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SUMMARY
DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett
syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucle-
otide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological signif-
icance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous
domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein
displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interac-
tion of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the
delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader
MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other
neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.
INTRODUCTION

Heterozygous loss-of-function mutations in the X-linkedMECP2

gene result in Rett syndrome (RTT), a neurological disorder

affecting �1 in 10,000 live female births (Amir et al., 1999).

MeCP2 protein was initially identified by its ability to bind meth-

ylated CG dinucleotides and shown to repress transcription via

the recruitment of histone deacetylase complexes (Lewis et al.,

1992; Nan et al., 1997, 1998). Recent evidence indicates that

MeCP2 negatively regulates the expression of hundreds of

genes via the recruitment of the HDAC3-containing NCOR1/2

co-repressor complexes (Cholewa-Waclaw et al., 2019; Gabel

et al., 2015; Lagger et al., 2017; Lyst et al., 2013). In the absence

of functional MeCP2, indirect mechanisms also lead to the

downregulation of many genes, perhaps connected with a global

reduction in total RNA levels (Kinde et al., 2016; Lagger et al.,

2017; Li et al., 2013; Yazdani et al., 2012). Thismultitude of subtle

changes to neuronal gene expression is thought to underlie RTT.

In addition to canonical mCG dinucleotides in duplex DNA,

MeCP2 targets 5-methylcytosine in a non-CG context (or

mCH, where H = A, C, or T). This study focuses on the biological

significance of this dual DNA-binding specificity. During early
1260 Molecular Cell 81, 1260–1275, March 18, 2021 ª 2021 The Auth
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mammalian embryogenesis, the methylation of CG dinucleo-

tides is at first depleted, then re-established, reaching high levels

in the bulk genome while absent at unmethylated CpG islands

(Bird et al., 1985; Deaton and Bird, 2011). De novo CG methyl-

ation is laid down by the DNA methyltransferases DNMT3A

and DNMT3B and is maintained through cell division by the ac-

tion of DNMT1 at hemi-methylated sites (Reik, 2007). Unlike

plants, which have specific DNA methyltransferases that target

CHG and CHH sites (Wendte and Schmitz, 2018), mCH in mam-

mals relies on ‘‘off-target’’ activity by DNMT3A and DNMT3B

(Gabel et al., 2015; Guo et al., 2014; Lister et al., 2013; Ramsa-

hoye et al., 2000; Stroud et al., 2017). There appears to be no

mechanism to maintain asymmetrical CH methylation, which

means that CH methylation is lost in replicating cells (He and

Ecker, 2015). Post-mitotic neurons are unique among mamma-

lian somatic cell types in that they accumulate high levels of

CH methylation, most prevalently in CAC trinucleotides (Guo

et al., 2014; Varley et al., 2013; Xie et al., 2012). This modification

arises postnatally due to high levels of DNMT3A, which persist

throughout adulthood (Feng et al., 2005; Stroud et al., 2017).

The discovery that MeCP2 targets mCAC sites preferentially

over all other forms of mCH (Gabel et al., 2015; Lagger et al.,
ors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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2017; Liu et al., 2018; Sperlazza et al., 2017) raised the possibility

that this DNA-binding specificity contributes to neuronal func-

tion. Non-CG methylation almost doubles the number of avail-

able MeCP2 binding sites in neurons (Lagger et al., 2017; Lister

et al., 2013; Mo et al., 2015), and the timing of increased CAC

methylation coincides with the increase in neuronal MeCP2 pro-

tein levels during the first few weeks of life (Guo et al., 2014;

Lister et al., 2013; Skene et al., 2010; Stroud et al., 2017).

It is difficult to disentangle the influence of mCG versus

mCAC on the regulation of gene expression by MeCP2, as

these marks are interspersed with one another (Guo et al.,

2014; Lavery et al., 2020). In the present study, we have as-

sessed their relative importance using molecular genetic ap-

proaches to separate the effects of mCG and mCAC on

MeCP2 function. We directly visualized footprints of MeCP2

bound to mCG and mCAC in native brain chromatin, as well

as a subtle footprint over the rarer motif, mCAT (Lagger et al.,

2017). To determine the biological importance of the ability of

MeCP2 to bind mCAC sites, we took advantage of the fact

that the conserved methyl-CpG binding domain (MBD) of the

related protein, MBD2, confers binding to mCG sites only.

This allowed us to create a chimeric MeCP2-MBD2 (MM2)

protein by domain swapping. Despite the retention of mCG

binding, knockin mice expressing MM2 developed severe

phenotypic features that largely mirrored those seen in mouse

models of RTT. We conclude that binding to mCG alone is

insufficient for MeCP2 to fulfill its role in the maintenance of

neurological function. At a molecular level, the inability to bind

mCAC leads to global transcriptional changes in MM2 mice,

with one-third of dysregulated genes also altered in Mecp2

null mice. Intriguingly, this shared subset is mostly upregulated,

highly methylated, and enriched for genes associated with

neurological disease, highlighting potentially important contrib-

utors to the RTT-like phenotype.

RESULTS

MeCP2 footprints in native brain chromatin
MeCP2 binding tomCG andmCAC sites has been characterized

in vitro using multiple techniques, and the co-crystal structures

of both of these interactions have been solved (Ho et al., 2008;

Lagger et al., 2017; Lei et al., 2019; Lewis et al., 1992; Mellén

et al., 2012; Sperlazza et al., 2017). A third potential MeCP2 bind-

ing motif, mCAT, has been proposed, although this interaction

appears to be weaker and is barely detectable in some assays

(Lagger et al., 2017; Liu et al., 2018).We used BLI (bio-layer inter-

ferometry) to quantify the interactions between the MBD of

MeCP2 and DNA probes containing each of three methylated
Figure 1. MeCP2 binds mCG and mCAC, and to a lesser extent, mCAT

(A) Bio-layer interferometry (BLI) analysis of the interaction between the MBD of M

site. KD values: mCG 22.25 ± 3.12 nM; mCAC 13.90 ± 0.64 nM; mCAT 63.71 ±

significant [NS] p = 0.06); binding to mCAT is significantly weaker than mCG and

(B) Western blot analysis of MeCP2 following pull-down from rat brain nuclear e

CAC, and CAT (top) and unbound MeCP2 in the supernatant (bottom).

(C) Whole-genome bisulfite sequencing analysis in the mouse hypothalamus (Lagg

(top) and each CAN trinucleotide (bottom). Sites were binned by level of methyla

(D–F) ATAC-seq footprinting analysis of MeCP2 over methylated (top) and unmeth
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motifs (Figure 1A). MeCP2 binds to both mCG and mCAC, with

dissociation constants (KD) of 22.25 ± 3.12 and 13.90 ±

0.64 nM, respectively. In contrast, binding to mCAT is �3- to

5-fold weaker, with a KD of 63.17 ± 6.94 nM. Previously, full-

length MeCP2 was shown to bind readily to all three sequences

when co-overexpressed with methylated oligonucleotides in

HEK293 cells (Lagger et al., 2017). To assess this further, we

used beads coated with double-stranded oligonucleotides to

pull down endogenous MeCP2 from rat brain lysates. Like

mCG and mCAC (Connelly et al., 2020), mCAT-containing DNA

efficiently enriched MeCP2 protein in a DNAmethylation-depen-

dent manner (Figure 1B). Defining MeCP2 binding sites in native

brain chromatin has proven more challenging due to the high

abundance of both MeCP2 protein and its short target se-

quences. Also, the proportion of methylation at individual mCH

motifs is, on average, low, in contrast to CGs that are each highly

methylated in the bulk genome (Figure 1C). Chromatin immuno-

precipitation sequencing (ChIP-seq) analysis gives a relatively

featureless signal across the genome, except for a sharp drop

at non-methylated CpG islands (Chen et al., 2015; Kinde et al.,

2016; Lagger et al., 2017; Skene et al., 2010). Nevertheless,

peak-calling algorithms detect enrichment in vivo of mCG and

mCAC (but not mCAT), coincident with the summits of MeCP2

binding (Cholewa-Waclaw et al., 2019; Gabel et al., 2015; Lagger

et al., 2017). To test the specificity of genomic binding more

robustly, we adopted the assay for transposase-accessible

chromatin using sequencing (ATAC-seq) to reveal MeCP2-spe-

cific footprints (Figure S1A). By dividing the ATAC-seq signal

from wild-type (WT) samples by the equivalent signal from

Mecp2 null (knockout [KO]) samples, the method has revealed

protected genomic regions attributable to MeCP2 at mCG in

cultured human neurons (Cholewa-Waclaw et al., 2019). Here,

we detect a MeCP2 binding footprint over methylated CG dinu-

cleotides in mouse hypothalamus (Figure 1D). To visualize a

MeCP2 binding footprint at mCAC sites with this method, we

focused on the subset of sites with >75% methylation (Figures

1E and S1B). The greater prominence of the mCAC footprint

compared to the mCG footprint in the hypothalamus does not

signify stronger binding to the trinucleotide motif, due to several

unquantifiable factors, including site selection criteria and

sequence context (e.g., methylated tandem CAC repeats). Foot-

prints were not initially detectable atmCAT, but by lowering strin-

gency to exclude sites <50% methylated (Figure S1B), a subtle

footprint at mCAT was observed, but not at other mC-containing

motifs (Figures 1F and S1C–S1F). No footprints were detected at

unmethylated cytosine in any sequence context (Figures 1D–1F

and S1C–S1F). We conclude that the main binding sites for

MeCP2 are mCG and mCAC. While binding to mCAT moieties
eCP2 and methylated DNA probes containing a single mCG, mCAC, or mCAT

6.94 nM (means ± SEMs). Binding affinity to mCG and mCAC is similar (not

mCAC (**p = 0.006 and **p = 0.002, respectively), t tests.

xtracts using immobilized DNA containing unmethylated and methylated CG,

er et al., 2017) showing the distribution of methylation at each CN dinucleotide

tion.

ylated (bottom) CG (D), CAC (E), and CAT (F) sites in the mouse hypothalamus.
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is detectable, it is likely to be of less biological significance due to

its reduced affinity and lower abundance.

A chimeric MeCP2 that selectively binds mCG
To determine the biological importance of the dual-binding

specificity of MeCP2, we sought to modify MeCP2 so that it

bound to only one of these motifs. A DNA binding domain that

exclusively binds mCAC is unavailable, but domains that only

bindmCG are present in other members of theMBD protein fam-

ily. In particular, the evolutionarily most ancient member of the

MBD family, MBD2 (Hendrich and Bird, 1998; Tweedie et al.,

1999), is reported to only bind to mCG (Guo et al., 2014; Liu

et al., 2018). We substituted the MeCP2 MBD (residues 94–

164) with the equivalent domain from MBD2 (residues 153–

217) to create a chimeric ‘‘MM2’’ protein (Figures 2A and 2B). Af-

ter confirming by electrophoretic mobility shift assay (EMSA)

analysis that the MBD of MBD2 readily binds to mCG only (Fig-

ure 2C), we performed a similar analysis using N-terminal frag-

ments of MM2 and WT MeCP2. As anticipated, MM2 adopted

the binding specificity of MBD2, displaying affinity for a DNA

probe containing mCG but no affinity for the mCAC probe

(Figure 2D).

To test the ability of the chimeric protein to bind mCG sites

in vivo, we transiently overexpressed the EGFP-tagged MM2 in

culturedmouse fibroblasts, in whichmCG is highly concentrated

in heterochromatic foci (Nan et al., 1996). MM2-EGFP colocal-

ized efficiently with pericentromeric heterochromatin in amanner

indistinguishable from WT-EGFP (Figure 2E). To confirm that

mCG binding is mediated by the introduced MBD, we showed

that mutation of the essential arginine equivalent to R111 of

MeCP2 (see Figure 2A) to glycine (Kudo et al., 2003) disrupts

the localization of MeCP2 (Figure 2E). To assess the binding dy-

namics between MM2-EGFP and heterochromatin, we per-

formed transient transfection followed by fluorescence recovery

after photobleaching (FRAP). WT-EGFP binding recovered with

a half-life of 34.7 ± 2.3 s (Figure 2F), consistent with previous

studies (Ghosh et al., 2010; Klose et al., 2005; Ludwig et al.,

2017). The half-life of MM2-EGFP was 20.5 ± 2.9 s, indicating

that the chimeric protein exchanges slightly faster (p < 0.0001,

Mann-Whitney test). This may reflect a somewhat reduced bind-

ing affinity for mCG, as also suggested by the lower fraction of
Figure 2. Chimeric protein MM2 has the DNA binding properties of MB

(A) Alignment of human (h) andmouse (m)MeCP2, MBD2,MBD1, andMBD4, shad

missense mutations within the MBD (red, above); conserved arginine at position

MM2 (shaded in orange).

(B) Schematic showing the design of the chimeric protein MM2, where the MBD o

replace the endogenous MBD (residues 94–164). MM2 was tagged at the C term

(C) EMSA analysis of the MBD of human MBD2 (2 mM) binding to DNA probes c

fication is shown below (means ± SEMs).

(D) EMSA analysis of N-terminal fragments (residues 1–205) of wild-type (WT) MeC

concentrations 0–4.5 mM). Quantification is shown below (means ± SEMs). Bindin

0.613; mCG WT versus MM2, ****p < 0.0001.

(E) Representative images showing localization of EGFP-tagged MeCP2 (WT) a

expression in mouse fibroblasts. Mutation of the MBD (R111G and the equivale

bar, 10 mm.

(F) FRAP analysis at heterochromatic foci. Total numbers of cells analyzed: WT-E

fluorescence relative to prebleach, means ± SEMs. Half-lives: WT-EGFP = 34.

compared using a Mann-Whitney test: ****p < 0.0001.
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probe bound in the EMSA assay (Figure 2D). Notably, this differ-

ence is much less severe than that of RTT-causing mutations

within the MBD domain (Ballestar et al., 2000; Schmiedeberg

et al., 2009).

The key function of MeCP2 is to form a bridge between meth-

ylated DNA and the NCOR1/2 co-repressor complexes depen-

dent on the MBD and NID (NCOR1/2 interaction domain),

respectively (Guy et al., 2018; Kruusvee et al., 2017; Lyst et al.,

2013; Tillotson et al., 2017). MM2 retains the NID (residues

298–309) and, as expected, was able to pull down NCOR1/2

complex subunits HDAC3 and NCOR1 when transiently overex-

pressed in HeLa cells (Figure S2A). Likewise, MM2 retains the

ability to recruit TBL1X (its direct binding partner in the

NCOR1/2 complexes) to mCG-rich heterochromatic foci when

co-expressed in cultured fibroblasts (Figure S2B). The NID-abol-

ishing RTT mutation R306C served as a negative control in both

of these assays (Lyst et al., 2013). Overall, the behavior ofMM2 in

all in vitro and cell culture-based assays supports the notion that

this chimeric protein retains the essential properties of MeCP2,

with the major exception that its DNA binding is restricted to

mCG sites.

MM2 selectively binds mCG in vivo in knockin mice
To determine the function of MM2 in vivo, we produced knockin

mice by replacing the endogenous Mecp2 allele with DNA

sequence encoding MM2 fused to a C-terminal EGFP tag (Fig-

ure S3). MM2-EGFP levels in whole brain are slightly higher

than WT-EGFP and untagged WT protein by both western blot-

ting and flow cytometry (�116% of WT-EGFP; Figures 3A and

S4A). To determine the binding specificity of MM2-EGFP in vivo,

we used ATAC-seq footprinting of hypothalamus (see Figures

1D–1F) by dividing the ATAC-seq profiles for MM2-EGFP by

the equivalent Mecp2 null (KO) data. A footprint was detected

at mCG sites but not at mCAC or mCAT sites (Figures 3B–3D).

There was also no MM2-EGFP binding at methylated motifs

that MeCP2 cannot recognize (mCAG, mCT, or mCC) or at un-

methylated motifs (Figures 3B–3D and S4B–S4F). Therefore,

the binding specificity of the chimeric protein is restricted to

mCG sites in vivo, consistent with the in vitro data (Figure 2D).

