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Supplementary Note 1 Predictive power of diffusion profiles on a molecular-
scale interactome.

We find that diffusion profiles improve prediction of what drugs treat a disease, even when com-

puted on a molecular-scale interactome. We compare optimized diffusion profiles on the molecular-

scale interactome to a state of the art proximity metric1, 2 (Methods). We find that diffusion profiles

improve prediction relative to proximity (AUROC = 0.674 vs. 0.620, +12.3%; Average Precision

= 0.078 vs. 0.065, +20.0%; Recall@50 = 0.317 vs. 0.264, +20.0%). All evaluation metrics are

reported on a held-out set, averaged across five-fold cross validation (Methods).
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Supplementary Note 2 Selecting ranges for optimization of scalar weights
The multiscale interactome utilizes optimized edge weights to propagate the effects of drugs and

diseases to proteins and biological functions. To optimize these edge weights, we conduct a hyper-

parameter sweep and allow each hyperparameter to vary over a prespecified range. In our initial

sweep, we conduct coarse explorations for each hyperparameter in the range [1, 10] and then con-

duct a finer sweep in the range [3, 9]. Notice that in the calculation of a diffusion profile, the relative

values of two hyperparameters dictate the likelihood that the random walker visits one node type

rather than another. For example, if wbiological function = 9 and wprotein = 3, then a random walker

adjacent to both a biological function node and a protein node is three times more likely to visit

the biological function node than the protein node. If instead wbiological function = 3 and wprotein = 1,

then the random walker is still three times more likely to visit the biological function node than the

protein node. In other words, the relative values between the weights affect the propagation but the

absolute value of each particular weight does not. By setting the range of each hyperparameter to

[3, 9], we thus allow each node type to be jumped to as much as 3X more or less often than other

node types.

To ensure that our initial hyperparameter sweep was not too narrow, we conduct a broader

hyperparameter sweep and test 560 combinations of edge weight hyperparameters sampled lin-

early in the range [1, 100] and α ∈ [0.667, 1.0]. Here, each node type can be jumped to as much

as 100X more or less often than other node types depending on the sampled weights. The optimal

model identified by this expanded hyperparameter sweep did not outperform the model previously

described (Methods: Model selection and optimization of scalar weights) in predicting what drug

treats a given disease (AUROC: 0.706 vs 0.705; Average Precision: 0.092 vs 0.091; Recall@50:

0.335 vs 0.347). Therefore, we empirically find that our initial hyperparameter range was appro-

priate and not too narrow.
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Supplementary Note 3 Identifying proteins and biological functions relevant
to treatment

The multiscale interactome identifies proteins and biological functions relevant to treatment
from a large number of possibilities. To explain treatment, the multiscale interactome identi-

fies a subgraph of relevant proteins and biological functions. This subgraph explains how drug-

protein, disease-protein, protein-protein, protein-function, and function-function edges compose

in a manner that explains treatment. Critically, our case studies describe treatments that cannot

be explained by a single protein node, biological function node, protein-protein edge, or protein-

function edge. Instead, treatment results from the complex interactions of multiple proteins and

biological functions, and a subgraph is necessary to illustrate how these interactions compose to

explain treatment. Additionally, note that the multiscale interactome is not meant to identify new

protein-function edges or new edges generally. The protein-function edges and other edges in

our network are already known. Instead, our model is meant to identify how existing interactions

between drugs, diseases, proteins, and biological functions compose to explain treatment.

Moreover, note that the multiscale interactome identifies relevant proteins and biological

functions from a large array of possibilities. In each case study, we identify 18 proteins and bi-

ological functions relevant to treatment from a network of 17,660 proteins and 9,798 biological

functions. Notice that there are 1.22 × 1064 potential choices of proteins and biological functions

(27,458 choose 18). (For comparison, note there are only about 7 × 1022 stars in the entire uni-

verse.) From this large array of possibilities, diffusion profiles identify a subgraph of proteins and

functions that are relevant to treatment. We validate the subgraphs by comparison with externally

validated treatment mechanisms. Notably, the knowledge from these externally validated treatment

mechanisms is never encoded in our model. Instead, diffusion profiles identify relevant proteins

and biological functions from a large array of possibilities. This is the key explanatory benefit of

our approach.

Alternative approaches to identify biological functions relevant to treatment. We com-

pared the ability of the multiscale interactome to identify biological functions relevant to treatment

with three alternative approaches: selecting GO terms associated with both drug targets and dis-

ease proteins, selecting GO terms enriched among both drug targets and disease proteins according

to Gene Set Enrichment Analysis3, and selecting GO terms on shortest paths between drug targets

and disease proteins. First, we discuss conceptual limitations of these alternative approaches. Sec-

ond, we compare these approaches with the multiscale interactome directly for the case studies
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presented as Figure 2g and Figure 2h.

