A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives

Hafner and Payne et al.

Supplementary Table 1. Overview on network statistics.

	Reactions	Compounds
Total entries in raw BNICE.ch network	17,597	4,838
Biological / bioactive entries in raw BNICE.ch network	244	720
Total entries in benzylisoquinoline alkaloid network	7,527	1,518
Biological / bioactive entries in benzylisoquinoline alkaloid network	49	99
Potential targets		1,501
Potential targets with annotation (min 1 citation/patent)		545

Compound name	Source database	In net- work	Precursor ^a	Shortest pathway ^b	Shortest pathway in source ^c	Pathways visualized online	Comment
Allocryptopine	KEGG	yes	(S)-cis-N- methylcanadine	1	1	yes	
Berberine	MetaCyc	yes	(S)-canadine	1	1	yes	
Dehydroscoulerine	MetaCyc	yes	(S)-scoulerine	1	1	no	
(S)-nororientaline	KEGG	yes	3'-Hydroxy- <i>N</i> - methyl-(<i>S</i>)- coclaurine	2	2	no	
Corydaline	KEGG	yes	Tetrahydro- columbamine	2	3	yes	Shortcut found via tetrahydrapalmatine or isocorybulbine.
Magnoflorine	KEGG, MetaCyc	yes	(S)-reticuline	2	2	yes	-
Palmatine	MetaCyc	yes	Tetrahydro- columbamine	2	2	yes	
Salutaridinol	KEGG	yes	(S)-reticuline	2	4	yes	2 steps from (<i>R</i>)-reticuline, or 4 steps from (<i>S</i>)-reticuline.
Coptisine	MetaCyc	yes	(S)-scoulerine	3	3	yes	
Epiberberine	MetaCyc	yes	(S)-scoulerine	3	3	yes	
Protopine	KEGG	yes	(S)-cis-N- methylcanadine	3	4	yes	Shortcuts found via allocryptopine, hunnemanine, and others.
Papaverine	KEGG, MetaCyc	yes	(S)-reticuline	4	4	yes	
Chelerythrine	MetaCyc	no	(S)-cis-N- methylcanadine	N/A	4		Chelerythrine is 4 reaction steps away from the precursor. Step 1 and 2 are in the network, but step 3 (a spontaneous reaction) is not.

Supplementary Table 2. Presence of known biosynthetic BIA pathways in the generated reaction network.

^aClosest noscapine pathway intermediate; ^bLength of shortest pathway from precursor to compound; ^cDistance from precursor in source database

				Number of		Best BridgIT	
Rank	Name	Iteration	Identifier	pathways	Precursor	score	Predicted enzyme
3	Berberine	1	79	2	(S)-canadine	1.00	1.3.3.8
6	Tetrahydropalmatine	1	171	2	Tetrahydrocolumbamine	1.00	2.1.1.89
13	Columbamine	1	83	1	Tetrahydrocolumbamine	0.99	1.3.3.8
15	Salutaridine	1	155	1	(S)-reticuline	1.00	1.14.19.67
16	Norlaudanosoline	1	113	3	(S)-norcoclaurine	0.99	1.14.14.102
17	Stepholidine	1	150	1	Tetrahydrocolumbamine	0.78	1.14.13.31
18	Allocryptopine	1	100	2	(S)-cis-N-methylcanadine	0.32	1.14.13.239
24	Laudanine	1	169	3	(S)-reticuline	1.00	2.1.1.291
31	Codamine	1	98	2	(S)-reticuline	0.79	2.1.1.121
33	Norreticuline	1	89	3	(S)-reticuline	0.09	1.5.3.10
37	Corytuberine	1	154	1	(S)-reticuline	0.56	1.14.19.67
39	Lambertine	1	75	6	(S)-canadine	0.45	1.3.1.29
43	Armepavine	1	167	2	(S)-N-methylcoclaurine	1.00	2.1.1.291
43	1,2-Dehydroreticuline	1	93	1	(S)-reticuline	1.00	1.5.1.27
46	Nandinine	1	139	1	(S)-scoulerine	1.00	1.14.19.73

Supplementary Table 3. Additional information for 15 candidate targets one reaction step away from the initial noscapine pathway.

BridgIT rank	BridgIT score	Predicted EC number	Corresponding enzyme
Laudanine			
1	1.00	2.1.1.291	CjColOMT
2	0.98	2.1.1.89	Ps7OMT
3	0.77	2.1.1.118	Ps7OMT
4	0.75	2.1.1.128	PsHNC4'OMT
5	0.74	2.1.1.121	Ps6OMT
Armepavine			
1	1.00	2.1.1.291	CjColOMT
2	0.98	2.1.1.89	Ps7OMT
3	0.78	2.1.1.118	Ps7OMT
4	0.77	2.1.1.128	PsHNC4'OMT
5	0.76	2.1.1.116	Ps6OMT
Nandinie			
1	1.00	1.14.21.5	AmCYP719A13
2	1.00	1.14.21.1	EcCYP719A3
3	1.00	1.14.21.12	EcCYP719A3
4	0.97	1.14.21.2	EcCYP719A3
5	0.76	1.14.21.11	ShCYP719A23

Supplementary Table 4. Top 5 BridgIT predictions for the biosynthesis reactions towards laudanine, armepavine, and nandinine.