Compared to WT protein, MM2-EGFP had a lower affinity for

mCG in EMSA and FRAP (Figures 2D and 2F), yet the similar
D2 in the context of MeCP2

ed by percentage identity, with conservation below. Annotations: RTT-causing

111 in MeCP2 (boxed in red); sequences from mMeCP2 and mMBD2 used in

f MBD2 (residues 153–217) was inserted into the MeCP2 protein sequence to

inus with EGFP.

ontaining a single unmethylated or methylated CG, CAC, or CAT site. Quanti-

P2 andMM2 using DNA probes containing a single mCG ormCAC site (protein

g affinity was compared using 2-way ANOVA: WT mCG versus mCAC, NS p =

nd MM2 proteins to mCG-rich heterochromatic foci following transient over-

nt mutation in MM2) abolished binding, resulting in diffuse localization. Scale

GFP, n = 27; MM2-EGFP, n = 28 (3 independent transfections). Graph shows

66 ± 2.32 s; MM2-EGFP = 20.46 ± 2.88 s (means ± SEMs). Half-lives were
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appearance of ATAC-seq footprints (Figures 1D and 3B) sug-

gested similar occupancy of these sites in vivo. To address this

further, we normalized the MM2-EGFP ATAC-seq profile to WT

instead of KO profiles. As expected, if occupancy is approxi-

mately equivalent, this almost canceled out the signals, leaving

a barely discernible footprint at mCG. The weak residual MM2-

EGFP/WT footprint implies that MM2-EGFP is slightly more en-

riched than WT at mCG motifs, perhaps due to the availability

of extra MM2-EGFP molecules that would otherwise be seques-

tered at mCAC sites. Efficient binding of MM2-EGFP to mCG

in vivowas further evidenced by its colocalization to heterochro-

matic foci in the brains of the knockin mice (Figure 3F). This did

not appear to affect the structure of heterochromatin as the num-

ber and size of DAPI foci was unchanged (Figure S4F). In addition

to its DNA binding properties, we used IP to confirm that MM2-

EGFP retains the ability to bind members of the NCOR1/2 co-

repressor complex in brain tissue (Figure S4G). These results

show that the MBD domain swap has uncoupled the DNA bind-

ing specificities of MeCP2, abolishing its interaction with sites of

non-CG methylation in the brain.

MM2 knockin mice display an RTT-like phenotype
To determine the phenotypic consequences of the domain

swap, we assessed weekly a cohort of hemizygous male

MM2-EGFP mice and WT littermate controls (n = 10 per geno-

type) for overt symptoms associated with mouse models of

RTT: hypoactivity, abnormal gait, hind-limb clasping, tremor,

irregular breathing, and deterioration of general condition (Guy

et al., 2007). Like mice with RTT-causing mutations, MM2-

EGFP mice were born healthy and the onset of symptoms

occurred shortly after weaning (Figure 4A). The phenotypes

became progressively more severe until animals reached their

humane endpoint, with a median survival of 29.5 weeks (Fig-

ure 4B). MM2-EGFP mice weighed less than WT littermates

throughout their lifetime (Figure 4C), consistent with RTT models

on a C57BL/6J background (Brown et al., 2016; Guy et al., 2001).

In addition, acute loss of body weight, which accompanies se-

vere disease in RTT models, was correlated with morbidity in

theMM2-EGFP mice. Mouse models of RTT vary in severity de-

pending on MeCP2 mutation, mirroring trends observed in hu-

man patients (Brown et al., 2016; Cuddapah et al., 2014).

MM2-EGFP mice lie in the middle of the RTT severity spectrum,

closely following the progression seen in R306C-EGFP mutant

mice (Figures 4D–4F). More detailed analysis of the six overt

symptoms that were scored weekly revealed that with the

exception of tremors, MM2-EGFP mice recapitulated the RTT

phenotypic signature (Figure 4G). This was most obvious when
Figure 3. MM2 binds mCG but not mCAC or mCAT in vivo

(A) Flow cytometry analysis of protein levels in nuclei fromwhole brain (All) and the

detected using EGFP fluorescence. Graph shows means ± SEMs, and genotype

EGFP, *p = 0.030; Neurons: 116% ± 0.01% of WT-EGFP, *p = 0.018; au, arbitra

(B–D) ATAC-seq footprinting analysis of MM2-EGFP over methylated (top) and u

thalamus. Equivalent WT ATAC-seq footprinting is shown in Figures 1D–1F.

(E) Direct comparison of ATAC-seq profiles over mCG sites between MM2-EGFP

(F) WT-EGFP and MM2-EGFP are both localized at mCG-rich pericentromeric

dentate gyrus of the hippocampus). WT-EGFP and MM2-EGFP were visualized b

NeuN staining shows neuronal nuclei. Scale bar, 10 mm.
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phenotypic severity scores of MM2-EGFP, R306C-EGFP, and

R133C-EGFPmice were aligned to focus on the 5 weeks before

reaching their humane endpoint (Figure 4H).

A second cohort ofMM2-EGFPmale mice and WT littermates

(n = 10 per genotype) underwent a series of behavioral tests at

10–11 weeks of age. Like RTT models (Brown et al., 2016),

MM2-EGFP mice displayed decreased anxiety in the elevated

plus maze, spending significantly more time in the open arms

than WT littermate controls (Figure 5A). MM2 mice were slightly

hyperactive in the open field test (Figure 5B), which differs from

the reduced activity characteristic of RTT models. However,

both MM2-EGFP and RTT models displayed progressive loss

of spontaneous activity as phenotypes worsened (Figures 4G

and 4H).MM2-EGFPmice exhibited a trend toward reducedmo-

tor coordination in the hanging wire test (Figure 5C). Motor func-

tion was better assessed by the accelerating rotarod, in which

WT mice showed an increasing ability to stay on the rotarod

over the 3 days, but the MM2-EGFP mice had significantly

impaired performance compared to the controls on days 2 and

3 (Figure 5D). The poor performance of the MM2-EGFP mice is

due to exercise fatigue (Figure S5), in addition to lack of motor

learning. Motor deficits are observed in all mouse models of

RTT (Brown et al., 2016; Goffin et al., 2011; Tillotson and Bird,

2019). In summary, MM2-EGFP mice share most of the pheno-

typic features found in mice that are deficient in functional

MeCP2, including delayed symptom onset, hind limb clasping,

motor defects, decreased anxiety, and premature death.

MM2 represses transcription at mCG but not
mCAC sites
Global transcriptional changes caused by the deficiency of func-

tional MeCP2 are thought to underlie RTT (Chahrour et al., 2008;

Chen et al., 2015; Gabel et al., 2015; Kinde et al., 2016; Lagger et

al., 2017; Renthal et al., 2018). However, the relative contribution

of mCG andmCAC to MeCP2-dependent transcriptional regula-

tion is not known. To address this, we performed RNA-seq using

hypothalamus isolated from Mecp2 null (KO) and WT littermate

controls at 6 weeks of age, when KO mice are symptomatic

but have not reached their humane endpoint. For comparison,

we harvested tissue from MM2-EGFP mice and WT littermate

controls at 2 time points: 6 weeks (age matched with KO) and

12 weeks (when the phenotypes of the 2 mutants are approxi-

mately similar). As shown previously (Kinde et al., 2016), gene

expression changes in KO compared to WT controls are posi-

tively correlated with the total number of MeCP2 binding sites

(mCG + mCAC) in gene bodies (Figure 6A). Plotting these tran-

scriptional changes against each motif separately appears to
high-NeuN subpopulation (Neurons) inWT-EGFP (n = 3) andMM2-EGFP (n = 3),

s were compared by t tests. All: MM2-EGFP levels are 116% ± 0.03% of WT-

ry units.

nmethylated (bottom) CG (B), CAC (C), and CAT (D) sites in the mouse hypo-

and WT samples.

heterochromatin in the brains of knockin mice (representative images of the

y EGFP fluorescence, heterochromatic foci appear as DAPI bright spots, and
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Figure 4. MM2 knockin mice display overt RTT-like neurological defects

(A) Phenotypic severity scores of hemizygous male MM2-EGFP mice (n = 10) compared with their WT littermates (n = 10) over 1 year. Graph shows mean

scores ± SEMs.

(B) Kaplan-Meier plot of survival of the scoring cohort. TwoWT controls were culled due to injuries, aged 38 and 45weeks (censored). Genotypes were compared

using a Mantel-Cox test: ****p < 0.0001.

(C) Growth curve of the scoring cohort. Graph shows mean values ± SEMs. Genotypes were compared using mixed-effects analysis: ****p < 0.0001.

(D–F) Phenotypic severity score (D), survival (E), and growth curves (F) ofMM2-EGFPmice over 1 year compared toMecp2 null mice (n = 12/24/20) and models

carrying patient mutations: T158M-EGFP (n = 7/11/15), R306C-EGFP (n = 11), and R133C-EGFP (n = 10) (Brown et al., 2016).

(G and H) Heatmaps of the phenotypic scores ofMM2-EGFP, R306C-EGFP, and R133C-EGFPmice shown in (D), divided into the 6 categories. Plots are shaded

according to the mean score for each category. Scores were analyzed according to age (G) and for the 5 weeks before each mouse reaches its humane endpoint

(H). Weeks in which mice were not assessed are marked with an X.
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show the loss of bothmCG- andmCAC-dependent repression in

KOmice, as expected (Figures 6B and 6C), but the strong corre-

lation between the number of mCG and mCAC sites in genes

(Figure 6D; r = 0.90) means that this analysis with respect to

one motif will also be substantially influenced by the other motif.

This could account for the positive trends observed between

MM2-EGFP/WT transcriptional changes and both mCG and
mCAC abundance (Figures 6E–6G and S6A–S6C), despite the

predicted loss of only mCAC-dependent repression in MM2-

EGFP mice.

To distinguish the effects of the two motifs, we binned genes

according to the number of mCAC sites per transcription unit

to determine the effect of mCG (Figure S6D). In all of the bins

except the first and last, the low variation in mCAC level but
Molecular Cell 81, 1260–1275, March 18, 2021 1267
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Figure 5. MM2 knockin mice display behavioral defects associated

with the RTT-like phenotype

(A–D) Behavioral analysis of a separate cohort performed at 10–11 weeks of

age:MM2-EGFP (n = 10), compared with their WT littermates (n = 10). Graphs

show individual values andmedians, and statistical significance as follows: NS

p > 0.05, *p < 0.05, **p < 0.01.

(A) Time spent in the closed and open arms of the elevated plus maze. Ge-

notypes were compared using Kolmogorov-Smirnov (KS) tests: closed arms,

*p = 0.015; open arms, **p = 0.003.

(B) Distance traveled in open field test. Genotypes were compared using a t

test: *p = 0.022.

(C) Mean time taken for animals to bring a hind paw to the wire in the hanging

wire test in 3 trials (each up to 30 s). Genotypes were compared using a KS

test: p = 0.055.

(D) Mean latency to fall from the accelerating rotarod in 4 trials was calculated

for each of the 3 days of the experiment. Genotypes were compared using KS

tests: day 1, p = 0.401; day 2, *p = 0.015; and day 3, *p = 0.015. WT animals

displayed significant improvement over the 3 days (*p = 0.026); MM2-EGFP

animals did not change significantly (p = 0.314); analyzed with Friedman tests.
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high variation in mCG across the constituent genes enabled the

assessment of mCG-dependent repression. We therefore used

bins nos. 2–28 for this analysis. We similarly binned by mCG

number to assess mCAC-dependent repression (Figures S6D–

S6G). Methylation levels in each bin were plotted against log2-

fold changes in KO/WT or MM2-EGFP/WT to give a line whose

slope reflects the effect of mCG or mCAC on transcription (Fig-

ures 6H and 6I). Applying this first to KO mouse hypothalamus,

we observed the loss of mCG-dependent repression (slopes

above zero) compared to WT controls (Figure 6H; Table S1) in

bins with lower levels of methylation, exemplified by the bin
1268 Molecular Cell 81, 1260–1275, March 18, 2021
with an average of log10 1.32mCACmotifs (denoted by #). Genes

with higher mCAC levels showed no evidence of repression

(example bin denoted by x), indicating that mCG-dependent

repression is minimal where mCAC is relatively abundant. In

contrast, mCAC-dependent repression was restricted to bins

with higher mCG (Figure 6I; Table S2), as exemplified by the

bin with an average of log10 3.08 mCG motifs per gene (denoted

by z), whereas at lower mCG levels, mCAC-dependent repres-

sion was not apparent (example bin denoted by z). In line with

this interpretation, the proportion of all binding sites that are

mCG is higher in bins showing mCG-dependent repression (Fig-

ure 6J), while the proportion of mCAC binding sites is highest in

bins showing mCAC-dependent repression (Figure 6K).

Having separated the effects of mCG and mCAC in the com-

plete absence of MeCP2, we next performed this analysis on

transcriptional changes in MM2-EGFP mice compared to 6-

week-old WT controls. The profile of mCAC-dependent tran-

scriptional deregulation closely tracked that of KO/WT profiles

across mCG bins, consistent with the absence of mCAC-medi-

ated repression in both mutants (Figure 6I; Table S2). However,

the profile of mCG-dependent deregulation differed from that

seen in KO/WT. As expected, if mCG-dependent repression is

preserved in MM2-EGFP mice, the positive slope observed for

KO/WT in bins with lower levels of mCAC was lost in MM2-

EGFP/WT (slopes of �0), (Figure 6H, example bin #; Table S1).

We noted that in bins with higher mCAC methylation, transcrip-

tional changes were negatively correlated with the number of

mCG binding sites, suggesting somewhat increased mCG-

dependent repression of these genes in MM2-EGFP mice

compared to WT controls. As WT MeCP2 exerts little inhibitory

effect at mCG sites in these high-mCAC genes, this effect may

be due to the slight increase in MM2-EGFP abundance

compared to native protein (Figures 3A and S4A). Also, the

inability of MM2-EGFP to target mCAC may make it more avail-

able for mCG-mediated repression. This effect is not sufficient to

prevent the upregulation of the highly methylated genes, howev-

er, as the primary driver of their repression is normally mCAC,

which MM2-EGFP does not recognize. These results were repli-

cated in the hypothalamus tissue harvested at 12 weeks (Figures

S6H and S6I). In summary, the evidence demonstrates that

MM2-EGFP protein has specifically lost the ability to repress

the transcription at mCAC sites, disproportionally affecting

genes with higher levels of methylation. This implicates loss of

mCAC-dependent repression as the primary cause of the severe

RTT-like phenotypes that we observe in MM2-EGFP mice.

Shared dysregulated genes are implicated in disease
RTT may be caused by the aggregate effect of small transcrip-

tional changes at hundreds of genes. Alternatively, a few dysre-

gulated genes may be primarily responsible for the phenotypes,

the remainder being relatively neutral. Given the remarkable sim-

ilarity between the phenotypes of MM2-EGFP and RTT mice,

these genes are expected to be affected in both mutants. Signif-

icantly changed genes overlapped by approximately one-third in

both the age-matched and symptom-matched datasets (Fig-

ure 7A, purple shading). Importantly, for almost all of the 316

shared genes, the direction of transcriptional change was the

same in KO and MM2-EGFP mice (Figures 7B and S7A). To



(legend on next page)
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explore the possibility that the shared genes could lead us to

candidates whose altered expression contributes strongly to

the RTT phenotype, we performed Disease Ontology analysis

on each of the three groups: shared (purple), KO only (gray),

and MM2-EGFP only (orange). We found that the shared genes

were enriched in genes associated with four categories of neuro-

logical disease: ‘‘pervasive developmental disorder,’’ ‘‘autism

spectrum disorder,’’ ‘‘autistic disorder,’’ and ‘‘developmental

disorder of mental health’’ (Table S3). It is notable that the

same analysis on genes dysregulated only in KO mice or only

in MM2-EGFP mice gave no significant disease hits. There was

a strong overlap between the four neurological disease cate-

gories, with all 20 genes associated with developmental disorder

of mental health present in one or more of the other categories.

The candidate genes were similarly dysregulated in both mu-

tants in this study and an independent hypothalamus dataset

(Figure 7C) (Chen et al., 2015). Many of these genes were also

dysregulated in KO cortical tissue (Figure 7C) (Boxer et al.,

2019), suggesting consistency between different regions of the

RTT brain.

Differential gene expression could contribute to the disease

state regardless of the direction of change, but 15 of 20 candi-

date genes were upregulated in both mutants (Figure 7C), sug-

gesting that they are direct MeCP2 targets. Comparisons be-

tween all of the shared dysregulated genes and those affected

in KO orMM2-EGFP only or unaffected in either mutant showed

that shared genes had the highest number of methylated binding

sites (mCG + mCAC) (Figures 7D and S7B), highest mCAC:total

ratios (Figures 7E and S7C), and tended to be more highly upre-

gulated (Figures 7F and S7D). Interestingly, the 20 candidate

genes have exceptionally high levels of methylation, proportion

of mCAC sites, and transcriptional upregulation (Figures 7D–7F

and S7B–S7D). These genes represent strong candidates for

future investigation as their dysregulationmay contribute dispro-

portionately to the neurological features of RTT.