Conceptual Issues with Alternative Approaches: Conceptually, these alternative approaches

are limited in ways that apply generally regardless of the case study utilized. Selecting common

GO terms between drug targets and disease proteins will necessarily prioritize the most popular

GO terms that the most proteins connect to (i.e., Biological Process, Cellular Process, Metabolic

Process) which are too generic to yield meaningful insight into treatment. Selecting GO terms en-

riched among drug targets and disease proteins struggles in cases where there are few drug targets

or disease proteins. In these cases, few GO terms are enriched and there are few or no common

enriched terms, thus yielding little insight. Identifying GO terms that occur on the shortest paths

between drug targets and disease proteins fails in cases where the shortest paths between drug tar-

gets and disease proteins do not include GO terms. In cases where shortest paths do include the

relevant GO terms, diffusion profiles are likely to identify these GO terms anyways since nodes

on the shortest paths between drug targets and disease proteins are frequently visited in diffusion

profiles. Finally, all three alternative approaches only generate lists of GO terms. By contrast,

diffusion profiles identify subgraphs which demonstrate how complex interactions between drugs,

diseases, proteins, and biological functions can help explain treatment. Lists of GO terms can

at most identify relevant functions but cannot shed light into the drug-protein, disease-protein,

protein-protein, protein-function, or function-function interactions that are relevant to treatment.

Such complex interactions are important for describing treatment1, 2, 4–7.

Example: Treatment of Cryopyrin-Associated Periodic Syndromes by Anakinra. First,

consider the treatment of Cryopyrin-Associated Periodic Syndromes by Anakinra (Figure 2h).

Cryopyrin-Associated Periodic Syndromes are characterized by immune-mediated inflammation

via the Interleukin-1 beta signaling pathway8. Anakinra treats Cryopyrin-Associated Periodic Syn-

dromes by binding to a regulator of the Interleukin-1 beta signaling pathway and thus preventing

excess inflammation9, 10. Diffusion profiles capture Anakinra’s treatment of Cryopyrin-Associated

Periodic Syndromes by affecting immune-mediated inflammation via the Interleukin-1 beta signal-

ing pathway (Supplementary Fig. 14a). Diffusion profiles identify 14 GO terms, 10 of which de-

scribe treatment: “inflammatory response,” “response to interleukin-1,” “IL-1 mediated signaling

pathway,” “cytokine-mediated signaling pathway,” “negative regulation of IL-1 mediated signaling

pathway,” “regulation of IL-1 mediated signaling pathway,” “negative regulation of inflammatory

response,” “cellular response to IL-1,” “cellular response to cytokine stimulus,” and “response to

cytokine.” Diffusion profiles thus capture the key biological functions underlying treatment: regu-

lation of immune-mediated inflammation via the Interleukin-1 beta signaling pathway.
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By contrast, none of the alternative approaches capture the key biological function under-

lying treatment: regulation of immune-mediated inflammation via the Interleukin-1 beta signal-

ing pathway. First if we consider GO terms that are associated with both Anakinra’s targets and

Cryopyrin-Associated Periodic Syndrome’s genes, we find nine such GO terms (Supplementary

Fig. 14b). However, these GO terms broadly miss the effect of Anakinra on immune-mediated

inflammation and the Interleukin-1 beta signaling pathway. Indeed, eight of these nine GO terms

are generic and not useful to describing treatment (i.e., “biological process,” “regulation of cellular

process,” “response to chemical,” “biological regulation,” “cellular process,” “regulation of bio-

logical process,” “response to organic substance,” “response to stimulus”). Second if we consider

GO terms enriched among both Anakinra’s targets and Cryopyrin Associated Periodic Syndrome’s

genes, we find that there are no common GSEA GO terms (Supplementary Fig. 14c). Finally if we

consider GO terms on shortest paths between Anakinra’s targets Cryopyrin Associated Periodic

Syndrome’s genes, we find that there are no GO terms on the shortest paths between Anakinra

and Cryopyrin Associated Periodic Syndromes (Supplementary Fig. 14d). Therefore, the three

alternative approaches miss the effect of Anakinra on immune-mediated inflammation and the

Interleukin-1 beta signaling pathway. Diffusion profiles thus identify the biological functions re-

lated to the treatment of Cryopyrin-Associated Periodic Syndromes by Anakinra more effectively

than alternative approaches.

Example: Treatment of Hyperlipoproteinemia Type III by Rosuvastatin. Next, con-

sider the treatment of Hyperlipoproteinemia Type III by Rosuvastatin. Hyperlipoproteinemia is a

disease characterized by abnormal levels of cholesterol in the blood11–15. Rosuvastatin treats Hy-

perlipoproteinemia Type III by affecting various biological functions related to cholesterol biosyn-

thesis and metabolism10, 16, 17. Diffusion profiles successfully identify the cholesterol biosynthesis

functions relevant to treatment of Hyperlipoproteinemia Type III’s by Rosuvastatin (Supplemen-

tary Fig. 13a). Diffusion profiles identify 12 GO terms, 5 of which describe cholesterol biosynthe-

sis (i.e., “regulation of cholesterol biosynthetic process,” “positive regulation of cholesterol biosyn-

thetic process,” “negative regulation of cholesterol biosynthetic process,” “cholesterol biosynthetic

process,” “cholesterol homeostasis”). An additional 3 GO describe triglyceride metabolism, a

function dysregulated in Hyperlipoproteinemia Type III11–15 (i.e., “positive regulation of triglyc-

eride catabolic process,” “triglyceride metabolic process,” “triglyceride homeostasis”). Diffusion

profiles thus capture key biological functions relevant to treatment.

