -658.03011335  -666.43719503
(FFeé'\:irt'é)Ng'a 1878.95803849 -889.78169965  -885.20009546  -894.2525772
(F&r'\lﬂsr:igsb 1880.81317513  -885.45183983  -894.15376072

26



Supplementary Table 12.The calculated free energy (eV) for the 4-elctron transfer processes

during ORR at different reaciton corrdinations. The applied potential U=0 V.

onset
Models  O;+2H,O OH+H,O0+*OOH 20H+*O+H,O 30H+OH* 40H" potental
V)
MnN, 4.92 3.373 1.194 0.422 0 0422
FeN, 4.92 3.445 1.174 0.811 0 0.364
FeMn/Ne-1  4.92 3.668 1.873 1.154 0 0719
FeMn/Ng-2  4.92 4.277 1.611 0.776 0 0644
FeMn/Ng-a ) o, 3.169 1.141 0.276 0 0276
(Fe site)
FeMn/Ngb ) o, 3.289 0.927 0.198 0 0198
(Mn site)

Supplementary Table 13.The limiting overpotential for the structural models.

Model MnN4 FeN4 Fe,Mn/N6  Fe,Mn/N6 Fe,Mn/N8 Fe,Mn/N8
-1 -2 (Fe) (Mn)

Overpotential

(eV)

0.81 0.87 0.51 0.59 0.95 1.03
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Supplementary Table 14.The calculated vibrational frequencies of O, OH and OOH
adsorbed on the support. The corresponding energy of ZPE-TS (ZPE: zero-point energy, T:
temperture (300K), S: entropy) are also listed.

Frequencies (meV) ZPE-TS (eV)
o* 27.96, 34.74, 78.77 0.021
OH* 10.98, 23.47,52.21, 53.82, 102.94, 457.36 0.248

8.69, 15.18, 24.64, 24.82, 34.67, 60.88, 83.22
* ) H ) H ) H )
OOH 151.69, 454.15 0.245

Supplementary Table 15.The calculated free energy (eV) for the 4’elctron transfer processes

during OER at different reaciton corrdinations.

onset
Models 40H 30H+OH* 20H+*O+H,O OH+H,O+*O0OH 0,+2H,0 potental
V)
MnN, 0 17576 3.1646 3.1646 37968  2.1792
FeN, 0  1.4595 3.3661 3.3661 41608  2.2702
FeMn/Ne-1 0  0.6412 1.717 1.717 226  1.795
FeMn/Ne-2 0  1.8895 3.7206 3.7206 57428  2.6657
FeMmNg-a o) o) 2017 2.017 3194  2.0285
(Fe site)
Fe,Mn/Ns-b 21639 3.797 3.797 4528  2.362
(Mn site)
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