DISCUSSION

This study investigated the biological significance of the dual-

binding specificity of MeCP2. MBD functionality is essential for

the role of MeCP2 protein, but as RTT-causing missense muta-

tions in this domain disrupt bothmCGandmCACbinding (Brown

et al., 2016), the importance of its ability to target mCAC sites

was previously unknown. Our results show that mice dependent

on a derivative of MeCP2 (MM2) that can bind mCG but not

mCAC develop severe RTT-like symptoms. We note that MM2
Figure 6. MM2 represses transcription at mCG but not mCAC sites

(A–C and E–G) Correlations between the total number of MeCP2 binding sites p

scriptional changes in KO/WT (A–C) and MM2-EGFP/WT (E–G) hypothalamus tis

(D) Correlation between mCG and mCAC binding sites per gene in the hypothala

(E–G) Correlations between MeCP2 binding sites and transcriptional changes in

(H) Genes were binned by the number of mCAC binding sites to determine the e

example bins are shown (# bin 12, mean log10 mCAC = 1.32; and x bin 25, mean l

shown below. See Table S1.

(I) Genes were binned by the number of mCG binding sites to determine the effec

mCG = 2.12; and z bin 27, mean log10 mCAC = 3.08). The slopes (±95% confide

(J) The ratio of mCG/total binding sites per gene in each mCAC bin.

(K) The ratio of mCAC/total binding sites per gene in each mCG bin. Whiskers sh
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protein is slightly more abundant (1.16-fold) and has altered

mCG binding dynamics, compared to native MeCP2. However,

these differences are quite modest and are therefore likely to

have minimal phenotypic consequences. For comparison, 2-

fold overexpression ofWTMeCP2 results in neurological defects

that are considerably milder than RTT models (Collins et al.,

2004). Despite the reduced affinity for mCG in the in vitro and

cell-based assays (Figures 2D and 2F), MM2-EGFP occupies

mCG sites in the brain at least as highly as WT protein (Figures

3E and 3F). We therefore conclude that the ability of MeCP2 to

target mCAC is essential to avoid the neurological problems

associated with RTT and cannot be compensated for by binding

to mCG alone.

The deposition and interpretation of non-CG
methylation is essential for neurological function
Previous studies have investigated whether loss of the mCAC

writer DNMT3A has similar consequences to loss of the reader

MeCP2 (Gabel et al., 2015; Lavery et al., 2020; Stroud et al.,

2017). Although DNMT3A preferentially methylates CG over

CH (Ramsahoye et al., 2000), its expression in postnatal neu-

rons, particularly during the first 3 weeks of life (Feng et al.,

2005), mainly leads to mCH (predominantly mCAC) deposition,

as the majority of CG dinucleotides have already been methyl-

ated in early development (Lavery et al., 2020; Stroud et al.,

2017). The difference in timing means that writing of these marks

can be uncoupled by Cre-mediated deletion of Dnmt3a after the

early embryonic deposition of mCG but before the postnatal

deposition of mCH. Accordingly, the deletion of Dnmt3a in the

central nervous system (CNS) between embryonic day (E) 7.5

and E15.5 using Nestin-Cre abolishes mCH in the brain with a

much lower impact on mCG (Dubois et al., 2006; Gabel et al.,

2015). These mice display neurological defects, including hypo-

activity, hind limb clasping, and gait and motor defects, resulting

in premature death at 18 weeks of age (Nguyen et al., 2007;

Stroud et al., 2017). The strong overlap with the RTT phenotype

is consistent with the interpretation of this mark by MeCP2. At

the molecular level, loss of either DNMT3A or MeCP2 results in

overlapping transcriptional changes (Gabel et al., 2015; Lavery

et al., 2020). Our MM2 mice build on this evidence by showing

that specifically abolishing the ability of MeCP2 to read mCH is

sufficient to cause many of the neurological defects and tran-

scriptional changes associated with the RTT phenotype.

It has been speculated that the postnatal deposition of mCH

could explain the delayed onset of the RTT phenotype (Chen

et al., 2015; Lavery et al., 2020), implying that MeCP2 binding
er gene (between TSS and TTS): mCG + mCAC, mCG, and mCAC and tran-

sue at 6 weeks of age.

mus at 6 weeks. Regression (r) = 0.90.

MM2-EGFP/WT.

ffect of mCG on transcription in KO/WT and MM2-EGFP/WT (6 weeks). Two

og10 mCAC = 2.34). The slopes (±95% confidence interval) of all of the bins are

t of mCAC on transcription. Two example bins are shown (z bin 11, mean log10
nce interval) of all of the bins are shown below. See Table S2.

ow 5th–95th percentiles.
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Figure 7. Shared dysregulated genes are

linked to neurological disease

(A) Venn diagram showing the overlap between

significantly dysregulated genes in KO (6 weeks),

MM2-EGFP (6 weeks), andMM2-EGFP (12 weeks),

each compared to age-matched WT controls. Sig-

nificance cutoff: adjusted p (padj) < 0.05.

(B) Shared genes are dysregulated in the same di-

rection in KO/WT (6 weeks) and MM2-EGFP/WT

(12 weeks).

(C) Heatmap showing transcriptional changes in the

20 neurological disease-associated genes. The 3

datasets in this study were compared to an inde-

pendent KO/WT (6 weeks) hypothalamus dataset

(Chen et al., 2015) and a KO/WT (8 weeks) cortex

dataset (Boxer et al., 2019). Avpr1a is not ex-

pressed in cortex (X).

(D) Comparison of mCG + mCAC binding sites be-

tween unchanged genes, and dysregulated genes

in KO only, MM2-EGFP only, both mutants and

disease-associated genes.

(E) Ratios of mCAC to total binding sites in these

gene categories.

(F) Expression changes in KO/WT andMM2-EGFP/

WT in these gene categories. Black bars show

median values; whiskers show 5th–95th percen-

tiles. Pairs of gene sets were compared using

Mann-Whitney tests: ***p < 0.001, ****p < 0.0001.
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to canonical mCG sites may be of lesser importance. mCG bind-

ing is largely dispensable in early development (before symptom

onset at weaning) and at all developmental stages in peripheral

tissues where only mCG sites are available (Guy et al., 2001;

Ross et al., 2016). In neurons, however, MeCP2 levels are

much higher than any other cell type, plateauing at �5 weeks

of age at a level that allows MeCP2 to coat neuronal chromatin

(Skene et al., 2010). In the absence of any evidence that

MeCP2 interprets mCG and mCAC sites differently, the relative

importance of these two motifs likely depends on their abun-

dance and location. Considering first abundance, in mature neu-

rons, the evidence suggests that mCG and mCH binding sites

occur with approximately equal frequencies (Mo et al., 2015). It

is therefore possible that the accumulation of mCAC simply in-

creases the number of available MeCP2 binding sites. If so,

then replacing MeCP2 with MM2, which retains the ability to

confer transcriptional repression at more than half of the

MeCP2 binding sites, would be equivalent to halving MeCP2

protein levels. Our findings rule out this possibility, as mice ex-

pressing MeCP2 at �50% normal levels display only very mild
Molecula
behavioral phenotypes (Samaco et al.,

2008), compared with the severe RTT-

like symptoms seen in MM2-EGFP mice.

It is therefore likely that differences in

the patterning of mCG and mCAC sites

underlie their distinct functional signifi-

cance. CG dinucleotides are globally

depleted in the genome, but highly meth-

ylated from an early stage of develop-

ment. This means that the number of

mCGs per gene approaches the number
of CG dinucleotides and is relatively uniform between cell

types. In contrast, the number of CH motifs is more than an or-

der of magnitude higher than CG, but they become sparsely

methylated in neurons (predominantly at CAC) after mCG pat-

terns have already been laid down. Importantly, the application

of mCAC methylation is not uniform, but targets genes in in-

verse proportion to their expression level during the early post-

natal period (Stroud et al., 2017). We show here that, on

average, highly methylated genes acquire a greater proportion

of mCAC motifs, so they are disproportionally affected by

mCAC-dependant repression by MeCP2. Loss of mCAC-

dependent repression results in their upregulation in both

Mecp2 null and MM2-EGFP mice, suggesting that their dysre-

gulation contributes substantially to neurological defects. Pat-

terns of mCAC methylation have also been reported to be

more cell type specific as a result of differences in expression

during its deposition (Mo et al., 2015; Stroud et al., 2017).

Future work will address the roles of neuronal subtype-specific

patterns of mCAC-dependent transcriptional modulation of

highly methylated genes for maintaining brain function.
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Candidate genes may be responsible for most RTT
symptoms
Since the discovery that MeCP2 controls transcription, the RTT

field has searched for key target genes. While some genes

(e.g., Bdnf) have been shown to have larger effects (Chang

et al., 2006), the preferred view is that the neurological condi-

tion is an aggregate consequence of subtle changes in hun-

dreds of genes. In addition, many of these genes are downre-

gulated, a likely consequence of smaller cell size (Lagger et al.,

2017; Li et al., 2013; Yazdani et al., 2012). In this study, we

focused on genes dysregulated in both mutants, given their

overlapping phenotypes. This list comprises one-third of the

genes altered in Mecp2 null mice (n = 316), which tend to be

highly methylated and therefore direct MeCP2 targets. Of the

20 candidates identified by Disease Ontology analysis, 15

were markedly upregulated in both mutants. Neurological dis-

ease is often linked with haploinsufficiency of these genes,

raising the possibility that dosage may be critical, with their

overexpression also being deleterious, as is the case for

MECP2 (Van Esch et al., 2005). Genes implicated in neurolog-

ical disease typically encode proteins falling into two cate-

gories: those with specific roles in neuronal function and chro-

matin-associated factors. The candidates identified in this

study span both classes. For example, CNTN4 is a neuronal

membrane glycoprotein (Oguro-Ando et al., 2017) and AUTS2

activates transcription in association with non-canonical

PRC1 (Gao et al., 2014). Time will tell whether the dysregulation

of these candidates is involved in RTT pathology and whether

any could be targeted therapeutically.

Concluding remarks
It is interesting to speculate on the origin of the dual-binding

specificity of MeCP2. There is evidence that MeCP2 originally

evolved as a mCG-specific DNA binding protein (Hendrich and

Tweedie, 2003), as other members of the MBD protein family

cannot bind to mCH (Guo et al., 2014; Liu et al., 2018). We sug-

gest that during the course of evolution, MeCP2 has added to its

repertoire the ability to bindmCAC due to the relative flexibility of

the side chain of arginine 133, which is one of a pair of key argi-

nines involved in DNA recognition (Ho et al., 2008; Lagger et al.,

2017; Lei et al., 2019). In contrast, the equivalent arginine side

chain in MBD2 is constrained by interactions with other parts

of the protein (Liu et al., 2018; Scarsdale et al., 2011). According

to this view, the coevolution of DNMT3A and MeCP2 has turned

two somewhat peripheral, perhaps originally biologically unim-

portant, properties of each protein (mCAC methylation and

mCAC binding, respectively) into essential contributors to brain

stability and function (see Bird, 2020).

Limitations
Experiments designed to distinguish alternative explanations for

our findings are presented throughout. MM2 is a hybrid protein in

which the native DNA binding domain has been replaced by a

related sequence that we show in vivo and in vitro binds only

one of the twoMeCP2 target motifs. Our hope that mCG binding

by MM2 would resemble mCG binding by native MeCP2 was

broadly supported by the evidence, but it remains possible

that a component of the deleterious phenotype in mice is due
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to differences in mCG binding affinity. We explain in the first

paragraph of the Discussion why any effect on the interaction

with mCG is likely to be minor; hence our conclusion that failure

to bind mCAC is primarily responsible for the RTT-like defects.

The list of genes that we implicate in RTT relies on evidence

that the phenotypes of MM2-EGFP and Mecp2 null male mice

have the same root cause. Despite their impressive credentials

as MeCP2 target genes (high levels of DNA methylation; unusu-

ally strong upregulation in both mutants), their contributions to

the RTT phenotype are so far untested and will be the subject

of future work.
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Antibodies

Anti-MeCP2 antibody, mouse monoclonal, clone Men-8 Sigma Cat#M7443 Lot 125M4851;

RRID:AB_477235

Anti-MeCP2 antibody, mouse monoclonal, clone Mec-168 Sigma Cat#M6818

RRID:AB_262075

Anti-GFP antibody, rabbit monoclonal, clone D5.1 New England Biolabs Cat#2956 Lot 4;

RRID: AB_1196615

Anti-NCOR1 antibody, rabbit polyclonal Bethyl Cat# A301-146A;

RRID: AB_873086

Anti-TBL1XR1 antibody, mouse monoclonal Santa Cruz Cat# sc-100908;

RRID: AB_1130006

Anti-HDAC3 antibody, mouse monoclonal, clone 3E11 Sigma Cat# WH0008841M2 Lot

D3011-3E11;

RRID: AB_1841895

Anti-Histone H3 antibody, rabbit polyclonal Abcam Cat#ab1791 Lot GR242682-2;

RRID: AB_302613

Anti-NeuN Antibody, clone A60 Millipore Cat#MAB377 Lot NG1876252;

RRID:AB_2298772

Anti-NeuN Antibody, clone A60, Cy3 Conjugate Millipore Cat#MAB377C3;

RRID: AB_10918200

IRDye� 800CW Donkey anti-Mouse LI-COR Cat#926-32212;

RRID: AB_621847

IRDye� 800CW Donkey anti-Rabbit LI-COR Cat#926-32213;

RRID: AB_621848

IRDye� 680LT Donkey anti-Rabbit LI-COR Cat#926-68023;

RRID:AB_10706167

Sheep Anti-Mouse IgG - HRP Conjugated GE Healthcare Cat#NA931;

RRID: AB_772210

Donkey Anti-Rabbit IgG, HRP Conjugated GE Healthcare Cat#NA934;

RRID: AB_772206

Bacterial and virus strains

BL21(DE3)RIPL Agilent Cat#230280

BL21(DE3)-R3- pRARE2 Oxford Structural Genomic

Consortium (SGC);

Savitsky et al., 2010

N/A

BL21(DE3)pLysS Promega Cat#L119B

Chemicals, peptides, and recombinant proteins

MeCP2 77-167, mouse This manuscript N/A

MBD2 139-224, human This manuscript N/A

MeCP2 N-term, mouse This manuscript N/A

MM2 N-term, derived from mouse MeCP2 and MBD2 This manuscript N/A

Critical commercial assays

GFP-Trap�_A beads for protein pulldown Chromotek Cat#gta

Puregene Core Kit A QIAGEN Cat#1042601

Deposited data

RettBASE: RettSyndrome.org Variation Database Krishnaraj et al., 2017 http://mecp2.chw.edu.au

Whole genome bisulphite sequencing, mouse hypothalamus Lagger et al., 2017 GEO: GSE84533

(Continued on next page)
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ATAC-seq and RNA-seq data This manuscript GEO: GSE152801

Independent hypothalamus RNA-seq (Mecp2-null versus WT) Chen et al., 2015 GEO: GSE66870

Cortex RNA-seq (Mecp2-null versus WT) Boxer et al., 2019 GEO: GSE128178

All Mendeley data This manuscript http://DOI.org/10.17632/

4bj84x6kcy.1

Experimental models: cell lines

mESC, MM2 knockin, clone 5C7 This manuscript N/A

E14 TG2a ES cells (derived from 129/Ola male mouse embryo) Andrew Smith at the

Centre for

Genome Research

(now Institute for

Stem Cell Research),

University of Edinburgh

N/A

HeLa Bird lab N/A

NIH 3T3 ATCC RRID:CVCL_0594

Experimental models: organisms/strains

Mouse: WT-EGFP: C57BL/6J-Mecp2tm3.1Bird Brown et al., 2016 RRID: IMSR_JAX:014610

Mouse: MM2-EGFP: C57BL/6J-Mecp2em7.1Bird This manuscript N/A

Mouse: Mecp2-null: C57BL/6J.CBA/CA-Mecp2tm2Bird Guy et al., 2001 RRID: IMSR_JAX:006849

Mouse: CMV-Cre; C57BL/6J- Tg(CMV-cre)1Cgn Schwenk et al., 1995 RRID: IMSR_JAX:006054

Mouse: T158M-EGFP: C57BL/6J-Mecp2tm4.1Bird Brown et al., 2016 RRID:IMSR_JAX:026762