By contrast, two of the three alternative approaches are less effective than diffusion profiles in

identifying biological functions that are both specific and relevant to treatment. First, if we consider
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GO terms enriched among both Rosuvastatin’s target and Hyperlipoproteinemia Type III’s genes,

we find no common enriched GO terms, thus yielding no insight into treatment (Supplementary

Fig. 13c). Second, if we consider GO terms that are associated with both Rosuvastatin’s target and

Hyperlipoproteinemia Type III’s genes, only 1 of 19 identified GO terms is specific and relevant

(Supplementary Fig. 13b). The remaining GO terms are generic (i.e., “cellular component orga-

nization”, “macromolecular complex assembly”) and thus not particularly insightful. By contrast,

8 of the 12 GO terms identified by diffusion profiles are specific and relevant. Moreover, the sin-

gle relevant GO term identified via this alternative approach (i.e., “cholesterol metabolic process”)

is more generic than the five cholesterol-related GO terms identified via diffusion profiles (i.e.,

“regulation of cholesterol biosynthetic process,” “positive regulation of cholesterol biosynthetic

process,” “negative regulation of cholesterol biosynthetic process,” “cholesterol biosynthetic pro-

cess,” “cholesterol homeostasis”). Indeed in the Gene Ontology, metabolic processes define broad

functions that can be altered in many ways. Two specific ways to alter metabolic processes are ef-

fects on biosynthesis and biosynthesis regulation18, 19, the functions identified by diffusion profiles.

Ultimately, common enriched GO terms and common associated GO terms are less effective than

diffusion profiles in identifying biological functions both specific and relevant to treatment.

The third alternative approach, considering GO terms on shortest paths between Rosuvas-

tatin and Hyperlipoproteinemia Type III, performs comparably to diffusion profiles, identifying 4

GO terms related to cholesterol biosynthesis (i.e., “cholesterol metabolic process,” “negative reg-

ulation of cholesterol biosynthetic process,” “cholesterol biosynthetic process,” and “cholesterol

homeostasis”) (Supplementary Fig. 13d). Three of these GO terms overlap with the biological

functions identified by diffusion profiles. Here, the comparable performance between diffusion

profiles and GO terms on shortest paths makes sense. In cases where relevant biological functions

are on shortest paths between drug targets and disease proteins, diffusion profiles will identify

these GO terms as they will likely be frequently visited in the drug and disease diffusion profiles.

In other treatments, however, the shortest paths between drug targets and disease proteins may

not include GO terms. For such treatments, diffusion profiles will provide functional insight not

provided by simply identifying GO terms on shortest paths.

Diffusion profiles capture the cholesterol biosynthesis functions relevant to treatment and

thus offer an effective approach to identifying the biological functions relevant to treatment.
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Supplementary Note 4 The multiscale nature of our network and alterna-
tive multiscale interactomes

The multiscale interactome contains both physical interactions between proteins and a hierarchy

of biological functions. We consider the network “multiscale” for two reasons. First, biologi-

cal functions are often defined at the level of molecules (i.e., DNA Demethylation GO:0080111),

cells (i.e., Mitotic Cell Cycle GO:0000278), tissues (i.e., Muscle Atrophy GO:0014889), organ

systems (i.e., Activation of Innate Immune Response GO:0002218), and the whole organism (i.e.,

Anatomical Structure Development GO:0048856)20, 21. Second, the hierarchical relationships be-

tween biological functions contains a “detailed implicit ontology of anatomical structures”22. This

point is made clearer in “GO-Plus”19 which links biological functions to the cells, tissues, and

organs in Uberon22, 23 and the Cell Ontology24, 25 (two anatomical ontologies) that these biological

functions affect. For these reasons, we consider the network we constructed multiscale.

We acknowledge that alternative interpretations of “multiscale” may wish that cells, tissues,

and organs be explicitly included as nodes in our network along with the anatomical relationships

between them. To address this potential interpretation, we construct alternative multiscale interac-

tomes that explicitly represent cells, tissues, organs and the relationships between them (Supple-

mentary Fig. 8, Methods). Specifically, we created three alternative multiscale interactomes that

incorporate human-specific subsets of Uberon22, 23, the Cell Ontology24, 25, or both. In these alter-

native multiscale interactomes, our initial network is expanded such that (1) human cells, tissues,

and organs are added as additional nodes, (2) these cells, tissues, and organs have edges between

them according to the anatomical hierarchies defined in human subsets of Uberon and the Cell

Ontology, and (3) the biological functions in GO are linked to the new cell, tissue, and organ nodes

that they affect according to Gene Ontology Plus (GO Plus)19. All three of the alternative mul-

tiscale interactomes outperform molecular-scale interactomes when predicting what drug treats a

disease. The best alternative multiscale interactome (multiscale interactome + Uberon) outper-

forms a molecular-scale interactome by 15.3% in AUROC (0.715 vs. 0.620), 40.0% in Average

Precision (0.091 vs. 0.065), and 29.9% in Recall@50 (0.343 vs. 0.264) (Supplementary Fig. 8). In

these alternative multiscale interactomes, our model is still able to effectively predict what drugs

treat a disease.
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Supplementary Note 5 Variants in network construction and edge weight-
ing

We test whether numerous variants to the edge weighting and network construction approach de-

scribed in Methods would improve the ability of our model to predict what drugs treats a given

disease.