Supplementary Table 5. Genes used in this work.	
---	--

Gene ID	Description	Source organism	Accession ID
AtCafOMT	Caffeoyl-coenzyme A O-methyltransferase	Arabidopsis thaliana	NM_001342249.1
CjColOMT	Columbamine O-methyltransferase	Coptis japonica	AB073908.1
LjFlaOMT	2,4',7'-trihydroxyisoflavanone O-methyltransferase	Lotus japonica	AK339587.1
SaPurOMT	O-demethylpuromycin O-methyltransferase	Streptomyces alboniger	M74560.2
PsBBE	Berberine bridge enzyme	Papaver somniferum	AF025430.1
PsS9OMT	Scoulerine 9-O-methyltransferase	Papaver somniferum	JN185323.1
Ps6OMT	Norcoclaurine 6-O-methyltransferase	Papaver somniferum	AY268894.1
PsCNMT	Coclaurine N-methyltransferase	Papaver somniferum	AY217336.1
Ps4'OMT	6-Methyl-(S)-laudanosoline 4'-O-methyltransferase	Papaver somniferum	MF038041.1
Cj4'OMT	6-Methyl-(S)-laudanosoline 4'-O-methyltransferase	Coptis japonica	D29812.1
Ec4'OMT	6-Methyl-(S)-laudanosoline 4'-O-methyltransferase	Eschscholzia californica	AB745041.1
Tf4'OMT	6-Methyl-(S)-laudanosoline 4'-O-methyltransferase	Thalictrum flavum	AY610510.1
CjN6OMT	Norcoclaurine 6-O-methyltransferase	Coptis japonica	D29811.1
Ps7OMT	(<i>R</i> , <i>S</i>)-reticuline 7- <i>O</i> -methyltransferase	Papaver somniferum	AY268893.1
PsHNC4'OMT	3'-Hydroxy-N-methylcoclaurine 4'-O-methyltransferase	Papaver somniferum	AY217333.1
AmCYP719A13	Stylopine synthase	Argemone mexicana	EF451151.1
EcCYP719A3	Stylopine synthase	Eschscholzia californica	AB126256.1
NnSCNS	Stylopine/canadine/nandinine synthase	Nelumbo nucifera	XM_010268782.1
PsCYP719A21	Canadine synthase	Papaver somniferum	JQ659003.1
ShCYP719A23	Pluviatolide synthase	Sinopodophyllum hexandrum	KC110997.1

Strain ID	Description	Genotype
CSY1314	De novo (S)-tetrahydrocolumbamine (THCB) strain	CSY1171 ¹ ; <i>trp1</i> :: PPGK1-PsBBE-TPHO5, PTEF1-yPsS9OMT-TCYC1
CSY1315	De novo THCB strain with eCj4'OMT	CSY1314; <i>Ps4'OMT</i> :: $eCj4'OMT^{\ddagger}$; $\Delta yPs4'OMT^{\ast}$
CSY1316	De novo THCB strain with yCj4'OMT	CSY1314; <i>Ps4'OMT</i> :: $yCj4'OMT$; $\Delta yPs4'OMT^*$
CSY1317	De novo THCB strain with eEc4'OMT	CSY1314; <i>Ps4'OMT</i> \therefore <i>eEc4'OMT</i> [‡] ; \triangle <i>yPs4'OMT</i> *
CSY1318	De novo THCB strain with yEc4 'OMT	CSY1314; <i>Ps4'OMT</i> :: $yEc4'OMT$; $\Delta yPs4'OMT^*$
CSY1319	De novo THCB strain with Tf4'OMT	CSY1314; <i>Ps4'OMT</i> :: <i>Tf4'OMT</i> ; Δ <i>yPs4'OMT</i> *
CSY1320	De novo scoulerine strain	$CSY1171^1$; $trp1$:: P_{PGK1} - $PsBBE$ - T_{PHO5}
CSY1322	De novo N-methylcoclaurine strain	$CSY1171^1$; $\triangle PsCYP80B1$; $\triangle PsCPR$; $\triangle Ps4'OMT^*$

Supplementary Table 6. Yeast strains used in this work.

*CSY1171 contains two different isoforms of the *Ps4'OMT* gene – one that is wild-type, called here *Ps4'OMT*, and one that is codon-optimized for the yeast *S. cerevisiae*, called here *yPs4'OMT* * The prefix "e" here denotes that the gene is codon-optimized for expression in *E. coli*

Compound	Quantifier MRM transition (m/z ⁺)	Fragmentor voltage	Collision energy	Reference
(S)-tetrahydropalmatine	$356.2 \rightarrow 192$	170	29	This work
(S)-tetrahydrocolumbamine	$342 \rightarrow 178$	135	29	2
(S)-reticuline	$330 \rightarrow 192$	120	19	2
(S)-scoulerine	$328 \rightarrow 151$	135	30	2
(S)-N-methylcoclaurine	$300 \rightarrow 107$	100	37	5
(S)-armepavine	$314 \rightarrow 107$	100	35	6
(S)-laudanine	$344 \rightarrow 137$	120	35	7
(S)-nandinine	$326 \rightarrow 176$	135	30	8

Supplementary Table 7. LC-MS/MS multiple reaction monitoring (MRM) transitions and parameters used in this work.