Mouse: R306C-EGFP: C57BL/6J-Mecp2tm5.1Bird Brown et al., 2016 RRID:IMSR_JAX:026847

Mouse: R133C-EGFP: C57BL/6J-Mecp2tm6.1Bird Brown et al., 2016 RRID:IMSR_JAX:026848

Oligonucleotides

See Table S4 for primer sequences N/A N/A

BLI probes (methylated C is underlined): CG sense: 50-Bio-
TCTGGAACGGAATTCTTCTA-30

Integrated DNA

Technologies (IDT)

N/A

CG antisense: 50-ATAGAAGAATTCCGTTCCAG-30 IDT N/A

CAC sense: 50-Bio-TCTGGAACACAATTCTTCTA-30 IDT N/A

CAC antisense: 50-ATAGAAGAATTGTGTTCCAG-30 IDT N/A

CAT sense: 50-Bio-TCTGGAACATAATTCTTCTA-30 IDT N/A

CAT antisense: 50-ATAGAAGAATTATGTTCCAG-30 IDT N/A

MBD2[MBD] EMSA probes (methylated C is

underlined) CG sense: 50-FAM-

TCTGGAACGGAATTCTTCTA-30

IDT N/A

CG antisense: 50-ATAGAAGAATTCCGTTCCAG-30 IDT N/A

CAC sense: 50-FAM-TCTGGAACACAATTCTTCTA-30 IDT N/A

CAC antisense: 50-ATAGAAGAATTGTGTTCCAG-30 IDT N/A

CAT sense: 50-FAM-TCTGGAACATAATTCTTCTA-30 IDT N/A

CAT antisense: 50-ATAGAAGAATTATGTTCCAG-30 IDT N/A

N-term EMSA probes (methylated C is underlined):

CG sense: 50-AAGCATGCAATGCCCTGGAACGGAATTC

TTCTAATAAAAGATGTATCATTTTAAATGC-30

Biomers, Germany;

Lagger et al., 2017

N/A

CG antisense: 50-GCATTTAAAATGATACATCTTTTA

TTAGAAGAATTCCGTTCCAGGGCATTGCATGCTT-30
Biomers, Germany;

Lagger et al., 2017

N/A

CAC sense: 50-AAGCATGCAATGCCCTGGAACACAATTC

TTCTAATAAAAGATGTATCATTTTAAATGC-30
Biomers, Germany;

Lagger et al., 2017

N/A

CAC antisense: 50- GCATTTAAAATGATACATCTTTTA

TTAGAAGAATTGTGTTCCAGGGCATTGCATGCTT-30
Biomers, Germany;

Lagger et al., 2017

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligos for DNA pull down assay (all Cs are methylated):

CG probe: 50-ACGTATATACGATTTACGTTATACGATT

ACGATATACGATTTA CGTTAATACGTTTACGATTATT

ACGAATTTACGTTTTTACGAATATACGAAATACGTTT

AATACGTAATTACGTATATTACGTATATACGATTTAC

GAATTACG-30

PCR-generated;

Connelly et al., 2020

N/A

CAC probe: 50-GCACACACGCACTTTGCACTATGC

ACTTGCACTATGCACTTTG CACTAATGCACTTGCA

CTTATTGCACACTTGCACTTTTGCACACACGCACA

ATGCACTTAATGCACAATTGCACACACTGCACACA

CGCACTTTGCACACTGCA-30

PCR-generated;

This manuscript

N/A

CAT probe: 50-GCATATATGCATTTTGCATTATGC

ATTTG CATTATGCATTTTGCATTAATGCATTTGC

ATTTATTGCATATTTGCATTTTTGCATATATGCA

TAATGCATTTAATGCATAATTGCATATATTGCAT

ATATGCATTTTGCATATTGCA-30

PCR-generated;

This manuscript

N/A

Recombinant DNA

pET28_MeCP2[MBD] SK lab N/A

pNIC28-Bsa4_MBD2[MBD] This manuscript N/A

MM2 fragment for cloning (PstI sites underlined): 50-
CCACCATTCTGCAGAGCCAGCAGAGGCAGGCAA

AGCAGAA ACATCAGAAAGCTCAGGCTCTGCCCC

AGCAGTGCCAGAAGCCTCGGCTTCCCCCAAACA

GCGGCGCTCCATTATCCGTGACCGGGGACCTAT

GGACTGCCCGGCCCTCCCCCCCGGATGGAAGA

AGGAGGAAGTGATCCGAAAATCAGGGCTCAGTGC

TGGCAAGAGCGATGTCTACTACTTCAGTCCAAGT

GGTAAGAAGTTCAGAAGTAAACCTCAGCTGGCAA

GATACCTGGGAAATGCTGTTGACCTTAGCAGTTT

TGACTTCAGGACCGGCAAGATGATGCC

TTCCAGGAGAGAGCAGAAACCACCTAAGAAGCC

CAAATCTCCCAAAGCTCCAGGAACTGGCAGGGG

TCGGGGACGCCCCAAAGGGAGCGGCAC

TGGGAGACCAAAGGCAGCAGCATCAGAAGGTG

TTCAGGTGAAAAGGGTCCTGGAGAAGAGCCCTG

GGAAACTTGTTGTCAAGATGCCTTTCCAAGCATC

GCCTGGGGGTAAGGGTGAGGGAGGTGGGGCTA

CCACATCTGCCCAGGTCATGGTGATCAAACGCCC

TGGCAGAAAGCGAAAAGCTGAAGCTGACCCCCA

GGCCATTCCTAAGAAACGGGGTAGAAAGCCTGG

GAGTGTGGTGGCAGCTGCTGCAGCTGAGGCCA-30

ThermoFisher Scientific

(GeneArt Strings)

N/A

pEGFP-N1_MeCP2(WT) Tillotson et al., 2017 RRID: Addgene_110186

pEGFP-N1_MeCP2(R111G) Tillotson et al., 2017 RRID: Addgene_110187

pEGFP-N1_MeCP2(R306C) Tillotson et al., 2017 RRID: Addgene_110188

pEGFP-N1_MeCP2(MM2) This manuscript N/A

pEGFP-N1_MeCP2(MM2-RG) This manuscript N/A

pmCherry-N1–TBL1X Lyst et al., 2013 N/A

pET30b_MeCP2[N-term] This manuscript N/A

pET30b_MM2[N-term] This manuscript N/A

pX330-U6-Chimeric_BB-CBh-hSpCas9 with gRNA

(GGTTGTGACCCGCCATGGAT)

Tillotson et al., 2017 N/A

Software and algorithms

Jalview 2.8.2 Barton lab, University of Dundee www.jalview.org

FRAP Macro This paper GitHub: https://doi.org/10.5281/

Zenodo.2654602

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

FACSDIVA version 8.0.1 BD Biosciences N/A

ANYMaze Stoelting N/A

Prism 8 GraphPad N/A

LAS AF software Leica N/A

Zen Black Zeiss N/A

Fiji ImageJ N/A

Image Studio Lite Ver 5.2 LI-COR N/A

LightCycler 480 SW 1.5 Roche N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Adrian

Bird a.bird@ed.ac.uk.

Materials availability
All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

Data and code availability
The accession number for the ATAC-seq and RNA-seq datasets reported in this paper is GEO: GSE152801. The code for the analysis

of fluorescence recovery after photobleaching (FRAP) data is available onGitHub: https://doi.org/10.5281/Zenodo.2654602. Original

data have been deposited to Mendeley Data, https://doi.org/10.17632/4bj84x6kcy.1

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains
BL21(DE3)RIPL competent cells (Agilent) were used to express MeCP2[MBD].

BL21(DE3)-R3-pRARE2 competent cells (Savitsky et al., 2010) were used to express MBD2[MBD].

BL21(DE3)pLysS competent cells (Promega) were used to express MeCP2[N-term] and MM2[N-term].

Cell lines
HeLa and NIH 3T3 (ATCC, RRID:CVCL_0594) cells were grown in DMEM (GIBCO) supplemented with 10% fetal bovine serum (FBS;

GIBCO) and 1%penicillin– streptomycin (GIBCO). Low passagemale E14 TG2a ES cells (derived from 129/Ola mice) were a gift from

AndrewSmith at the Centre for GenomeResearch at the University of Edinburgh (now Institute for StemCell Research). ES cells were

grown in Glasgow MEM (GIBCO) supplemented with 10% FBS (GIBCO, batch tested), 1% non-essential amino acids (GIBCO), 1%

sodium pyruvate (GIBCO), 0.1% b -mercaptoethanol (GIBCO) and 1,000 units/ml LIF (ESGRO). Mouse ES cell status was confirmed

regularly by production of germline chimeric mice from the cells (e.g., Tillotson et al., 2017). All cells were grown at 37�C, 5% CO2.

Mouse lines
All mice used in this study were bred and maintained at the University of Edinburgh animal facilities under standard conditions, and

procedures were carried out by staff licensed by the UK Home Office and in accordance with the Animal and Scientific Procedures

Act 1986. All mice were housed in a specific-pathogen-free (SPF) facility. They were maintained on a 12-h light/dark cycle and given

ad libitum access to food (RM1 or RM3) and water. They were housed in open top cages with wood chippings, tissue bedding and

additional environmental enrichment in groups of up to ten animals. Mutant mice were caged with their wild-type littermates.

MM2-EGFPmice were generated in this study from edited ES cells (detailed method described below). The edited allele contained

a floxed selection cassette, which was removed by breeding chimeras with CMV-Cre deleter mice (C57BL/6J- Tg(CMV-cre)1Cgn,

RRID: IMSR_JAX:006054). This line was further backcrossed onto C57BL/6J to N4 before behavioral phenotyping and to at least

N4 for biochemical analysis. Hemizygous MM2-EGFP males (and wild-type controls) were used in all experiments as symptoms

develop earlier and progress more rapidly than heterozygous females (as with otherMecp2mutant mice). To produce behavioral co-

horts, male pups from timed matings were pooled at weaning and randomly assigned to the two groups. The first cohort was moni-

tored for overt RTT-like symptoms, weight and survival from four weeks of age until each animal’s humane end-point (wild-type con-

trols were monitored to one year of age). The second cohort underwent behavioral testing at 10-11 weeks of age. Tissues for

biochemical analysis were harvested from animals at 6-19 weeks of age.
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WT-EGFP (C57BL/6J-Mecp2tm3.1Bird, RRID: IMSR_JAX:014610) mice (Brown et al., 2016) were used as age- and sex-matched

controls in some biochemical assays. They were maintained on a C57BL/6J background.

Mecp2 null mice (C57BL/6J;CBA/CA-Mecp2tm2Bird, RRID: IMSR_JAX:006849) mice (Guy et al., 2001) were used for ATAC-seq

analysis to determine the footprints of wild-typeMeCP2 andMM2-EGFP and for RNA-seq analysis. Theyweremaintained on amixed

C57BL/6J;CBA/CA background, as breeding difficulties occur after backcrossing onto a C57BL/6J background. Hypothalamus tis-

sue was harvested at 6 weeks of age.

Phenotypic data was compared to RTT models: Mecp2 null mice (C57BL/6J-Mecp2tm2Bird, RRID: IMSR_JAX:006849), T158M-

EGFP (C57BL/6J-Mecp2tm4.1Bird, RRID:IMSR_JAX:026762), R306C-EGFP (C57BL/6J-Mecp2tm5.1Bird, RRID:IMSR_JAX:026847)

and R133C-EGFP (C57BL/6J-Mecp2tm6.1Bird, RRID:IMSR_JAX:026848). This data was previously published in Brown et al. (2016).

METHOD DETAILS

Design of MM2
According to convention, all amino-acid numbers given refer to the e2 isoform. Numbers refer to homologous amino acids in human

(NCBI accession P51608) and mouse (NCBI accession Q9Z2D6) protein, until residue 385 where there is a two-amino-acid insertion

in the human protein. In this study, the MBD of mouseMeCP2was defined as residues 94-164. This region was replaced by theMBD

of mouse MBD2 (NCBI accession Q9Z2E1), comprising residues 153-217. Note: the region of MeCP2 replaced was shorter than the

minimal fragment required for binding to methylated DNA (Nan et al., 1993). This region comprises the highly conserved sequence

among MBD family members and contains all RTT-causing missense mutations in the MBD cluster, listed on RettBASE: http://

mecp2.chw.edu.au/ (Krishnaraj et al., 2017). The region is flanked by proline residues (disrupting protein structure), which were

selected as the junctions in MM2 (P93 and P165 of MeCP2). This protein was tagged at the C terminus by EGFP, connected by a

short linker. To be consistent with the WT-EGFP mice (Brown et al., 2016), the linker sequence was CKDPPVAT (DNA sequence:

TGTAAGGATCCACCGGTCGCCACC). Intron 3 (located in theMBD ofMeCP2) was not inserted intoMM2 as it was deemed dispens-

able due to poor evolutionary conservation.

Plasmids
For expression of MeCP2[MBD] in bacteria, cDNA encoding MeCP2 (residues 77-167) was cloned into pET28 using NdeI and EcoRI

restriction sites. The protein sequence of this fragment is identical in human and mouse.

For expression of MBD2[MBD] in bacteria, cDNA encoding human MBD2 (residues 139-224, NCBI accession number

NP_003918.1, from the Mammalian Gene Collection: BC032638.1, IMAGE: 5496721) was amplified by polymerase chain reaction

(PCR) (primer sequences in Table S4) in the presence of Herculase II fusion DNA polymerase (Agilent Technologies). PCR products

were purified (QIAquick PCR Purification Kit, QIAGEN UK) and further sub-cloned into a pET28-derived expression vector, pNIC28-

Bsa4 using ligation-independent cloning (Savitsky et al., 2010). This vector includes sites for ligation-independent cloning and a To-

bacco Etch Virus (TEV)-cleavable N-terminal His6-tag (extension MHHHHHHSSGVDLGTENLYFQ*SM-). After digestion with TEV

protease, the protein retains an additional serine and methionine on the N terminus. The construct was transformed into competent

Mach1 cells (Invitrogen, UK) to yield the final plasmid DNA.

For expression of MeCP2WT and derivatives in mammalian cells, plasmids expressing EGFP-tagged e2 isoforms were used. Pre-

viously published (Tillotson et al., 2017) plasmids were used to express WT (RRID: Addgene_110186), R111G (RRID: Addg-

ene_110187) and R306C (RRID: Addgene_110188). To clone MM2, the MBD of MBD2 and flanking MeCP2 sequences was synthe-

sized (GeneStrings, Thermo Fisher Scientific; sequence in Key resources table) and cloned into the pEGFP-N1_MeCP2[WT] plasmid

to replace theMeCP2MBD sequence using PstI restriction sites (NEB). R169Gwas inserted into theMM2 vector using aQuikChange

II XL Site-Directed Mutagenesis Kit (Agilent Technologies) (primer sequences in Table S4). pmCherry-N1_TBL1X (Lyst et al., 2013)

was used in the recruitment assay. For expression of MeCP2[N-term] and MM2[N-term] in bacteria for protein production, residues

1-205 of MeCP2 and the equivalent fragment of MM2 were subcloned from the pEGFP-N1 vectors into pET30b (Novagen). The for-

ward primer introduced a NdeI restriction site and the reverse primer introduced a C-terminal 6xHis tag and EcoRI site (primer se-

quences in Table S4). To overcome low efficiency, the fragments were blunt cloned into pCR4 using the Zero Blunt TOPO kit (Invi-

trogen) before cloning into the pET30b vector using NdeI and EcoRI (NEB).

For targeting the endogenous Mecp2 locus in ES cells, a gene-targeting construct containing exons 3 and 4 of wild-type MeCP2

with a C-terminal tag (Tillotson et al., 2017) was edited by recombineering. The MBD region was first replaced by the counter-selec-

tion rpsL-neo cassette amplified by PCR to give 50 nt homology arms (primer sequences in Table S4). Positive clones were selected

by kanamycin resistance. This cassette was subsequently replaced by the MBD of MBD2 flanked by MeCP2 sequences amplified

from pEGFP-N1_MM2 (primer sequences in Table S4). Positive clones were selected by Streptomycin resistance and sequence veri-

fied. CRISPR– Cas9 technology was used to increase the targeting efficiency: the guide RNA sequence (GGTTGTGACCCGCCATG-

GAT) was cloned into pX330-U6-Chimeric_BB-CBh-hSpCas9 (a gift from F. Zhang; Addgene plasmid 42230 (Cong et al., 2013)).