1. The multiscale interactome with all GO biological function terms vs. the multiscale interac-

tome with only biological function terms associated with at least one drug target or disease

protein (Supplementary Fig. 9; Methods: Biological function – biological function interac-

tions).

2. The multiscale interactome when all disease-protein edges are treated equiv-

alently (i.e., wprotein, wdisease) vs. the multiscale interactome when dif-

ferent disease-protein edge types receive different hyperparameter edge

weights (i.e., wdisease→protein via genomic alteration, wdisease→protein via altered expression,

wdisease→protein via post-translational modification, wprotein→disease via genomic alteration,

wprotein→disease via gene expression, wprotein→disease via post-translational modification) (Supplementary Fig. 11).

3. The multiscale interactome when all biological function – biological function edges are

treated equivalently (i.e., wbiological function, whigher-level biological function, wlower-level biological function)

vs. when they are differentiated based on the type of GO edge (i.e., wbiological function,

whigher-level bf via ’is a’, wlower-level bf via ’is a’, whigher-level bf via ’part of’, wlower-level bf via ’part of’,

whigher-level bf via ’regulates’, wlower-level bf via ’regulates’, whigher-level bf via ’positively regulates’,

wlower-level bf via ’positively regulates’, whigher-level bf via ’negatively regulates’, wlower-level bf via ’negatively regulates’;

“bf” denotes biological function) (Supplementary Fig. 10).

For each variant, we conduct the broad hyperparameter sweep described in Supplementary Note 2.

Hyperparameters not mentioned above are defined as in the original model (Methods). Ultimately,

we use these variants to predict what drug treats a disease according to the approach previously

described (Methods). All optimal models used the correlation distance to compare the drug and

disease diffusion profiles. The described variants did not substantially outperform the original

model in predicting what drugs treat a given disease (Supplementary Fig. 9, Supplementary Fig. 10,

Supplementary Fig. 11).
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Response Figure X

Molecular-Scale 
Interactome

Multiscale Interactome

Proteins

Disease

Hierarchy of

Functions

Drug

Proteins

DiseaseDrug

(a) (b)

Supplementary Figure 1: The multiscale interactome incorporates both physical interactions
between proteins and a hierarchy of biological functions. (a) Molecular scale interactomes
model drug-disease treatment by primarily considering physical interactions (i.e., drug–protein,
disease–protein, and protein–protein edges). (b) The multiscale interactome models drug-disease
treatment by considering both physical interactions (i.e., drug–protein, disease–protein, protein–
protein edges) and a hierarchy of biological functions (i.e., protein–biological function, biological
function – higher-level biological function, and biological function – lower-level biological func-
tion edges). By modeling both physical interactions between proteins and a hierarchy of biological
functions, the multiscale interactome integrates physical and functional relationships in the model-
ing of drug-disease treatment. The detailed construction of both networks is provided in Methods.

11



Response Figure 2

44% of protein-pairs that 
share function are distant

Proteins

Function

Supplementary Figure 2: Biological functions capture critical relationships between pro-
teins that physical PPI networks alone do not capture. 44% of protein-protein pairs that af-
fect the same biological function are more distant in protein-protein interaction (PPI) network
than is expected by random chance. Therefore, proteins may be physically distant yet affect the
same function, and biological functions capture critical relationships between proteins that phys-
ical protein-protein interaction networks alone do not capture. The shortest path length between
each protein-pair in the PPI network that shares a function was compared to a reference distribution
of shortest path lengths between protein pairs of similar degree (Methods).
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Response Figure 3

In 38% of approved 
drug-indication pairs, 

drug targets are distant 
from disease genes

Drug 
targets

Disease 
genes

Distant

Among approved drug-indication pairs 
that are distant, 65% affect targets/

genes that share biological functions

Distant

Drug 
targets

Disease 
genes

Shared function

Distant, 
share function 

24.79% 

Distant, 
different  function 

13.58% 

Close, 
share function 

45.49% 

Close, 
different function 

16.13% 

(a)

(c) (d)

70% of approved drug-indication 
pairs affect targets/genes that 

share biological functions

Drug 
targets

Disease 
genes

Shared function

(b)

Supplementary Figure 3: Drugs may treat diseases by affecting the same functions, even
when drug targets are far from disease genes. (a) In 38% of approved drug-indication pairs,
drug targets are farther from disease genes than is expected by random chance. Distance between
drug targets and disease genes is calculated according to a state-of-the-art proximity metric1, 2

