A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives

Hafner and Payne *et al.*

Supplementary Table 1. Overview on network statistics.

Supplementary Table 2. Presence of known biosynthetic BIA pathways in the generated reaction network.

^aClosest noscapine pathway intermediate; ^bLength of shortest pathway from precursor to compound; ^cDistance from precursor in source database

				Number of		Best BridgIT	
Rank	Name	Iteration	Identifier	pathways	Precursor	score	Predicted enzyme
3	Berberine		79	$\overline{2}$	(S) -canadine	1.00	1.3.3.8
6	Tetrahydropalmatine		171	$\mathbf{2}$	Tetrahydrocolumbamine	1.00	2.1.1.89
13	Columbamine		83		Tetrahydrocolumbamine	0.99	1.3.3.8
15	Salutaridine	$\mathbf{1}$	155	$\mathbf{1}$	(S) -reticuline	1.00	1.14.19.67
16	Norlaudanosoline	$\mathbf{1}$	113	3	(S) -norcoclaurine	0.99	1.14.14.102
17	Stepholidine	$\mathbf{1}$	150		Tetrahydrocolumbamine	0.78	1.14.13.31
18	Allocryptopine		100	$\overline{2}$	(S) -cis-N-methylcanadine	0.32	1.14.13.239
24	Laudanine		169	3	(S) -reticuline	1.00	2.1.1.291
31	Codamine		98	$\overline{2}$	(S) -reticuline	0.79	2.1.1.121
33	Norreticuline		89	3	(S) -reticuline	0.09	1.5.3.10
37	Corytuberine		154		(S) -reticuline	0.56	1.14.19.67
39	Lambertine	$\mathbf{1}$	75	6	(S) -canadine	0.45	1.3.1.29
43	Armepavine		167	$\overline{2}$	$(S)-N$ -methylcoclaurine	1.00	2.1.1.291
43	1,2-Dehydroreticuline		93		(S) -reticuline	1.00	1.5.1.27
46	Nandinine		139		(S) -scoulerine	1.00	1.14.19.73

Supplementary Table 3. Additional information for 15 candidate targets one reaction step away from the initial noscapine pathway.

BridgIT rank	BridgIT score	Predicted EC number	Corresponding enzyme			
Laudanine						
1	1.00	2.1.1.291	CjColOMT			
2	0.98	2.1.1.89	Ps7OMT			
3	0.77	2.1.1.118	Ps7OMT			
4	0.75	2.1.1.128	PsHNC4'OMT			
5	0.74	2.1.1.121	Ps6OMT			
Armepavine						
1	1.00	2.1.1.291	CjColOMT			
2	0.98	2.1.1.89	Ps7OMT			
3	0.78	2.1.1.118	Ps7OMT			
4	0.77	2.1.1.128	PsHNC4'OMT			
5	0.76	2.1.1.116	Ps6OMT			
Nandinie						
	1.00	1.14.21.5	AmCYP719A13			
2	1.00	1.14.21.1	EcCYP719A3			
3	1.00	1.14.21.12	EcCYP719A3			
4	0.97	1.14.21.2	EcCYP719A3			
5	0.76	1.14.21.11	ShCYP719A23			

Supplementary Table 4. Top 5 BridgIT predictions for the biosynthesis reactions towards laudanine, armepavine, and nandinine.

Supplementary Table 6. Yeast strains used in this work.

*CSY1171 contains two different isoforms of the *Ps4'OMT* gene – one that is wild-type, called here *Ps4'OMT*, and one that is codon-optimized for the yeast *S. cerevisiae*, called here *yPs4'OMT*

‡ The prefix "e" here denotes that the gene is codon-optimized for expression in *E. coli*

Compound	Quantifier MRM transition $(m/z+)$	Fragmentor voltage	Collision energy	Reference
(S) -tetrahydropalmatine	$356.2 \rightarrow 192$	170	29	This work
(S) -tetrahydrocolumbamine	$342 \rightarrow 178$	135	29	$\overline{2}$
(S) -reticuline	$330 \rightarrow 192$	120	19	$\overline{2}$
(S) -scoulerine	$328 \rightarrow 151$	135	30	2
$(S)-N$ -methylcoclaurine	$300 \rightarrow 107$	100	37	5
(S) -armepavine	$314 \rightarrow 107$	100	35	6
(S) -laudanine	$344 \rightarrow 137$	120	35	
(S) -nandinine	$326 \rightarrow 176$	135	30	8

Supplementary Table 7. LC-MS/MS multiple reaction monitoring (MRM) transitions and parameters used in this work.

Supplementary Table 8 Exact *p***-values from Student's two-tailed t-tests in Figures 3 & 4.**

Supplementary Figure 1. Distribution of the total number of annotations (patents + citations). Compounds were ranked from highest number of annotations to lowest, and the number of annotations was plotted on a log scale. The corresponding data for this figure can be found in Supplementary Data 3.

Supplementary Figure 2. LC-MS/MS traces of *in vitro* **reaction of CjColOMT on (***S***)-scoulerine**. The MRM transitions used for each compound are those described in Supplementary Table 7. The identities of (*S*)-scoulerine, (*S*)-tetrahydrocolumbamine, and (*S*) tetrahydropalmatine were confirmed by coelution with authentic standards – an authentic standard for (*S*)-tetrahydropalmatrubine was not available, but its fragmentation pattern is consistent with that previously reported for (S)-tetrahydropalmatrubine¹.

Supplementary Reference

- 1. Valentic, T. R., Payne, J. T. & Smolke, C. D. Structure-guided engineering of a scoulerine 9-*O*-methyltransferase enables the biosynthesis of tetrahydropalmatrubine and tetrahydropalmatine in yeast. *ACS Catal.* **10, 8,** 4497–4509 (2020).
- 2. Galanie, S. & Smolke, C. D. Optimization of yeast-based production of medicinal protoberberine alkaloids. *Microb. Cell Fact.* **14**, 144 (2015).
- 3. Ryan, O. W. *et al.* Selection of chromosomal DNA libraries using a multiplex CRISPR system. *Elife* **3**, 1–15 (2014).
- 4. Srinivasan, P. & Smolke, C. D. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. *Nat. Commun.* **10**, (2019).
- 5. Kotake, Y. *et al.* Detection and determination of reticuline and N-methylcoculaurine in the Annonaceae family using liquid chromatography-tandem mass spectrometry. *Journal of Chromatography B* **806**, 75–78 (2004).
- 6. Zou, S. *et al.* Simultaneous determination of five alkaloids by HPLC-MS/MS combined with micro-SPE in rat plasma and its application to pharmacokinetics after oral administration of lotus leaf extract. *Front. Pharmacol.* **10**, 1252 (2019).
- 7. Desgagné-Penix, I. & Facchini, P. J. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. *Plant J.* **72**, 331–344 (2012).
- 8. Díaz Chávez, M. L., Rolf, M., Gesell, A. & Kutchan, T. M. Characterization of two methylenedioxy bridge-forming cytochrome P450 dependent enzymes of alkaloid formation in the Mexican prickly poppy *Argemone mexicana*. *Arch. Biochem. Biophys.* **507**, 186–193 (2011).
- 9. Farrow, S. C., Hagel, J. M. & Facchini, P. J. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. *Phytochemistry* **77**, 79–88 (2012).