All plasmids were sequence verified.
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Generation of MM2-EGFP mice
TheMM2-EGFP targeting vector was linearized using NotI (NEB). 129/Ola E14 TG2a ES cells were passaged every two days for one

week and 20x106 cells were collected in 600 mL HBS containing 15 mg linearized targeting vector and 15 mg of the CRISPR/Cas9

plasmid. The cells were electroporated (GenePulser X, Biorad) in a 0.4 cm cuvette at 240 V, 500 mF, N resistance. The guide RNA

targeted intron 2 of the wild-type gene (at the site of the NeoSTOP cassette in the targeting vector). G418-resistant clones with cor-

rect targeting at theMecp2 locus were identified by PCR and Southern blot screening (method described below). PCR screens were

performed using Phusion polymerase (NEB): primer sequences in Table S4. Screening identified one positive clone (5C7), which was

further verified by Sanger sequencing of theMecp2 locus and the top predicted intragenic off-target locus,Dock5 (primer sequences

in Table S4). The cell line was also karyotyped by inducing metaphase arrest by treatment for 3 hours with 0.1 mg/ml colemid (KAR-

YOMAX,GIBCO). Pelleted cells were resuspended in 300 mL growthmedia plus 5mL 0.4% (w/v) KCl and incubated for 10min. 100 mL

fixative (3 parts methanol: 1 part acetic acid) was added and mixed gently. Cells were pellets at 300 g, 5 min and the pellet was re-

suspended in 5 mL fixative and incubated at room temperature for 20 min. Cells were pelleted again and resuspended in 500 mL fixa-

tive. They were dropped onto pre-chilled glass slides from �30 cm and left to dry overnight before mounting with Vectashield con-

taining DAPI (H-1200). Cells were photographed on a Zeiss AxioImager (Carl Zeiss UK, Cambridge) equipped with a Photometrics

Prime sCMOS camera (Teledyne Photometrics) and chromosomes were counted manually using ImageJ (NIH).

Cells from MM2-EGFP clone 5C7 were injected into blastocysts (E3.5) obtained from C57BL/6J females after natural mating. As

with previous studies, e.g., Guy et al. (2001), 15 ES cells were injected into each blastocyst and 12 injected blastocysts were trans-

ferred to pseudo-pregnant recipient females (F1 C57BL/6J;CBA/CA). Chimeric pups were recognized by coat color. This targeted

locus contained a neomycin resistance gene followed by a transcriptional STOP cassette flanked by loxP sites (‘floxed’) in intron

2. This cassette was removed in vivo by crossing chimeras with homozygous females from the transgenic CMV-cre deleter strain

(Tg(CMV-cre)1Cgn, RRID: IMSR_JAX:006054) on a C57BL/6J background. The CMV-cre transgene was subsequently bred out.

Genotyping primers for the Mecp2 locus and Cre transgenes are in Table S4.

Southern blotting
Genomic DNA was purified from ES cells using Puregene Core Kit A (QIAGEN) according to manufacturer’s instructions. Genomic

DNAwas purified from snap-frozen mouse brain (harvested at 7-19 weeks of age) by homogenization in 3 mL lysis buffer (50 mM Tris

HCl pH7.5, 100 mM NaCl, 5 mM EDTA). Proteinase K was added to a final concentration of 0.4 mg/ml and SDS to 1% (w/v). After

overnight incubation at 55�C, samples were treated with 0.1 mg/ml RNase at 37�C for 1-2 hours and gDNA was extracted with

3 mL PCI (phenol:chloroform:isoamyl alcohol, Sigma). gDNA was precipitated from the aqueous phase with 2.5 volumes 100%

ethanol and 0.1 volumes 3M NaOH, and dissolved in TE. For Southern blotting, 10 mg gDNA was digested with 3 mL enzyme

(NEB) in a total volume of 40 ml, and ran on 0.8% gels. Gels were incubated in 0.25 M HCl (15 min) and neutralised with 0.4 M

NaOH (45 min) before transferring onto ZetaProbe membranes (Biorad). 25 ng of a probe homologous to the 30 homology arm

(1038 pb fragment digested with SpeI and BamHI) was radioactively labeled with [a32]dCTP (Perkin Elmer) using the Prime-a-

Gene Labeling System (Promega) according to manufacturer’s instructions. Membranes were blocked in Church buffer containing

�50 mg/ml Herring Sperm DNA (Sigma) at 65�C. After 30 min, the probe was added and incubated overnight. Membranes were then

washed three times with 3xSSC/0.2% SDS, followed by up to three washes with 1xSSC/0.2% SDS. The blots were exposed for 1-

5 days on Phosphorimager plates (GE Healthcare) and scanned using a Typhoon FLA 7000. BamHI, BsrGI and KpnI were used to

screen ES cell clones and KpnI was used to verify deletion of the NeoSTOP cassette in MM2-EGFP knock-in mice.

Protein purification
The expression plasmid containingMeCP2[MBD] was transformed into competent BL21 (DE3)-RIPL cells (Life Technologies) and the

MBD2[MBD] plasmid was transformed into competent BL21 (DE3)-R3-pRARE2 cells (a phage-resistant derivative of the BL21 (DE3)

strain), with a pRARE plasmid encoding rare codon tRNAs (Invitrogen). Freshly grown colonies were cultured overnight in lysogeny

broth (LB) supplemented with 50 mg/ml kanamycin and 34 mg/mL chloramphenicol at 37�C. One liter of pre-warmed terrific broth

(TB) was inoculated with 10 mL of the overnight culture and incubated at 37�C. At an optical density at 600 nm (OD600) of 2.5, the

culture was cooled to 18�C and expression was induced overnight at 18�Cwith 0.1 mM isopropyl-b-D-thiogalactopyranoside (IPTG).

Cells were harvested by centrifugation (8700 x g, 15 min, 4�C) in a Beckman Coulter Avanti J-20 XP centrifuge, and then re-sus-

pended in lysis buffer (50 mM HEPES pH 7.5 at 20�C, 1500 mM NaCl, 5% Glycerol, 1 mM tris(2-carboxyethyl)phosphine (TCEP)

and 1:1000 (v/v) Protease Inhibitor Cocktail III (Calbiochem)). Cells were lysed using a high-pressure homogenizer (Emulsiflex C5,

Avestin) at �100 mPa equipped with a recirculating cooler (F250, Julabo). DNA was precipitated on ice for 30 min with 0.15% (v/

v) PEI (Polyethyleneimine, Sigma) and the lysate was cleared by centrifugation (16,000 x g for 1 hour at 4C, JA 25.50 rotor, Beckman

Coulter Avanti J-20 XP centrifuge) before being applied to a Nickel affinity column (nickel nitrilotriacetic acid (Ni-NTA) resin, QIAGEN

Ltd., 5 ml, equilibrated with 20 mL lysis buffer). Protein was eluted with an imidazole step gradient (50 to 250 mM) in a 500 mM NaCl

lysis buffer.

For MeCP2[MBD], the eluted protein after Ni-NTA purification was concentrated with 10 kDa MWCO Amicon� Ultra (EMD Milli-

pore) concentrators and further purified by size exclusion chromatography on a HiPrep 16/60 Sephacryl S-200 gel filtration column

(GEHealthcare) on an ÄktaPrime plus systems (GE/AmershamBiosciences). ForMBD2[MBD], the eluted protein after Ni-NTA affinity

purification was treated overnight at 4�Cwith TEV protease to remove the 63 His tag and untagged proteins were further purified by
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size exclusion chromatography on a Superdex 75 16/60 HiLoad gel filtration column (GE Healthcare Life Sciences). All eluted frac-

tions were monitored by SDS-PAGE and concentrated in gel filtration buffer (10 mM HEPES pH 7.5, 500 mM NaCl and 5% glycerol)

using Amicon� Ultra (EMD Millipore) concentrators with a 10 kDa MWCO cut-off. Proteins were aliquoted, flash frozen in liquid ni-

trogen and stored at �80�C until further use.

Expression plasmids containing MeCP2[N-term] and MM2[N-term] with a C-terminal 6xHis tag were transformed into BL21(DE3)

pLysS competent cells and plated. Colonies were scraped into an overnight starter culture in LB with 50 mg/ml kanamycin and 17 mg/

ml chloramphenicol at 37◦C. This was expanded in 500 mL and protein production was induced with 1 mM IPTG at 30◦C for 3 hours

when the OD600 reached 0.6-0.8. Frozen bacterial cell pellets were mashed in 30 mL ice-cold lysis buffer (50 mM NaH2PO4, 100 mM

NaCl, 10% glycerol, 30 mM imidazole, 0.1% NP40, and protease inhibitor tablet (Roche), 5.7 mM b-mercaptoethanol) and passed

through a 21G needle. 750U benzonase (Sigma) was added and samples were sonicated for 10 cycles of 30 sON/OFF at 30%ampli-

tude (Branson Digital Sonifier). NaCl concentration was increased to 300mMand samples were centrifuged at 31,000 g (30min, 4◦C)
and the supernatant was transferred to new tubes. His-tagged proteins were purified using 0.5 mL NiSO4-coated Chelating Sephar-

ose Fast Flow beads (GE healthcare), incubated in lysates for 1 hr at 4◦C. Beads were washed three times in 12 mL lysis buffer (with

300 mM NaCl) and protein was eluted in five fractions each of 0.5 mL lysis buffer with 250 mM imidazole. Fractions were pooled and

diluted with 5-10 mL HEPES buffer (20 mM HEPES, 300 mM NaCl, 1 mM EDTA). The samples subsequently purified using a HiTRap

Sp Hp 1 mL Column (GE Healthcare) to select for positively charged proteins. Columns were washed with 10 mL HEPES buffer and

protein was eluted in 1 mL HEPES buffer with 0.7 M NaCl (fraction 1) and then 1 mL 1 M NaCl (fraction 2). Fraction 2 was used in the

EMSA experiments.

Bio-Layer Interferometry (BLI)
Single-stranded DNA probes were purchased from Integrated DNA Technologies (IDT) and annealed by heating at 95�C for 5min and

slowly cooled down at room temperature. See Key resources table for sequences.

The dissociation constant (KD) of MeCP2[MBD] to different DNA probes was determined by using bio-layer interferometry on the

Octet RED384 system (ForteBio, Pall). All assays were performed in low-binding black 96 well plates (Greiner) with 1,000 rpm orbital

shaking and samples were diluted in freshly prepared and filtered BLI buffer (150mM NaCl, 10mM HEPES, pH8.0 and 0.05%

Tween20).

First, streptavidin biosensors (18-5019, ForteBio, Pall) were hydrated in 200 ml of BLI buffer for 20 min at room temperature. Then,

50-biotinylated double-stranded DNA probes (6 nM, final concentration) were loaded on the streptavidin biosensors for 600sec fol-

lowed by quenching with biotin (5 mg/ml, final concentration) for 50 s. The DNA-loaded sensors were then submerged in wells con-

taining increasing concentrations of MeCP2[MBD] (0-375nM) in the presence of poly(dI-dC) (1mg/ml, final concentration) (LightShift,

Thermo) for 600 s followed by 300 s of dissociation time.

Electromobility shift assay (EMSA)
For the EMSAwithMBD2[MBD], single-stranded FAM-labeled DNA probes were purchased from Integrated DNA Technologies (IDT)

and annealed by heating at 95�C for 5 min and slowly cooled down at room temperature. See Key resources table for sequences.

Assays were assembled in 10 ml reactions in binding buffer containing 20 mM HEPES (pH7.9), 150 mM KCl, 8% Ficoll, 1 mM

EDTA and 0.5 mM DTT. The protein (2 mM final concentration) was incubated in binding buffer for 10 min at room temperature,

then poly(dI-dC) (LightShift, Thermo) was added at a final concentration of 40 ng/uL and the reaction incubated for 10 min at

room temperature. 50-FAM-labeled DNA probe (10 nM final concentration) was added and incubated a further 25 min at room tem-

perature. The reactions were run on a 4.0%acrylamide (ratio 37:1, Sigma) Tris Borate EDTA gel in 0.25X TBE, 150V for 3 hours at 4�C.
The bandshifts were exposed at 473 nm on a fluorescent scanner (FujiFilm FLA-5100) and gel images were visualized with the soft-

ware FujiFilm MultiGauge.

EMSAs with MeCP2[N-term] and MM2[N-term] were performed as described previously (Brown et al., 2016). Single-strand oligo-

nucleotide probes from the mouse Bdnf promoter region were purchased from Biomers, Germany, annealed by heating at 100�C for

10 min and slowly cooled to room temperature. Probe sequences contained a central methylated, or unmethylated CG or CAC site

(see Key resources table for sequences). 500 ng of probewas radio-labeled using T4 polynucleotide kinase (NEB) and purified (MinE-

lute PCR Purification Kit, QIAGEN) according tomanufacturer’s instructions. 1 ng probe and 1 mg poly deoxyadenylic-thymidylic acid

competitor DNA (Sigma-Aldrich) were added with 0, 1.5, 3.0 or 4.5 uM polypeptide in reaction buffer (5% glycerol, 0.1 mM EDTA,

10mMTris HCl pH 7.5, 150mMKCl, 0.1mg/ml BSA) on ice for 20minutes. Samples were run at 120 V for 70min on a 10%acrylamide

Tris Borate EDTA gel (0.075% APS, 0.00125% TEMED) in chilled TBE. The gels were exposed overnight and imaged using the

Typhoon FLA 9500 scanner (GE Healthcare).

DNA pull-down assay
This assay performed as described previously (Connelly et al., 2020)(Piccolo et al., 2019). PCR-generated, biotin end-labeled 147 bp

DNA probes (2 mg) were coupled to M280-streptavidin Dynabeads according to the manufacturer’s instructions (Invitrogen). All cy-

tosines in the probes were either non-methylated or methylated and only occurred in a single sequence context (CG, CAC or CAT),

sequences in the Key resources table. Bead-DNA complexes were then co-incubated with 20 mg of rat brain nuclear protein extract

(Mellén et al., 2017) for 1.5 hours at 4◦C. Following extensive washing, bead-bound proteins were eluted using Laemmli buffer
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(Sigma) and resolved on a 4%–15% SDS-polyacrylamide gel (NEB). The presence of MeCP2 was assayed by western blot using

MeCP2 (Sigma M6818; RRID:AB_262075) diluted 1:1000; with secondary detection employing Li-COR IRDye 800CW Donkey

anti-Mouse (926-32212) diluted 1:10,000, then scanned using a LI-COR Odyssey CLx machine.

MeCP2 localization and TBL1X–mCherry recruitment assay
Analysis of MeCP2 localization and recruitment of TBL1X was performed as done previously (Lyst et al., 2013; Tillotson et al., 2017).

NIH 3T3 cells were seeded on coverslips in six-well plates (25,000 cells per well) and transfected with 2 mg plasmid DNA (pEGFP-N1–

MeCP2 alone or pEGFP- N1–MeCP2 and pmCherry-N1–TBL1X5) using JetPEI (PolyPlus Transfection). After 48 h, cells were fixed

with 4% (w/v in PBS) paraformaldehyde (Sigma), stained with 40, 6- diamidino-2-phenylindole (DAPI; Sigma) and thenmounted using

ProLong Diamond (Life Technologies). Images were acquired on a Leica SP5 laser scanning confocal and a HCX PLAPO 63x/1.4

objective with laser lines for DAPI (405nm), GFP (488nm) and mCherry (594nm) selected using LAS AF software (Leica).

Fluorescence recovery after photobleaching (FRAP)
NIH 3T3 cells were seeded on poly-L-lysine-coated coverslips in six-well plates (200,000 cells per well) and transfected with 2 mg

plasmid DNA using JetPEI (PolyPlus Transfection). After 40-48 h, coverslips were used for live cell imaging at 37�C, 5%CO2. Images

were acquired on a Zeiss LSM880 laser scanning confocal equippedwith aGaSP detector and a Plan-Apochromat 63x/1.4 objective.

A z stackwas acquired at each time point comprising of six Z positions spaced 1 mmapart to account for any vertical movement of the

bleach position in the cell. Images were acquired using a 488 nm laser at 0.2% power to minimize any photobleaching, except for the

bleach spot (diameter 10 pixels = 1.6 mm) that was exposed to 100% laser power for 0.5 s (sufficient to produce an 80% decrease in

the intensity at the bleach spot). A total of 295 post bleach images (1.02 s apart) were taken to ensure any recovery wasmeasured to a

steady state. Five images were taken before the bleach, the mean of which was used as the ‘‘preBleach’’ values. At least two cells

were included in each frame, the first containing the bleach spot and the second as a control to correct for photobleaching during the

course of the experiment.