(Methods). (b) In 70% of approved drug-indication pairs, drug targets affect the same biological
functions as disease genes more often than is expected by random chance, suggesting that biolog-
ical functions are broadly important in modeling treatment. The functional overlap metric used
is the Z scored intersection of Gene Ontology (GO) term multisets (Methods). (c) Among distant
drug-indication pairs, 65% affect the same biological functions more often than is expected by ran-
dom chance, suggesting that biological functions offer a powerful and complementary approach
to explaining drug treatment. (d) Drugs treat diseases by either targeting proteins close to the
disease genes (16.13% of approved drug-indication pairs), targeting proteins that affect the same
biological functions as the disease genes (24.79%), or both (45.49%). Molecular-scale interactome
approaches can only model proximity-based treatments. By integrating both physical interactions
and biological functions, the multiscale interactome can model treatments that harness physical
proximity, functional overlap, or both.
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Supplementary Figure

Supplementary Figure 4: The multiscale interactome models treatments across human
anatomy. The multiscale interactome includes approved drug-disease treatments across human
anatomy as represented by the Anatomical Therapeutic Chemical Classification (ATC). Each drug
is mapped to its ATC Level I class. Numbers represent the number of unique drugs per class.
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Response Figure 4

Method AUROC Avg Prec Rec@50

Jaccard Similarity of GSEA 
GO Term Sets

0.500 0.024 0.219

Intersection of GSEA GO 
Term Sets

0.500 0.022 0.217

Jaccard Similarity of GO 
Term Sets

0.564 0.048 0.235

Intersection of GO

Term Sets

0.558 0.045 0.213

Jaccard Similarity of GO 
Term Multisets

0.560 0.041 0.216

Intersection of GO Term 
Multisets

0.554 0.040 0.208

Z Scored Jaccard Similarity 
of GO Term Sets

0.533 0.039 0.211

Z Scored Intersection of GO 
Term Sets

0.551 0.040 0.207

Z Scored Jaccard Similarity 
of GO Term Multisets

0.533 0.035 0.205

Z Scored Intersection of GO 
Term Multisets

0.553 0.039 0.196

Max of

Resnik Similarity

0.557 0.026 0.229

Average of

Resnik Similarity

0.558 0.035 0.219

Best Match Average of

Resnik Similarity

0.528 0.049 0.222

Max of

SimIC

0.555 0.029 0.228

Average of

SimIC

0.573 0.035 0.235

Best Match Average of

SimIC

0.554 0.043 0.219

SimGIC 0.558 0.050 0.237

Multiscale Interactome 0.705 0.091 0.347

Multiscale Interactome vs 
Best GO Baseline +23.0% +82.0% +46.4%

Supplementary Figure 5: The multiscale interactome significantly outperforms baseline
methods that incorporate functional information when predicting what drugs treat a disease.
The multiscale interactome substantially outperforms all Gene Ontology (GO) baseline methods
in predicting what drugs will treat a given disease. Compared to the best GO baseline method,
the multiscale interactome improves AUROC by 23.0% (0.705 vs. 0.573), Average Precision by
82.0% (0.091 vs. 0.050), and Recall@50 by 46.4% (0.347 vs. 0.237) (described values in bold).
GO baselines are described in Methods. Reported values are averaged across five-fold cross vali-
dation.
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Supplementary Figure 2

Supplementary Figure 6: Predictive power of multiscale interactome by drug category. The
multiscale interactome predicts what drugs treat a given disease (Figure 2a-c, Methods). For each
Anatomical Therapeutic Chemical Classification (ATC) Level II drug class, the rank of the drug
in its approved indication is shown. Boxplots: median (line); 95% CI (notches); 1st, 3rd quartiles
(boxes); data within 1.5× the inter-quartile range from the 1st, 3rd quartiles (whiskers). Sample
sizes in parentheses.
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Supplementary Figure 3

Better Worse

vs Molecular-ScaleMultiscale

Supplementary Figure 7: Predictive power of multiscale interactome vs molecular-scale in-
teractome by drug category. The multiscale interactome predicts what drug will treat a given dis-
ease more accurately than a molecular-scale interactome approach using diffusion profiles (Meth-
ods). For each Anatomical Therapeutic Chemical Classification (ATC) Level II drug class, the
rank of the corresponding drugs in their approved indications is shown for both the multiscale
interactome and the molecular-scale interactome. Drug classes are ordered by how much the mul-
tiscale interactome outperforms the molecular-scale interactome. Boxplots: median (line); 95%
CI (notches); 1st, 3rd quartiles (boxes); data within 1.5× the inter-quartile range from the 1st, 3rd

quartiles (whiskers). Sample sizes in parentheses.
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Response Figure 1

Method AUROC Avg Prec Rec@50

Molecular-scale Interactome 0.620 0.065 0.264

Multiscale Interactome + Uberon 0.715 0.091 0.343

Multiscale Interactome + Cell 
Ontology 0.710 0.092 0.329

Multiscale Interactome + Uberon 
+ Cell Ontology 0.702 0.090 0.335

Multiscale Interactome + Uberon 
vs. Molecular-scale interactome +15.3% +40.0% +29.9%