Compound	Qualifier MRM transition (m/z ⁺)	Fragmentor voltage	Collision energy	Reference
(S)-tetrahydropalmatine	$356.2 \rightarrow 176$	170	61	This work
(S)-tetrahydrocolumbamine	$342 \rightarrow 163$	135	29	2
(S)-reticuline	$330 \rightarrow 137$	120	31	2
(S)-scoulerine	$328 \rightarrow 178$	135	29	2
(S)-N-methylcoclaurine	$300 \rightarrow 175$	100	25	9
(S)-laudanine	$344 \rightarrow 189$	120	35	7
(S)-nandinine	$326 \rightarrow 149$	135	30	This work

Figure	Test	<i>p</i> -value
3b	PsS9OMT only vs. +CjColOMT	0.0148
3c 3c	Without CjColOMT vs with CjColOMT for eCj4'OMT Without CjColOMT vs with CjColOMT for yCj4'OMT	$\begin{array}{c} 1.92 \times 10^{-4} \\ 3.52 \times 10^{-5} \end{array}$
3c	Without CjColOMT vs with CjColOMT for eEc4'OMT	$4.91 imes 10^{-4}$
3c	Without CjColOMT vs with CjColOMT for yEc4'OMT	2.46×10^{-3}
3c	Without CjColOMT vs with CjColOMT for Tf4'OMT	2.49×10^{-3}
4b	Empty vector vs. yCjColOMT	2.45×10^{-3}
4b	Empty vector vs. yCjN6OMT	0.0362
4c	Empty vector vs. yCjColOMT	4.35×10^{-3}
4c	Empty vector vs. yPsHNC4'OMT	8.95×10^{-3}
4d	Empty vector vs. yEcCYP719A3	3.86×10^{-3}
4d	Empty vector vs. yPsCYP719A21	0.0467

Supplementary Table 8 Exact *p*-values from Student's two-tailed t-tests in Figures 3 & 4.

Supplementary Figure 1. Distribution of the total number of annotations (patents + citations). Compounds were ranked from highest number of annotations to lowest, and the number of annotations was plotted on a log scale. The corresponding data for this figure can be found in Supplementary Data 3.

Supplementary Figure 2. LC-MS/MS traces of *in vitro* reaction of CjColOMT on (*S*)-scoulerine. The MRM transitions used for each compound are those described in Supplementary Table 7. The identities of (*S*)-scoulerine, (*S*)-tetrahydrocolumbamine, and (*S*)-tetrahydropalmatine were confirmed by coelution with authentic standards – an authentic standard for (*S*)-tetrahydropalmatrubine was not available, but its fragmentation pattern is consistent with that previously reported for (*S*)-tetrahydropalmatrubine¹.

Supplementary Reference

- 1. Valentic, T. R., Payne, J. T. & Smolke, C. D. Structure-guided engineering of a scoulerine 9-*O*-methyltransferase enables the biosynthesis of tetrahydropalmatrubine and tetrahydropalmatine in yeast. *ACS Catal.* **10**, **8**, 4497–4509 (2020).
- 2. Galanie, S. & Smolke, C. D. Optimization of yeast-based production of medicinal protoberberine alkaloids. *Microb. Cell Fact.* **14**, 144 (2015).
- 3. Ryan, O. W. et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife 3, 1–15 (2014).
- 4. Srinivasan, P. & Smolke, C. D. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. *Nat. Commun.* **10**, (2019).
- 5. Kotake, Y. *et al.* Detection and determination of reticuline and N-methylcoculaurine in the Annonaceae family using liquid chromatography-tandem mass spectrometry. *Journal of Chromatography B* **806**, 75–78 (2004).
- 6. Zou, S. *et al.* Simultaneous determination of five alkaloids by HPLC-MS/MS combined with micro-SPE in rat plasma and its application to pharmacokinetics after oral administration of lotus leaf extract. *Front. Pharmacol.* **10**, 1252 (2019).
- 7. Desgagné-Penix, I. & Facchini, P. J. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. *Plant J.* **72**, 331–344 (2012).
- 8. Díaz Chávez, M. L., Rolf, M., Gesell, A. & Kutchan, T. M. Characterization of two methylenedioxy bridge-forming cytochrome P450dependent enzymes of alkaloid formation in the Mexican prickly poppy *Argemone mexicana*. *Arch. Biochem. Biophys.* **507**, 186–193 (2011).
- 9. Farrow, S. C., Hagel, J. M. & Facchini, P. J. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. *Phytochemistry* **77**, 79–88 (2012).