Immunohistochemistry
Mice were culled using CO2 at 14-15 weeks, and as soon as death could be confirmed, the rib cage was opened up to expose

the heart. Animals were perfused with �1 mL Lidocaine (1% in PBS) followed by �25 mL 4% paraformaldehyde (w/v) in PBS

(Sigma) pumped at 7 ml/min through the circulatory system. Brains were stored overnight in 4% PFA (w/v) in PBS before incu-

bation in 30% sucrose (w/v) in PBS overnight and flash frozen in isopentane. 10 mm sections were cut on a Leica CM1900 cryo-

stat at �18�C. Sections were washed twice in PBS, permeablised in 0.1% (v/v) Triton-100 in PBS (15 min), washed again and

blocked in 1.5% goat serum. They were then probed with a Cy3-conjugated antibody against NeuN (Millipore MAB377C3;

RRID: AB_10918200) overnight at 4�C. Sections were washed once in PBS, incubated in 1 mg/ml DAPI (10 min), washed twice

more and mounted with coverslips using Prolong Diamond (ThermoFisher Scientific). Images of sections were acquired on a

Zeiss LSM880 laser scanning confocal and a Plan Apochromat 63x/1.4 objective with laser lines for DAPI (405nm), GFP

(488nm) and Cy3 (561 nm) selected using Zen Black software (Zeiss). Images show neurons in the dentate gyrus of the

hippocampus.

Immunoprecipitation and western blotting
HeLa cells were transfected with pEGFP-N1–MeCP2 plasmids using JetPEI (PolyPlus Transfection) and harvested after 24–48 h.

Fresh or frozen cell pellets were Dounce homogenized in 1.5 mL in NE1 (20 mM HEPES pH 7.5; 10 mM NaCl; 1mM MgCl2; 0.1%

Triton X-100; 10 mM b-mercaptoethanol; protease inhibitor tablet (Roche)). Snap-frozen brain hemispheres (harvested at 8-

18 weeks of age) were Dounce homogenized in 2.5 mL NE1. Nuclei were collected by centrifugation at 845 g (5 min, 4◦C) and
resuspended in NE1 (HeLa nuclei 200 ml; brain nuclei 2 ml). Nuclei were treated with 250 U/500 U Benzonase (Sigma) for 5 min

at room temperature before increasing NaCl concentration to 150 mM and incubated under rotation for 20 min at 4◦C. Samples

were centrifuged at 16,000 g (20 min, 4◦C) and the supernatant was taken as the nuclear extract. MeCP2–EGFP complexes were

captured from nuclear extract using GFP-Trap_A beads (Chromotek) under rotation at 4�C for 20-30 min. Beads were washed four

times in NE1 containing 150mMNaCl and then proteins were eluted in 2x Laemmli Sample Buffer (Sigma) at 100�C, 5min. Proteins

were analyzed by western blotting using antibodies against MeCP2 (SigmaM7443; RRID:AB_477235) at a dilution of 1:2,000, GFP

(NEB 2956; RRID: AB_1196615), NCOR1 (Bethyl A301-146A; RRID: AB_873086), TBL1XR1 (Santa Cruz sc-100908; RRI-

D:AB_1130006) or HDAC3 (Sigma 3E11; RRID: AB_1841895), all at a dilution of 1:1,000. For detection on a LI-COR Odyssey

CLx machine, blots were probed with LI-COR secondary antibodies: IRDye 800CW Donkey anti-Mouse (926-32212), IRDye

800CW Donkey anti-Rabbit (926-32213) or IRDye 680LT Donkey anti-Rabbit (926-68023) at a dilution of 1:10,000. For detection

by ECL, blots were probed with anti-mouse-HRP (GE Healthcare, NA931) or anti-rabbit-HRP (GE Healthcare, NA934) at a dilution

of 1:5,000.

Protein levels in whole-brain crude extracts were quantified usingwestern blotting. Frozen half-brains (harvested at 9weeks of age)

were Dounce homogenized in 750 mL cold NE1 (20 mM HEPES pH7.9, 10 mM KCl, 1 mM MgCl2, 0.1% Triton X-100, 20% glycerol,

0.5 mM DTT, and protease inhibitors (Roche)) and treated with 750 U Benzonase (Sigma) for 15 min at room temperature. Next,

750 mL of 2x Laemmli Sample Buffer (Sigma) was added and samples were boiled for 3 min at 100�C, snap-frozen on dry ice, and
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boiled again for 5 min. Samples were diluted 1/6 with 1x sample buffer before analysis by western blotting. Membranes were probed

with an antibody against MeCP2 (SigmaM7443; RRID:AB_477235) at a dilution of 1:1,000, followed by LI-COR secondary antibodies

(listed above). Histone H3 (Abcam ab1791) was used as a loading control (dilution 1:10,000).

Flow cytometry
Fresh brains were harvested from 12-week-old animals and Dounce-homogenized in 5 mL homogenization buffer (320 mM sucrose,

5 mM CaCl2, 3 mMMg(Ac)2, 10 mM Tris HCl pH 7.8, 0.1 mM EDTA, 0.1% NP40, 0.1 mM PMSF, 14.3 mM b -mercaptoethanol, pro-

tease inhibitors (Roche)), and 5 mL 50% OptiPrep gradient centrifugation medium (50% Optiprep (Sigma D1556-250ML), 5 mM

CaCl2, 3 mM Mg(Ac)2, 10 mM Tris HCl pH 7.8, 0.1 M PMSF, 14.3 mM b -mercaptoethanol) was added. This was layered on top

of 10 mL 29%OptiPrep solution (v/v in H2O, diluted from 60% stock) in Ultra-Clear Beckman Coulter centrifuge tubes, and samples

were centrifuged at 10,100 g (30 min, 4�C). Pelleted nuclei were resuspended in resuspension buffer (20% glycerol in DPBS (GIBCO)

with protease inhibitors (Roche)). For flow cytometry analysis, nuclei were pelleted at 600 g (5 min, 4�C), washed in 1 mL PBTB (5%

(w/v) BSA, 0.1% Triton X-100 in DPBS with protease inhibitors (Roche)) and then resuspended in 250 ml PBTB. To stain for NeuN,

NeuN antibody (Millipore MAB377) was conjugated to Alexa Fluor 647 (APEX Antibody Labeling Kit, Invitrogen A10475), added at

a dilution of 1:125 and incubated under rotation for 45 min at 4�C. Flow cytometry (BD LSRFortessa SORP using FACSDIVA version

8.0.1 software) was used to obtain the mean EGFP fluorescence for the total nuclei (n = 50,000 per sample) and the high-NeuN

(neuronal) subpopulation (n > 8,000 per sample). Three biological replicates of each genotype were analyzed.

ATAC-seq library preparation
Hypothalami were dissected fromMM2-EGFP (n = 3),Mecp2 null (KO) (n = 3) andWT (n = 4, 3MM2-EGFP littermates and 1 KO litter-

mate) mice at 6-7 weeks of age. Freshly dissected tissues were homogenized using a hypotonic buffer (10 mM Tris-HCl pH 7.4,

10 mM NaCl, 3mM MgCl2, 0.1% [v/v] Igepal CA-630). Isolated nuclei were counted, and 50,000 nuclei were resuspended in 50 ml

of a transposition reaction mix containing 2.5 ml Nextera Tn5 Transposase and 2x TD Nextera reaction buffer. The mix was incubated

for 30min at 37 ◦C. DNAwas purified by either theMinElute PCR kit (QIAGEN) or the Agencourt AMPure XP beads (BeckmanCoulter)

and PCR amplified with the NEBNext High Fidelity reaction mix (NEB) to generate DNA libraries. The libraries were sequenced as

75 bp paired-end reads on a HiSeq 2500 Illumina platform.

RNA-seq library preparation
Hypothalami were harvested at 6-7 weeks of age (referred to as ‘‘6 weeks’’) fromMecp2 null (KO) mice (n = 4) and their WT littermate

controls (n = 3) and MM2-EGFP mice (n = 3) and their WT littermate controls (n = 4); and at 12-15 weeks of age (referred to as

‘‘12 weeks’’) fromMM2-EGFPmice (n = 4) and their WT littermate controls (n = 4). Total RNA was isolated from mouse hypothalami

using Qiazol lysis reagent followed by purification with the RNeasyMini kit (QIAGEN) according to manufacturer’s protocol. Genomic

DNA contamination was removed with the DNA-free kit (Ambion) and remaining DNA-free RNA was tested for purity using PCR for

genomic loci. Total RNA was tested on the 2100 Bioanalyzer (Agilent Technologies) to ensure a RIN quality higher than 9, and quan-

tified using a Nanodrop. Equal amounts of total RNA were taken forward for library preparation and ERCC RNA Spike-in control mix

(Ambion) was added according to the manufacturer’s guide. Ribosomal RNA was depleted using the RiboErase module (Roche) fol-

lowed by library preparation using KAPA RNA HyperPrep Kit (Roche). The libraries were sequenced as 50 bp pair-end reads using a

Nova-seq Illumina platform.

Phenotypic analysis
Consistent with previous studies (Brown et al., 2016; Tillotson et al., 2017), mice were backcrossed for four generations onto C57BL/

6J before undergoing phenotypic characterization. Two separate cohorts, each consisting of 10 MM2-EGFP animals and 10 wild-

type littermates, were produced. One cohort was scored weekly from 4 weeks of age (excluding week 31) until each mutant reached

its humane end-point (wild-type controls until 52 weeks) using a system developed by Guy et al. (2007). Two wild-type controls were

culled due to injuries, aged 38 and 45 weeks (censored on survival plot). Mice were scored in six categories: spontaneous activity,

gait, hind-limb clasping, tremor, abnormal breathing and general appearance. Mice received a score between 0 and 2 for each cate-

gory, where 0 = as wild-type, 1 = present, and 2 = severe. Intermediate scores of 0.5 and 1.5 were also used in all categories except

hind-limb clasping (Cheval et al., 2012). The scores in each category were added together to give the aggregate symptomatic score

for each animal. The mean scores ± SEM for all animals were plotted over time. Animals were also weighed during scoring sessions.

Animals were culled if they lost more than 20% of their maximum body weight. Survival was graphed using Kaplan–Meier plots. Pre-

viously published (Brown et al., 2016) data for Mecp2 null, T158M-EGFP, R306C-EGFP and R133C-EGFP (all backcrossed onto

C57BL/6J) were used for comparison. Scoring: null (n = 12), T158M-EGFP (n = 7), R306C-EGFP (n = 11) R133C-EGFP (n = 10); sur-

vival: null (n = 24), T158M-EGFP (n = 11), R306C-EGFP (n = 11), R133C-EGFP (n = 10); body weight: null (n = 20), T158M-EGFP (n =

15), R306C-EGFP (n = 11), R133C-EGFP (n = 10). Scoring data for the MM2-EGFP, R306C-EGFP and R133C-EGFP cohorts was

plotted as heatmaps shaded according to the mean score for each category per week (aligned by age and time before death).

Two R133C animals survived to one year of age so were excluded from the scoring analysis for the five weeks before death.

Some animals reached their humane point > 4 days after they were last scored so were included in weeks�5 to�1 only; for 0 weeks

prior to death: MM2-EGFP (n = 7), R306C-EGFP (n = 8), R133C-EGFP (n = 8).
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The second backcrossed cohorts underwent behavioral analysis at 10-11 weeks of age, consistent with a previous study (Brown

et al., 2016). Tests were performed over a twoweek period: elevated plusmaze on day 1, open field test on day 2, hangingwire on day

3 and accelerating rotarod on days 6–9 (1 day of training followed by 3 days of trials). The elevated plus maze is a cross-shapedmaze

65 cm above the floor with two open arms (20 3 8 cm), two closed arms (20 3 8 cm, with 25 cm high walls) and a central area (8 3

8 cm). It is set up in a dimly lit room with uniform lighting between each of the closed arms and each of the open arms. Animals were

placed in the central area and left to explore for 15 min (during which the experimenter left the room). Mice were tracked using ANY-

maze software (Stoelting) and the time in each area was determined. Mice were deemed to be in a particular area of the maze if R

70% of their body was inside this region. The open field apparatus used consisted of a square arena measuring 50 by 50 cm, which

was evenly lit (in a dimly lit room) and littered with fresh wood chippings. The animals were placed in the center of the area and left to

explore for 20 min each (during which the experimenter left the room). Mice were tracked using ANYmaze software (Stoelting). Ac-

tivity was assessed by total distance traveled. The hanging wire apparatus consists of a 1.5 mm diameter horizontal wire, 35 cm

above the bench. Animals were placed on the wire with their forepaws by the experimenter, and the time taken to bring a hind

paw to the wire was recorded. Animals were given a maximum of 30 s to complete this task. Animals that took longer or fell off

the wire were given the maximum score of 30 s. The test was performed three times for each animal (with an inter-test interval of

30 min) and the mean of the three tests was calculated. The accelerating rotarod consisted of a 3 cm diameter rod that can rotate

between 4 and 40 revolutions per minute (rpm). On the first day, the animals were accustomed to the apparatus in a short training

session where they must stay on the track for 30 s at its lowest speed (4 rpm). On the subsequent three days, each animal underwent

four trials (with an inter-trial interval of 75min) where the speed is slowly increased from 4 rpm to 40 rpm over 5min. The time taken to

fall (latency) was recorded and the average time for each day was calculated.

All analysis was performed blind to genotype. Animals were randomly assigned to the two backcrossed cohorts and the order in

which they were analyzed was randomized. Cohorts of this size have been used to successfully detect RTT-like symptoms in mice

carrying patient mutations including the milder mutation, R133C (Brown et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Information on sample size, definition of center and dispersion, the statistical tests used and the resulting P values are included in the

figure legends. All statistical analysis was performed using Prism 8 Software. Significance was defined as p < 0.05.

Evolutionary conservation among MBD proteins
The primary protein sequences of the methyl-CpG binding domains (MBDs) of human and mouse MeCP2, MBD1, MBD2 and MBD4

were aligned using ClustalWS on Jalview 2.8.2.

BLI quantification
The binding sensorgrams were analyzed using the Octet data analysis software 9.0 (ForteBio, Pall). Experimental data were fitted

using a 2:1model with global fitting (Rmax unlinked by sensors). All experiments were repeated on three independent protein batches

and data represents the mean of high-confidence KD (fit R2 > 0.9 and narrow CI). KD values were compared using t tests (unpaired,

two-tailed).

EMSA quantification
Percentage shift of the probe in electromobility shift assays (EMSAs) were quantified using ImageJ (NIH) from three technical repli-

cates. Binding affinities were compared using Two-way ANOVA.

Quantification of TBL1X recruitment
The number of co-transfected cells with TBL1X–mCherry recruitment to heterochromatic foci was determined for each MeCP2

construct. Three independent transfections were performed, and a total of 156, 150 and 151 cells were counted that expressed

WT-EGFP, R306C –EGFP and MM2-EGFP, respectively. This analysis was performed blind. The total proportion of cells with

TBL1X–mCherry recruitment by each mutant MeCP2 protein was compared with WT using Fisher’s exact tests.

FRAP analysis
FRAP analysis was performed on NIH 3T3 cells transiently transfected with EGFP-tagged WT (n = 27) and MM2 (n = 28), over inde-

pendent three transfections. Imageswere analyzed using a custom plugin (GitHub: https://doi.org/10.5281/Zenodo.2654602) written

for ImageJ (NIH). Fluorescence values were normalized using the following equation:

Normalised fluorescence =
Mean Cell Control preBleach� BackgroundðtÞ

Control Cell BleachðtÞ � BackgroundðtÞ � ðFrapSpotðtÞ � BackgroundðtÞ
Mean FrapSpot preBleach� BackgroundðtÞ

Half-lives were calculated for each cell using the following equation:
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t1/2[S] = t((F’-F0)*0.5 + F0)-t(F0), where F’ = fluorescence maximum at the end of the measurement (mean of the last 10 measure-

ments) and F0 = the fluorescence minimum at t0 (first image after the bleach); logarithmic regression lines were used (calculated in

Microsoft Excel, between 0 and 150 s as the curves fitted a logarithmic trend in this portion). The half-lives reported are the mean ±

SEM calculated from the replicate cells. The half-lives of WT-EGFP and MM2-EGFP where compared using a Mann-Whitney test.

Quantification of western blots
Western blots were processed using Image Studio Lite version 5.2 software. Protein levels of WT-EGFP and MM2-EGFP were

compared using a t test (unpaired, two-tailed).