Supplementary Figure 8: Alternative multiscale interactomes that explicitly model cells, tis-
sues, organs, and the relationships between them also outperform molecular-scale interac-
tomes on a drug-indication prediction task. The best alternative multiscale interactome (mul-
tiscale interactome + Uberon) outperforms a molecular-scale interactome by 15.3% in AUROC
(0.715 vs. 0.620), 40.0% in Average Precision (0.091 vs. 0.065), and 29.9% in Recall@50 (0.343
vs. 0.264) (described values in bold). Uberon22, 23 and the Cell Ontology24, 25 are anatomical on-
tologies with explicit representations of cells, tissues, organs, and the relationships between them.
We use human-specific subsets of both when constructing the alternative multiscale interactomes
(Methods, Supplementary Note 4). Reported values are averaged across five-fold cross validation.
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Response Figure X

Method AUROC Avg Prec Rec@50

Multiscale interactome 
without GO Filtering

0.706 0.092 0.346

Multiscale interactome 
with GO filtering 0.705 0.091 0.347

Supplementary Figure 9: Filtering the Gene Ontology to only include biological functions
associated with at least one drug target or disease protein does not substantially affect the
performance of the multiscale interactome when predicting what drugs treat a disease. De-
tails provided in Supplementary Note 5.
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Response Figure X

Method AUROC Avg Prec Rec@50

Multiscale interactome 
without differentiating 

GO relation types
0.705 0.091 0.347

Multiscale interactome 
with differentiating GO 

relation types
0.709 0.088 0.335

Supplementary Figure 10: Augmenting the multiscale interactome so it differentiates re-
lation types in the Gene Ontology does not significantly improve performance on a drug-
indication prediction task. Details provided in Supplementary Note 5.
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Response Figure X

Method AUROC Avg Prec Rec@50

Multiscale interactome 
without differentiating 

disease-protein 
associations types

0.705 0.091 0.347

Multiscale interactome 
with differentiating 

disease-protein 
associations types

0.708 0.099 0.337

Supplementary Figure 11: Augmenting the multiscale interactome so it differentiates be-
tween disease-protein associations that are based on effects like mutation, post-translational
modification, or gene expression does not substantially affect the performance of the multi-
scale interactome when predicting what drugs treat a disease. Details provided in Supplemen-
tary Note 5.

21



Response Figure X

Drug-Drug Comparison Method Spearman ρ p-value

GO Term Overlap 0.144 0.077

GSEA Term Overlap 0.179 0.028

Diffusion Profile Similarity 0.392 5.8x10-7

Supplementary Figure 12: Diffusion profiles provide a more biologically relevant metric for
drug-drug similarity than alternative functional approaches. We measure the Spearman cor-
relation between the similarity of two drugs according to their gene expression signatures and the
similarity of two drugs according to three drug-drug comparison methods: (1) intersection in Gene
Ontology (GO) terms associated with drug targets and disease proteins, (2) intersection in GO
terms enriched among drug targets and disease proteins according to Gene Set Enrichment Analy-
sis3, and (3) similarity in diffusion profiles (Methods). The similarity of two drugs according to the
similarity of their diffusion profiles provides the strongest and most significant correlation with the
similarity of the same drugs according to their gene expression signatures (Spearman ρ = 0.392;
p = 5.8x10−7, two-sided, n = 152; Figure 2f; in bold).
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Figure X
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Supplementary Figure 13: Diffusion profiles identify the biological functions used by Rosu-
vastatin to treat Hyperlipoproteinemia Type III more effectively than alternative approaches.
(a) The induced subgraph of proteins and biological functions identified via diffusion profiles as
relevant to the treatment of Hyperlipoproteinemia Type III by Rosuvastatin. (b, c, d) Venn Dia-
grams compare the biological functions identified via diffusion profiles to the biological functions
identified via (b) Gene Ontology (GO) terms associated with both drug targets and disease genes,
(c) GO terms enriched among both drug targets and disease genes according to Gene Set Enrich-
ment Analysis3, and (d) GO terms on shortest paths between drug targets and disease genes. Dif-
fusion profiles identify the key biological functions involved in Rosuvastatin’s treatment of Hyper-
lipoproteinemia Type III more effectively than alternative approaches (Supplementary Note 3)11–17.
Abbreviations: reg., regulation; org., organization; metab., metabolic; cell., cellular; +, positive; -,
negative.
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Supplementary Figure 14: Diffusion profiles identify the biological functions used by
Anakinra to treat Cryopyrin-Associated Periodic Syndromes more effectively than alterna-
tive approaches. (a) The induced subgraph of proteins and biological functions identified via
diffusion profiles as relevant to the treatment of Cryopyrin-Associated Periodic Syndromes by
Anakinra. (b, c, d) Venn Diagrams compare the biological functions identified via diffusion pro-
files to the biological functions identified via (b) Gene Ontology (GO) terms associated with both
drug targets and disease genes, (c) GO terms enriched among both drug targets and disease genes
according to Gene Set Enrichment Analysis3, and (d) GO terms on shortest paths between drug
targets and disease genes. Diffusion profiles identify the key functions involved in Anakinra’s
treatment of Cryopyrin-Associated Periodic Syndromes—regulation of immune-mediated inflam-
mation through the Interleukin-I beta signaling pathway8–10—but alternative approaches do not
(Supplementary Note 3). Abbreviations: reg., regulation; path., pathway; proc., process; cell.,
cellular; +, positive; -, negative.