Quantification of flow cytometry
Protein levels in neuronal nuclei were quantified by EGFP fluorescence by Flow cytometry (BD LSRFortessa SORP using FACSDIVA

version 8.0.1 software) to obtain the mean EGFP fluorescence for the total nuclei (n = 50,000 per sample) and the high-NeuN

(neuronal) subpopulation (n > 8,000 per sample). Three biological replicates of each genotype were analyzed. The protein levels in

MM2-EGFP mice were compared with WT-EGFP controls using t tests (unpaired, two-tailed).

Quantification of microscopy
Images of the dentate gyrus of the hippocampus were processed and quantified using Fiji (ImageJ). Pericentromeric chromatin was

defined as DAPI foci above a fixed brightness threshold. The sum of the area of these foci was divided by the cell number to calculate

the area of pericentromeric heterochromatin per cell. Total number of cells per genotype: WT-EGFP n = 967; MM2-EGFP n = 1129,

from three biological replicates of each (WT-EGFP1 n = 386; WT-EGFP2 n = 318; WT-EGFP3 n = 263; MM2-EGFP1 n = 533; MM2-

EGFP2 n = 359; MM2-EGFP3 n = 237). Graphs show mean ± SEM of the three biological replicates and genotypes were compared

using t tests (unpaired, two-tailed).

Quantification of genomic cytosine methylation
To calculate the percentage methylation in the Whole genome bisulphite sequencing data (GEO: GSE84533) (Lagger et al., 2017), a

threshold of R 5-fold coverage was used. The proportion of methylation for each site was determined based on the reads covering

the site for eachmotif, and the sum of these values was divided by the number of times that motif occurred. To determine the number

of sites with different levels of methylation (100%, 75%–99%, 50%–74%, 25%–49%, 1%–24% and 0%), a threshold of R 5-fold

coverage was used. To calculate the approximate number of sites with different levels of methylation in the whole genome, these

values were multiplied by total number of motifs in the genome/number of motifs with R 5-fold coverage.

Analysis of ATAC-seq footprinting
Nextera adaptor sequence removal was performed on 75 bp paired-end reads using Trimmomatic version 0.32 with the following

parameters: ILLUMINACLIP:nextera.fa:2:40:15 MINLEN:25. Surviving reads were then mapped to the mouse mm9 reference

genome with bwa mem version 0.7.5a-r405 using the -M parameter. Alignments were filtered based on mapping quality (< 20) so

that only uniquely mapped reads were taken forward, furthermore, reads aligning to mitochondrial DNA or Encodemm10 blacklisted

regions were removed from further analysis. Read alignments were converted into normalized coverage files for visualization and

downstream quantification using deepTools bamCoverage version 3.1.3 with the following parameters: -bs 1–normalizeUsing

BPM–skipNAs -e. The positions of Tn5 transposase cutsites were inferred from the 50 end of aligned sequencing reads and converted

into bigWig format for further analysis.

Whole genome bisulphite sequencing data (GEO: GSE84533) (Lagger et al., 2017) was employed to visualize a footprint of MeCP2

binding across methylated and unmethylated cytosines in several sequence contexts. For mCG, 1 million randomly selected sites

with 100%methylation (R5-fold coverage between both strands) were used. For CG, sites with 0%methylation (R10-fold coverage

between both strands) were used (n = 935,582). FormCAC, sites withR 75%methylation (R5-fold coverage) were used (n = 95,017).

To increase the number of sites used, the thresholds were lowered toR 4-fold coverage andR 50%methylation for other forms for

mCH: mCAT n = 167,159; mCAG n = 172,250; mCAA n = 72,688; mCT n = 263,578; mCC n = 7,643. For all unmethylated CHmotifs, 1

million randomly selected sites with 0% methylation (R10-fold coverage) were used. The distribution of ATAC-seq cut sites around

methylated and unmethylated cytosines was computed in R using the seqPlots package. The region 300 bases upstream and down-

stream of each cytosine was divided into single base bins and for each bin the total number of cut sites was summed across all cy-

tosines. These values were plotted to show the number of cut-sites in the 600 bases surrounding cytosines of different methylation

context. The values were normalized to the flanking regions by calculating the ratio of each bin to the mean of all bins within the outer

100 bases of the plot. For each sample themean values of each bin were computed across all biological replicates before plotting. To

determine footprints of MeCP2-dependent or MM2-EGFP-dependent chromatin inaccessibility, ATAC-seq profiles over each motif

were divided by the equivalent KO profile. Graphs show ln(WT/KO) or ln(MM2-EGFP/KO). To directly compare occupancy of mCG

sites between WT and MM2-EGFP proteins, graphs show ln(MM2-EGFP/WT).
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Analysis of RNA-seq datasets
Raw sequencing reads were quality and adaptor trimmed using Trimmomatic v0.33 (Bolger et al., 2014). Quality trimmed reads were

aligned to mm10 genome assembly andM19 transcriptome assembly using STAR v2.4.2a (Dobin et al., 2013) and read counts span-

ning exons were calculated using featureCounts v1.6.4 (Liao et al., 2014). Differential gene expression analysis was performed using

DESeq2 v1.24.0 (Love et al., 2014) and significance threshold for a gene was set at p-adjusted value < 0.05.

Whole genome bisulphite sequencing data (GEO: GSE84533) (Lagger et al., 2017) was used to determine the number of mCG and

mCAC binding sites per gene body (between the transcriptional start site and transcriptional termination site). The proportion of DNA

methylation at a given site i corresponds to the ratio of methylated C basecalls (mC) for that site to the count of all reads mapping to

that site (mi = mC / C). The total number of methylated sites for CG and CAC motifs across a gene body was calculated by summing

the respectivemi. Since a single molecule of an MBD protein binds a symmetrically methylated mCG/mCG site, the number of mCG

sites was divided by two. Ordinary least-squares (OLS) linear regression analysis was used to compare the number of mCG versus

mCAC binding sites per gene. Comparisons of gene expression changes to the number of methylated binding sites used all genes

that were detected in all datasets (n = 14,391). Gene expression changes were determined by comparing the following pairs of data-

sets: KO/WT (littermate controls, at 6 weeks on C57BL/6J;CBA/CA),MM2-EGFP/WT (littermate controls, at 6 weeks on C57BL/6J),

MM2-EGFP/WT (littermate controls, at 12 weeks on C57BL/6J). Genes were binned by the number of mCG or mCAC binding sites,

each bin contained 500 genes (the first and last bins were excluded due to the high variance in the motif used for binning. Slopes of

linear regression (with 95% confidence interval) were determined and plotted for each bin. For each bin, it was determined whether

the slope was significantly non-zero. The ratio of mCG/total binding sites was calculated for genes in each of the mCAC bins and the

ratio of mCAC/total binding sites was calculated for genes in each of the mCG bins. Total = mCG + mCAC. Table S5 (Excel file) con-

tains expression change and methylation data for the 14,391 expressed genes.

Genes significantly dysregulated in mutants compared to age-matched wild-type littermate controls were identified in each data-

set (KO/WT, 6 weeks;MM2-EGFP/WT 6weeks; andMM2-EGFP/WT, 12 weeks) using an adjusted p value (padj) of < 0.05. OLS linear

regression analysis was used to compare transcriptional changes of shared genes in WT/KO (6 weeks) versus MM2-EGFP/WT

(6 weeks) and in WT/KO (6 weeks) versus MM2-EGFP/WT (12 weeks). Comparisons between the shared differentially expressed

genes and those dysregulated in KO or MM2-EGFP only were performed separately on the age-matched and symptom-matched

datasets. This analysis compared: the total number of mCG + mCAC binding sites per gene, the ratio of mCAC/total binding sites

per gene and expression changes (relative to wild-type littermate controls). Shared genes were statistically compared to those un-

changed in either mutant and to those affected in KO or MM2-EGFP only using Mann-Whitney tests. Expression changes of the

neurological disease-associated genes from previously published RNA-seq datasets were added for comparison: KO/WT hypothal-

amus 6 weeks (GEO: GSE66870) (Chen et al., 2015) and KO/WT cortex 8 weeks (GEO: GSE128178) (Boxer et al., 2019).

Disease Ontology analysis
Dysregulated gene identifiers were converted to theirH. sapiens orthologs and disease ontology enrichment analysis was performed

using clusterProfiler (Yu et al., 2012). Over representation analysis (ORA) was used to determine whether any known disease ontol-

ogies are over-represented in the list of dysregulated genes. Hypergeometric test was used to estimate the significance of the dis-

ease ontologies and p values were adjusted to account for Type I errors using Bonferroni correction. Type I errors were also ac-

counted for using a separate independent method called Benjamini/Hochberg correction to calculate false-discovery rates (FDR).

Statistical analysis of behavioral data
Growth curves were compared usingMixed-effects model (REML) analysis for weeks 4-48 (excluding week 31). Survival curves were

compared using a Mantel–Cox test. For behavioral analysis, when all data fitted a normal distribution (open field), genotypes were

compared using t tests (unpaired, two-tailed). For non-parametric datasets (elevated plus maze, hanging wire and accelerating ro-

tarod latency to fall), genotypes were compared using Kolmogorov–Smirnov tests. Change in performance over time in the acceler-

ating rotarod test was determined for each genotype using Friedman tests.
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SUPPLEMENTAL INFORMATION 

 

Figure S1. MeCP2 binds mCG and mCAC and to a lesser extent mCAT. Related to 
Figure 1 

A. Representative ATAC-seq tracks (cut sites) for WT (black) and KO (grey) shown 
alongside mCG and mCAC tracks (percentage methylation) from WGBS. Screenshot covers 
a region of chromosome 1 with several annotated transcriptional units (bottom). Deletion of 
Mecp2 does not result in gross changes to chromatin accessibility. B. Bar graph showing the 
number of highly methylated sites used for ATAC-seq footprinting. mCG sites are 100% 
methylated on both strands, with a combined ≥5-fold coverage. mCAC sites are ≥75% 
methylated, with a ≥5-fold coverage. All others are ≥50% methylated, with a ≥4-fold 
coverage. C-F. ATAC-seq footprints over methylated (upper) and unmethylated (lower) 
sequences. All CH footprints used 1 million sites with 0% methylation and ≥10-fold coverage. 
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Figure S2. Chimeric protein MM2 retains the ability to bind to key interaction partners 
of MeCP2, the NCOR1/2 repressor complexes. Related to Figure 2 

A. EGFP-tagged MM2 immunoprecipitated components of the NCOR1/2 co-repressor 
complexes: NCOR1 and HDAC3. WT and R306C were used as positive and negative 
controls for binding, respectively. In = input; IP = immunoprecipitate; * band from degraded 
protein. B. Representative images showing recruitment of TBL1X–mCherry to 
heterochromatic foci by EGFP-tagged MM2 when it is co-overexpressed in NIH-3T3 cells. 
WT and R306C were used as positive and negative controls for TBL1X–mCherry 
recruitment, respectively. Scale bar, 10 μm. Quantification (below) shows the percentage of 
cells with focal TBL1X–mCherry localization, evaluated relative to WT-EGFP using Fisher’s 
exact tests: R306C-EGFP, **** P < 0.0001; MM2-EGFP, P > 0.99. Total numbers of cells 
counted: WT-EGFP, n = 156; R306C-EGFP, n = 150; MM2-EGFP, n = 151; over three 
independent transfection experiments. 
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Figure S3. Generation of MM2-EGFP mice, Related to STAR methods: Generation of 
MM2-EGFP mice. Related to Figure 3 

Diagrammatic representation of MM2-EGFP mouseline generation. The endogenous Mecp2 
allele was targeted in male ES cells. The site of Cas9 cleavage in the WT sequence is 
shown by the scissors symbol. The floxed selection cassette was removed in vivo by 
crossing chimeras with deleter (CMV-cre) transgenic mice to produce constitutively 
expressing MM2-EGFP mice. The solid black line represents the sequence encoded in the 
targeting vector and the dotted lines indicate the flanking regions of mouse genomic DNA. 
LoxP sites are shown as triangles. Key: Mecp2 MBD = blue, MM2 MBD = orange, NID = 
pink, intervening Mecp2 exonic sequences = grey, EGFP = green, linker = dark green, 
Neomycin resistance gene = dark blue, transcriptional stop cassette = dark red. Southern 
blot analysis shows correct targeting of ES cells and successful cassette deletion in the 
MM2-EGFP knock-in mice. 
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Figure S4: MM2 binds specifically to mCG in vivo. Related to Figure 3 

A. Western blot analysis of whole-brain extract showing protein sizes and abundance of 
MM2-EGFP compared to WT and WT-EGFP controls, detected using an N-terminal MeCP2 
antibody. Histone H3 was used as a loading control. Quantification (right) of WT-EGFP and 
MM2-EGFP protein levels, showing mean ± S.E.M. Genotypes were compared using a t-
test: NS P = 0.088. B-E. ATAC-seq footprinting of MM2-EGFP at methylated (upper) and 
unmethylated (lower) CAG (B), CAA (C), CT (D) and CC (E) sites. Equivalent WT ATAC-seq 
footprinting is shown in Figure S1C-F. F. Quantification of the microscopy analysis shown in 
Figure 3F. The average number of foci per cell (left) and the total area of pericentromeric 
heterochromatin per cell (PCH) (right). Total number of cells per genotype: WT-EGFP n = 
967; MM2-EGFP n = 1129, from three biological replicates of each. Graphs show mean ± 
SEM of biological replicates. Genotypes were compared using t-tests: number of foci NS P = 
0.93; total area NS P = 0.94. G. GFP pulldowns from whole brain nuclear extract showing 
immunoprecipitation of members of the NCOR1/2 co-repressor complexes, TBLR1 and 
HDAC3, with WT-EGFP and MM2-EGFP. WT (untagged) and R306C were used as negative 
controls. In = input; IP = immunoprecipitate. * bands from degraded protein. 
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Figure S5: MM2 knock-in mice display behavioural defects associated with the RTT-
like phenotype. Related to Figure 5 

Latency to fall from the accelerating rotarod in four trials was calculated for each of the 3 
days of the experiment. Graph shows median and interquartile range between animals. WT 
animals did not show altered performance over the course of any of the three days: day 1 P 
= 0.98; day 2 P = 0.39; and day 3 P = 0.08. MM2-EGFP animals show fatigue over the 
course of day 1 * P = 0.022 and day 2 ** P = 0.004, but no change on day 3 P = 0.95. 
Change in performance was analysed with Friedman tests. 
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Figure S6. MM2 represses transcription at mCG but not mCAC sites. Related to Figure 
6 

Legend on next page 
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Figure S6. MM2 represses transcription at mCG but not mCAC sites. Related to Figure 
6 

A-C. Correlations between the total number of MeCP2 binding sites per gene (between TSS 
and TTS): mCG + mCAC (A), mCG (B) and mCAC (C) and transcriptional changes in MM2-
EGFP/WT hypothalamus tissue at 12 weeks of age. D-G. Genes were binned by the number 
of mCAC binding sites to determine the effect of mCG on transcription; and by the number of 
mCG binding sites to determine the effect of mCAC on transcription. Whiskers show 
minimum-maximum. Bins no. 1 and 29 (shown in red) were excluded due to the high 
variance in the motif used for binning. D. Number of mCAC binding sites per gene in mCAC 
bins. E. Number of mCG binding sites per gene in mCG bins. F. Number of mCG binding 
sites per gene in mCAC bins. G. Number of mCAC sites per gene in mCG bins. H. 
Correlations between the number of mCG binding sites and transcriptional changes in MM2-
EGFP-EGFP/WT (12 weeks), in mCAC bins. Two example bins are shown (# Bin 12, mean 
log10 mCAC = 1.32; and § Bin 25, mean log10 mCAC = 2.34). The slopes of all bins are 
shown below. I. Correlations between the number of mCAC binding sites and transcriptional 
changes in MM2-EGFP-EGFP/WT (12 weeks), in mCG bins. Two example bins are shown 
(‡ Bin 11, mean log10 mCG = 2.12; and ◊ Bin 27, mean log10 mCAC = 3.08). The slopes of all 
bins are shown below. Error on all slopes: 95% CI. See Tables S1-2. 
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Figure S7. Shared dysregulated genes are enriched in mCAC and highly upregulated. 
Related to Figure 7 

A. Shared genes are dysregulated in the same direction in KO/WT (6 weeks) and MM2-
EGFP/WT (6 weeks). B. Shared genes have more mCG + mCAC binding sites, compared to 
genes unchanged in either mutant at 6 weeks and to genes dysregulated in only KO or only 
MM2-EGFP (6 weeks). C. Shared genes have higher mCAC/total binding sites ratios, 
compared to unchanged genes and to genes dysregulated in only KO or only MM2-EGFP (6 
weeks).  D. Shared genes are more upregulated in both mutants, compared to genes 
dysregulated in only KO or only MM2-EGFP (6 weeks). B-D. Disease-associated genes 
have exceptionally high mCG + mCAC levels, mCAC/total ratios and are highly upregulated.  
Median values are indicated by a black bar. Whiskers show 5-95 percentiles. Pairs of gene 
sets were compared using Mann-Whitney tests: **** P < 0.0001.  
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Table S1. Correlations between number of mCG binding sites and transcriptional changes in mCAC bins. Related to Figures 6 and S6 

Bin 
no. 