24



Figure X

(a)

(b) (c)

Reg. of Angiotensin Metabolic Process 
Reg. of Systemic Arterial Blood Pressure by 

Renin-Angiotensin 
Amyloid-Beta Metabolic Process 

+ Reg. of Transcription, DNA-templated 
+ Reg. of Transcription by RNA Polymerase II 

Cellular Catabolic Proc. 
Icosanoid Transport 
Organic Acid Transport 
Catabolic Process 
Fatty Acid Transport 
Reg. of Macromolecule Metabolic 
Proc. 
Biological Proc. 
Metabolic Proc. 
Cellular Metabolic Proc. 
Arachidonate Transport 
Long-chain Fatty Acid Transport 
Biological Reg. 
Reg. of Systemic Arterial Blood 
Pressure 
Developmental Proc. 
Regulation of Primary Metabolic 
Proc. 
Cellular Proc. 
Reg. of Hormone Levels 
Animal Organ Development 
Anion Transport 

Reg. of Blood Pressure 
Lipid Transport 
System Process 
Reg. of Biological Proc. 
Organic Substance Metabolic 
Proc. 
Reg. of Metabolic Proc. 
Organic Substance Catabolic 
Proc. 
Localization 
Organonitrogen Compound 
Metabolic Proc. 
Reg. of Systemic Arterial Blood 
Pressure Mediated by a Chemical 
Signal 
Anatomical Structure 
Development 
Reg. of Biological Quality 
Secretion 
Peptide Metabolic Process 
Organonitrogen Compound 
Catabolic Proc. 

Organic Substance Transport 
Cellular Amide Metabolic Proc. 
Regulation of Nitrogen 
Compound Metabolic Proc. 
Icosanoid Secretion 
Fatty Acid Derivative Transport 
Carboxylic Acid Transport 
Reg. of Systemic Arterial Blood 
Pressure by Hormone 
Ion Transport 
Acid Secretion 
Multicellular Organismal Proc. 
Establishment of Localization 
Cell. Nitrogen Compound 
Metabolic Proc. 
Transport 
Nitrogen Compound Metabolic 
Proc. 
Organic Anion Transport 
Reg. of Protein Metabolic Proc. 
Monocarboxylic Acid Transport 
Hormone Metabolic Proc. 

Kidney Development 
Peptide Catabolic Process 
Arachidonic Acid Secretion 
Hormone Catabolic Process 

Reg. of Angiotensin Metabolic Process 
Reg. of Systemic Arterial Blood Pressure by 

Renin-Angiotensin 
Amyloid-Beta Metabolic Process 

Hormone Catabolic Process 
Kidney Development 

Peptide Catabolic Process 
Arachidonic Acid Secretion 

+ Reg. of Transcription, DNA-templated 
+ Reg. of Transcription by RNA Polymerase II 

Reg. of Angiotensin Metabolic Process 
Reg. of Systemic Arterial Blood Pressure by 

Renin-Angiotensin 
Amyloid-Beta Metabolic Process 

Hormone Catabolic Process 
Kidney Development 

Peptide Catabolic Process 
Arachidonic Acid Secretion 

+ Reg. of Transcription, DNA-templated 
+ Reg. of Transcription by RNA Polymerase II 

GO terms associated with both 
drug targets and disease genes

Top k GO terms from 
diffusion profiles

GO terms enriched among 
both drug targets and 

disease genes

Top k GO terms from 
diffusion profiles

GO terms on shortest paths 
between drug and disease

Top k GO terms from 
diffusion profiles

Supplementary Figure 15: Diffusion profiles identify the biological functions used by Be-
nazepril to treat Hypertensive Disease more effectively than alternative approaches. (a, b,
c) Venn Diagrams compare the biological functions identified as relevant to the treatment of Hy-
pertensive Disease by Benazepril via diffusion profiles to the biological functions identified via
(a) Gene Ontology (GO) terms associated with both drug targets and disease genes, (b) GO terms
enriched among both drug targets and disease genes according to Gene Set Enrichment Analysis3,
and (c) GO terms on shortest paths between drug targets and disease genes. Diffusion profiles
uniquely identify the renin-angiotensin pathway as a key biological function involved in treatment,
helping explain why mutations in Angiotensinogen (AGT) alter the efficacy of treatment?, 26–29.
Abbreviations: reg., regulation; proc., process; cell., cellular; +, positive; -, negative.
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Response Figure X