Mean 
mCAC 
in bin 

KO/WT (6 wk) slopes MM2-EGFP/WT (6 wk) slopes MM2-EGFP/WT (12 wk) slopes 
Mean Min Max Non-

zero? 
Mean Min Max Non-

zero? 
Mean Min Max Non-

zero? 
2 0.13 0.1019 0.1565 0.04727 0.0003 -0.04461 -0.000002 -0.08922 0.05 -0.00426 0.03661 -0.04513 0.8378 
3 0.37 0.05908 0.1122 0.005918 0.0295 -0.03683 0.006171 -0.07982 0.093 -0.01325 0.03468 -0.06118 0.5873 
4 0.54 0.0173 0.06477 -0.03018 0.4744 -0.09874 -0.04817 -0.1493 0.0001 -0.03245 0.01221 -0.0771 0.154 
5 0.68 0.1036 0.1612 0.04588 0.0005 -0.09853 -0.04867 -0.1484 0.0001 -0.01876 0.02493 -0.06245 0.3993 
6 0.79 0.1336 0.1981 0.06913 <0.0001 -0.0094 0.04641 -0.0652 0.7409 -0.02627 0.02125 -0.0738 0.278 
7 0.9 0.05882 0.125 -0.00736 0.0814 -0.03391 0.02106 -0.08889 0.2261 -0.06336 -0.00488 -0.1218 0.0338 
8 0.99 0.04805 0.1248 -0.0287 0.2193 -0.04938 0.003244 -0.102 0.0658 -0.06007 0.000066 -0.1202 0.0503 
9 1.08 0.1272 0.1909 0.06347 0.0001 -0.08529 -0.02803 -0.1425 0.0036 -0.03586 0.0221 -0.09382 0.2248 
10 1.16 0.1233 0.1961 0.05062 0.0009 -0.07127 0.002592 -0.1451 0.0586 -0.09496 -0.02807 -0.1618 0.0055 
11 1.24 0.1405 0.2175 0.06363 0.0004 -0.05294 0.01903 -0.1249 0.149 -0.1497 -0.06818 -0.2312 0.0003 

12 # 1.32 0.1944 0.2732 0.1155 <0.0001 -0.01177 0.05242 -0.07596 0.7188 0.01062 0.08139 -0.06015 0.7683 
13 1.39 0.1462 0.2347 0.05766 0.0013 -0.1526 -0.08457 -0.2206 <0.0001 -0.01244 0.05329 -0.07816 0.7102 
14 1.47 0.1009 0.1778 0.02407 0.0102 -0.1109 -0.04047 -0.1812 0.0021 -0.1175 -0.04409 -0.1908 0.0018 
15 1.54 0.144 0.2298 0.05826 0.001 -0.1058 -0.02929 -0.1823 0.0068 -0.1118 -0.03542 -0.1882 0.0042 
16 1.61 0.121 0.2295 0.01244 0.029 -0.06327 0.02889 -0.1554 0.178 0.02969 0.1231 -0.06376 0.5328 
17 1.68 0.03768 -0.05625 0.1316 0.431 -0.09179 -0.01437 -0.1692 0.0202 -0.05623 0.03499 -0.1474 0.2264 
18 1.74 0.127 0.2293 0.02469 0.0151 -0.1347 -0.04546 -0.2239 0.0032 -0.1194 -0.02161 -0.2172 0.0168 
19 1.81 0.1207 0.2323 0.009107 0.0341 -0.1794 -0.04696 -0.3118 0.008 -0.1707 -0.07098 -0.2705 0.0008 
20 1.89 0.03366 0.1459 -0.0786 0.5561 -0.09814 -0.0082 -0.1881 0.0325 -0.1061 -0.00581 -0.2063 0.0382 
21 1.97 0.007044 0.1192 -0.1052 0.9019 -0.131 -0.032 -0.2301 0.0096 -0.1311 -0.02231 -0.2399 0.0183 
22 2.05 0.05148 0.163 -0.06003 0.3648 -0.1941 -0.08622 -0.3019 0.0004 -0.212 -0.09465 -0.3294 0.0004 
23 2.14 -0.02023 0.1098 -0.1502 0.7599 -0.3301 -0.2304 -0.4298 <0.0001 -0.3708 -0.2644 -0.4773 <0.0001 
24 2.23 0.1049 0.2365 -0.02661 0.1177 -0.2197 -0.0944 -0.345 0.0006 -0.2083 -0.09173 -0.325 0.0005 

25 § 2.34 0.0322 0.1802 -0.1158 0.6693 -0.3358 -0.2159 -0.4557 <0.0001 -0.2851 -0.1483 -0.422 <0.0001 
26 2.47 -0.01775 0.1237 -0.1592 0.8053 -0.4808 -0.3275 -0.6341 <0.0001 -0.5098 -0.3681 -0.6515 <0.0001 
27 2.62 -0.02933 0.1423 -0.2009 0.7371 -0.5756 -0.4388 -0.7125 <0.0001 -0.6225 -0.4547 -0.7903 <0.0001 
28 2.81 -0.00665 0.1623 -0.1756 0.9384 -0.4337 -0.2959 -0.5715 <0.0001 -0.4575 -0.3142 -0.6008 <0.0001 

 

Key 

Positive correlation, with non-zero slope * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.  
Negative correlation, with non-zero slope P < 0.05 > 0.01; (lighter blue), P < 0.01 (darker blue). 
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Table S2. Correlations between number of mCAC binding sites and transcriptional changes in mCG bins. Related to Figures 6 and S6  

Bin 
no. 

Mean 
mCG 
in bin 

KO/WT (6 wk) slopes MM2-EGFP/WT (6 wk) slopes MM2-EGFP/WT (12 wk) slopes 
Mean Min Max Non-

zero? 
Mean Min Max Non-

zero? 
Mean Min Max Non-

zero? 
2 1.33 -0.04999 -0.00387 -0.0961 0.0337 0.0531 0.09544 0.01076 0.0141 0.06635 0.1136 0.01908 0.006 
3 1.52 -0.1146 -0.06085 -0.1683 <0.0001 0.03477 0.07956 -0.01002 0.1278 0.01593 0.06003 -0.02817 0.4782 
4 1.64 -0.00743 0.04127 -0.05613 0.7646 0.1207 0.1692 0.07229 <0.0001 0.1326 0.1817 0.08355 <0.0001 
5 1.75 -0.06007 -0.00047 -0.1197 0.0482 0.1037 0.1572 0.05017 0.0002 0.06772 0.1205 0.01492 0.012 
6 1.83 -0.1202 -0.06815 -0.1723 <0.0001 0.04979 0.08987 0.009717 0.015 0.0267 0.07079 -0.01739 0.2346 
7 1.90 -0.04154 0.01688 -0.09995 0.163 0.04245 0.08551 -0.0006 0.0533 0.03174 0.07704 -0.01356 0.1693 
8 1.96 -0.05237 -0.00068 -0.1041 0.0471 0.04713 0.09706 -0.00279 0.0642 0.03311 0.08658 -0.02036 0.2243 
9 2.02 -0.08982 -0.03728 -0.1424 0.0008 0.04312 0.09031 -0.00406 0.0732 0.05127 0.1009 0.001693 0.0427 
10 2.07 -0.02131 0.02566 -0.06828 0.3732 0.08413 0.1306 0.0377 0.0004 0.03447 0.08002 -0.01108 0.1377 

11 ‡ 2.12 -0.01814 0.03362 -0.0699 0.4914 0.06764 0.1123 0.02303 0.003 0.05444 0.1016 0.007283 0.0237 
12 2.18 0.01455 0.07166 -0.04257 0.617 0.03627 0.0932 -0.02067 0.2113 0.0622 0.1114 0.01295 0.0134 
13 2.22 -0.02293 0.03024 -0.0761 0.3972 0.11 0.1547 0.06522 <0.0001 0.06964 0.1124 0.0269 0.0015 
14 2.27 0.01534 0.07877 -0.0481 0.635 0.07052 0.1217 0.01934 0.007 0.01736 0.07809 -0.04337 0.5746 
15 2.31 -0.03987 0.01721 -0.09695 0.1706 0.05309 0.1023 0.003867 0.0346 0.04217 0.08883 -0.0045 0.0764 
16 2.36 0.003028 0.06179 -0.05573 0.9194 0.122 0.1724 0.0716 <0.0001 0.124 0.1851 0.06295 <0.0001 
17 2.40 -0.0467 0.01897 -0.1124 0.163 0.07351 0.1462 0.000788 0.0476 0.09874 0.1589 0.03856 0.0013 
18 2.45 0.003569 0.06852 -0.06138 0.9141 0.1414 0.1922 0.0905 <0.0001 0.1328 0.181 0.08452 <0.0001 
19 2.50 -0.0281 0.03647 -0.09268 0.3929 0.1268 0.1862 0.06744 <0.0001 0.1624 0.2214 0.1034 <0.0001 
20 2.55 -0.01817 0.04249 -0.07884 0.5564 0.1139 0.1686 0.05923 <0.0001 0.1011 0.1602 0.04188 0.0009 
21 2.60 -0.02415 0.0367 -0.085 0.4359 0.1478 0.2102 0.08536 <0.0001 0.1388 0.2053 0.07225 <0.0001 
22 2.65 0.007451 0.0836 -0.06869 0.8476 0.1503 0.2089 0.09167 <0.0001 0.1748 0.2355 0.1141 <0.0001 
23 2.71 -0.0032 0.06665 -0.07304 0.9284 0.2298 0.2893 0.1703 <0.0001 0.2029 0.2622 0.1435 <0.0001 
24 2.79 0.0633 0.1487 -0.02207 0.1458 0.2407 0.3155 0.1659 <0.0001 0.2515 0.3294 0.1736 <0.0001 
25 2.87 0.05235 0.1343 -0.02956 0.2098 0.2316 0.3053 0.1578 <0.0001 0.2825 0.3549 0.2102 <0.0001 
26 2.96 0.1464 0.2437 0.04904 0.0033 0.3486 0.435 0.2623 <0.0001 0.3694 0.4665 0.2722 <0.0001 

27 ◊ 3.08 0.1834 0.2686 0.0982 <0.0001 0.3241 0.4011 0.2472 <0.0001 0.391 0.475 0.307 <0.0001 
28 3.24 0.3674 0.471 0.2638 <0.0001 0.5107 0.598 0.4233 <0.0001 0.5743 0.6647 0.484 <0.0001 

 

Key 

Positive correlation, with non-zero slope P < 0.05 > 0.01; (lighter orange), P < 0.01 (darker orange).  
Negative correlation, with non-zero slope P < 0.05 > 0.01; (lighter blue), P < 0.01 (darker blue). 
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Table S3: Disease Ontology analysis of shared dysregulated genes. Related to Figures 7 
and S7 

DOID Description Gene 
ratio 

BgRatio P value Adj. P q value Genes 

0060040 
 

pervasive 
developmental 
disorder 
 

16/155 
 

201/8007 
 

1.5E-06 
 

0.00056 
 

0.0005 
 

MEF2C; RBFOX1; 
AVPR1A; SEMA5A; 
GRM8; AUTS2; GRIP1; 
DOCK4; NOS1AP; 
CNTNAP2; BDNF; OXTR; 
GRIN2A; NTNG1; TAC1; 
CNTN4 

0060041 
 

autism 
spectrum 
disorder 
 

15/155 
 

190/8007 
 

3.6E-06 
 

0.00056 
 

0.0005 MEF2C; RBFOX1; 
AVPR1A; SEMA5A; 
GRM8; AUTS2; GRIP1; 
DOCK4; NOS1AP; 
CNTNAP2; BDNF; OXTR; 
GRIN2A; TAC1; CNTN4 

12849 autistic 
disorder 
 

15/155 
 

190/8007 
 

3.6E-06 
 

0.00056 0.0005 MEF2C; RBFOX1; 
AVPR1A; SEMA5A; 
GRM8; AUTS2; GRIP1; 
DOCK4; NOS1AP; 
CNTNAP2; BDNF; OXTR; 
GRIN2A; TAC1; CNTN4 

0060037 developmental 
disorder of 
mental health 

20/155 373/8007 3.1E-05 0.00361 0.0035 MEF2C; RBFOX1; 
AVPR1A; SEMA5A;  
GRM8; AUTS2; KIRREL3; 
GRIP1; DOCK4; KCNK9; 
NOS1AP; CNTNAP2; 
CCSER1; CA8; BDNF; 
OXTR; GRIN2A; NTNG1; 
TAC1; CNTN4 

 

Key 

DOID: Disease Ontology Unique Identification Number 

Gene ratio: Ratio of genes which are part of the disease ontology in the query/input list (subset 
of the overlap of KO vs WT and MM2 vs WT which are associated with any disease term, not 
every gene is associated with disease ontology) 

BgRatio: Ratio of genes which are part of the disease ontology in the background list (subset of 
all the genes that are associated with any disease ontology, not every gene is associated with 
disease ontology) 

P-value: p-value associated with the hypergeometric test 

Adj. P: Adjusted p-value after performing Benjamini-Hochberg correction 

q value/FDR: False Discovery Rate after performing the Benjamini-Hochberg correction 
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Table S4: Primer sequences. Related to STAR methods 

Primer name Sequence 

Primers for cloning MBD2[MBD] into pNIC28-Bsa4 

MBD2 F: TACTTCCAATCCATGAGGGGACCCCGGGCCAC 

MBD2 R: TATCCACCTTTACTGTCATCTCTGTTTGTTCTTCTGTAATTTAC 

Primers for cloning MeCP2[N-term] and MM2[N-term] into pET30b 

N-term NdeI F:  GATATACATATGGTAGCTGGGATGTTAGGG 

N-term His-tag EcoRI R:  AGCTCGAATTCTCAGTGGTGGTGGTGGTGGTGTTCTGATGCTGCTGCCT
TTG 

Primers for site-directed mutagenesis to insert R169G into MM2 

MM2 RG F:  CTGAGCCCTGATTTTCCGATCACTTCCTCCTTC 

MM2 RG R: GAAGGAGGAAGTGATCGGAAAATCAGGGCTCAG 

Primers for amplifying fragments for recombineering MM2 targeting vector 

RN F:  

 

AAGCCTCGGCTTCCCCCAAACAGCGGCGCTCCATTATCCGTGACCGGGG
AGGCCTGGTGATGATGGCGGGATCG 

RN R:  

 

GGAGCTTTGGGAGATTTGGGCTTCTTAGGTGGTTTCTGCTCTCTCCTGG
ATCAGAAGAACTCGTCAAGAAGGCG 

TV F:  CCCCAGCAGTGCCAGAA 

TV R: CGACCCCTGCCAGTTCC 

Primers for screening ES cell clones (5’ end) 

F4:  TCACCATAACCAGCCTGCTCGC 

R5: TGCTAAAGCGCATGCTCCAGACT 

R3: ATTCGATGACCTCGAGGATCCG 

Primers for screening ES cell clones (3’ end) 

F1: AGTTCTGGAATGGTGAGCAAGG 

F2: GACGTAAACGGCCACAAGTTCA 

R2: TCAAAAGCAGAGCAGGCAAAAG 

Primers for sequencing predicted gRNA off-target 

Dock5 F: AGTAAAGTAGATTTGTGGGTTCCG 

Dock5 R: GTAGAATGTGGAGATTTCCTCTAGC 

MM2 genotyping primers 

P5: TGGTAAAGACCCATGTGACCCAAG 

P7: GGCTTGCCACATGACAAGAC 

Cre genotyping primers 

Cre F: GACCGTACACCAAAATTTGCCTGC 

Cre R: TTACGTATATCCTGGCAGCGATC 
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