Rosuvastatin Hyperlipoproteinemia Type III

1 HMGCR APOE

2 Cholesterol Biosynthetic Process APOA5

3 Protein Tetramerization RAB5B

4 Protein Oligomerization SMARCD1

5 Negative Regulation of Cholesterol Biosynthetic 
Process

FASN

6 Positive Regulation of Cholesterol Biosynthetic 
Process

Triglyceride Homeostasis

7 Regulation of Cholesterol Biosynthetic Process Cholesterol Homeostasis

8 Negative Regulation of Protein Homotetramerization Positive Regulation of Triglyceride Catabolic Process

9 Negative Regulation of Protein Tetramerization Triglyceride Metabolic Process

10 Protein Heterotetramerization Acylglycerol Homeostasis

11 Protein Homotetramerization Triglyceride Catabolic Process

12 Regulation of Protein Tetramerization Positive Regulation of Lipoprotein Lipase Activity

13 FGF1 Lipid Transport

14 Sterol Biosynthetic Process Positive Regulation of Fatty Acid Biosynthetic 
Process

15 Cholesterol Metabolic Process Positive Regulation of Lipid Catabolic Process

16 MVK Positive Regulation of Very-Low-Density Lipoprotein 
Particle Remodeling

17 ERLIN2 Osteoblast Diifferentiation

18 Secondary Alcohol Biosynthetic Process Antigen Processing and Presentation

19 HMGCL Chromatin Remodeling

20 PMVK Nucleosome Disassembly

Supplementary Figure 16: Top 20 proteins and biological functions for the treatment of Hy-
perlipoproteinemia Type III by Rosuvastatin. Proteins and biological functions are ranked ac-
cording to their visitation frequency in the drug and disease diffusion profiles (Methods).

26



Response Figure X

Anakinra Cryopyrin Associated Periodic Syndromes

1 IL1R1 MME

2 Interleukin-1 Mediated Signaling Pathway NLRP3

3 Response to Interleukin-1 Proteolysis

4 Cellular Response to Interleukin-1 Cellular Response to UV-B

5 Negative Regulation of Interleukin-1-Mediated 
Signaling Pathway

Cellular Response to UV-A

6 Regulation of Interleukin-1-Mediated Signaling 
Pathway

Cellular Response to Cytokine Stimulus

7 Response to Cytokine Creatinine Metabolic Process

8 Cytokine-Mediated Signaling Pathway Negative Regulation of Inflammatory Response

9 IL1RN Inflammatory Response

10 IRAK1 Positive Regulation of Interleukin-1 Beta Secretion

11 IRAK2 Positive Regulation of NF-kappaB Transcription 
Factor Activity

12 ZNF675 Negative Regulation of NF-kappaB Transcription 
Factor Activity

13 VRK2 Negative Regulation of Acute Inflammatory 
Response

14 TRAF6 Positive Regulation of Cysteine-Type Endopeptidase 
Activity Involved in Apoptotic Process

15 IRAK3 Negative Regulation of Interleukin-1 Beta Secretion

16 MYD88 Cellular Response to Lipopolysaccharide

17 PRKCA Negative Regulation of NF-kappaB Import Into 
Nucleus

18 SRC Cellular Response to UV

19 Cellular Response to Cytokine Stimulus Negative Regulation of Acute Inflammatory 
Response to Antigenic Stimulus

20 Positive Regulation of Transcription by RNA 
Polymerase II

Cytoplasmic Sequestering of NF-kappaB

Supplementary Figure 17: Top 20 proteins and biological functions for the treatment of
Cryopyrin Associated Periodic Syndromes by Anakinra. Proteins and biological functions are
ranked according to their visitation frequency in the drug and disease diffusion profiles (Methods).
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Response Figure X

Benazepril Diltiazem Hypertensive Disease

1 ACE KCNA5 Positive Regulation of Transcription by RNA 
Polymerase II

2 Arachidonic Acid Secretion CACNA1C Cilium Assembly

3 Peptide Catabolic Process CACNA2D1 Positive Regulation of Transcription, DNA-
templated

4 Regulation of Systemic Arterial Blood Pressure by 
Renin-Angiotensin

CACNA1S EGFR

5 Kidney Development HTR3A Negative Regulation of Transcription by RNA 
Polymerase II

6 Amyloid-Beta Metabolic Process CACNG1 ATP1A1

7 Hormone Catabolic Process LMNA FN1

8 Regulation of Angiotensin Metabolic Process VAPA TP53

9 BDKRB2 Calcium Ion Transport LZTFL1

10 COMT Muscle Contraction TGFB1

11 AGXT Regulation of Heart Rate by Cardiac Conduction Negative Regulation of Transcription, DNA-
templated

12 ACTB Cardiac Muscle Cell Action Potential Involved in 
Contraction

APOE

13 LMNA Negative Regulation of Cell Proliferation CUL3

14 EGR1 Regulation of Calcium Ion Transport PRKACA

15 AGR2 Positive Regulation of Cell Aging WNK4

16 MYH9 SRI SMAD3

17 EWSR1 Regulation of Calcium Ion Transmembrane 
Transport via High Voltage-Gated Calcium Channel

TNF

18 CSNK2A2 Atrial Cardiac Muscle Cell Action Potential IDUA

19 AGTR2 Potassium Ion Transmembrane Transport CAV1

20 CSNK2A1 Regulation of Ventricular Cardiac Muscle Cell 
Membrane Repolarization

EDN1

Supplementary Figure 18: Top 20 proteins and biological functions for the treatment of Hy-
pertensive Disease by Benazepril or Diltiazem. Proteins and biological functions are ranked
according to their visitation frequency in the drug and disease diffusion profiles (Methods).
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