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Supporting Information Appendix. Supplementary Methods 

 
Time-series analysis of factors leading to the formation of the mosaic. We used a 
multivariate correlation analysis to determine the sign (positive or negative) and strength (slope) 
of the relationship between Pycnopodia density, density of exposed purple sea urchins, kelp 
density, and sea otter abundance in Monterey Bay, California. The analysis revealed an inverse 
relationship between Pycnopodia density and exposed purple sea urchin density (P < 0.0001, ß = 
-0.28), a positive relationship between Pycnopodia and kelp density (P < 0.0001, ß = 0.13), and a 
strongly positive relationship between exposed purple sea urchins and sea otter abundance (P < 
0.0001, ß = 0.73). We then used a cross-correlation analysis to determine whether a time-lag 
occurred between the initiation of these events, but found that the model was centered at zero, 
indicating that these events likely began at or around the year 2014. Although these events likely 
initiated simultaneously, the otter, kelp, and urchin response continued for at least three years.  
 
Emergence of urchins following the demise of Pycnopodia. The exponential increase in the 
density of exposed purple sea urchins is explained almost entirely by the emergence of urchins 
from refuge in crevices that then made them detectible by divers. This behavioral response is 
evidenced by the dramatic increase in numbers across the entire size distribution of urchins. 
Counts (i.e., density) of 3 cm (approx. two years old) to 8 cm (several years old) urchins 
uniformly increased over a magnitude of 600% between 2013 and 2014. These size classes are 
too large to have settled from the plankton later than 2013, and the increase occurred across all of 
the survey sites, negating immigration into the survey area. However, a recruitment event may 
have occurred post-emergence (after 2014) that further led to the observed exponential increase 
in sea urchin counts.  
 
State space model for estimating population trends. The annual census counts of independent 
otters and dependent pups, collected between 1990 and 2018 (1), provide a time-series of relative 
abundance indices for each area of the coast. Because the sea otter census is conducted as an 
exhaustive, un-corrected count with no associated measurement of uncertainty, the annual counts 
cannot be interpreted as a true estimate of abundance (2). In previous analyses of sea otter 
population trends, maximum likelihood or Bayesian approaches have been used to infer the 
underlying population dynamics while accounting for observer error (3-4). Here we describe a 
Bayesian state-space model used to infer trends in southern sea otter abundance within each of 
three coastal regions: Santa Cruz, Monterey, and Big Sur (see Figure S10). Our model explicitly 
incorporates demographic processes and allows for both observer error (measurement 
uncertainty) in the raw counts of independents and pups, as well as stochasticity (variation across 
years) in underlying vital rates. By utilizing an age-structured, demographically explicit process 
model, we can estimate realistic levels of variation in the underlying trends and ensure that the 
inferred dynamics are constrained to demographically feasible limits. We also gain insights into 
the nature of variation in underlying vital rates.  
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Process model 
We use a simplified, female-only demographic model, whose structure and parameter value 
ranges are informed by previously published demographic models for southern sea otters (3-7). 
We define 4 age classes of independent otters: 3 subadult year classes (6mo – 1.5yr, 1.5 – 2.5yr, 
and 2.5-3.5yr) and a 4th multi-year class for adults that spans all ages >3.5yr. Independent otter 
age classes begin at 6 months because that is the average age at which dependent pups are 
weaned by females (8), and dependent pups are not tracked as a separate class but rather 
incorporated into the adult reproductive term (3) as described below. While reproduction is 
continuous and only weakly seasonal in southern sea otters (9), we discretize reproductive 
processes for model tractability such that adult females are assumed to become pregnant at the 
beginning of an annual time step, give birth halfway through the year, and then wean the pup (if 
it survives) at the end of the time step, at which time the 6mo pup recruits to the first subadult 
year class.  
 
Stage-specific survival rates are described using an instantaneous hazards approach: for adults 
(stage 4), the annual per-capita survival rate is estimated as: 
 
  (0.1) 

where h0 is a constant representing baseline log-hazards (set to -3 to correspond to maximum 
survival of 0.95, based on previous studies (6)); and a is the mean log-hazard ratio for adults, 
estimated by fitting the model to survey data. For simplicity and model tractability we assume 
that stochasticity primarily affects subadult survival and has minimal effects on adult survival. 
We thus calculate sub-adult survival rates as: 
 
  (0.2) 

where g  is the mean log-hazard ratio for subadults and eg,t is a normally distributed random 
parameter representing the effects of environmental stochasticity in year t, and has a mean of 0 
and standard error of sg  (a parameter to be estimated). The survival of pups from birth to 
weaning is also assumed to be affected by environmental stochasticity, with annual deviations 
from the mean value assumed to be partially correlated and partially independent of subadult 
survival: 
 
  (0.3) 

where f is an estimated parameter (representing the mean log-hazard ratio for dependent pups) 
and ef,t is a normally distributed random effects term representing environmental stochasticity in 
year t, with mean of 0 and standard error sf, (a parameter to be estimated).   
 
The annual per-capita reproductive contributions of adult females to the first female subadult 
year class in year t are calculated as:   
 
  (0.4) 

( )( )0exp expaS h a= - - +
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where br is the annual birth rate, which we held fixed at 1 (10). Equation 1.4 also assumes a 
50:50 sex ratio of pups, and that pup survival to weaning is conditional upon the survival of its 
mother (Sa).  Combining these vital rates, we calculate the annual change in abundance (n) of 
each of the 4 age-classes in the population through the following 4 recursive equations: 
 

  (0.5) 

The total expected number of independent otters in year t, Nexp,t, is calculated as the sum of the 
individuals in each of the 4 age classes, 
 

  (0.6) 

To calculate the expected number of pups that could be counted in a survey, we need to account 
for several complications. First, not all the pups born in a year are available to be counted at the 
time of the spring survey, as some will have already been weaned or died, and others will not yet 
have been born.  We define the parameter r as the proportion of pups produced in year t that 
were born within the 6-mo. period immediately before the survey. Of those pups, a certain 
proportion will die before weaning (described by 1-Sp,t); however, not all of those deaths will 
have occurred by the time of the survey, as most pups counted in spring surveys are 2mo. or 
younger.  Incorporating both these adjustments we calculate the expected number of pups as: 
 

  (0.7) 

Finally, we assessed the hypothesis that there was a substantial change in mean survival rates 
over the study period, potentially associated with the surge in prey abundance described in this 
study. To evaluate this possibility we expanded the model to estimate two sets of age-specific log 
hazard rates, [a1, g1 , f1] and [a2, g2, f2], with each set corresponding to a different partition of 
years within the study period. While our a priori expectation was that a change in survival rates 
likely occurred sometime around 2014, we did not enforce a particular temporal break, but rather 
allowed this to be data driven. Specifically, we defined a vector swy having length Y (the number 
of years of the study) and with integer values of 1 or 2. For years where swy= 1, we apply the 
first set of age-specific hazard rates, while for years where swy= 2 we apply the second set of 
age-specific hazard rates. We evaluated multiple configurations of the swy vector corresponding 
to different temporal sequences of hazard rates: we allowed for up to 2 temporal breaks in 
demographic conditions (i.e., the possibility of a change from a series of 1’s to a series of 2’s, 
and the possibility of a later change from a series of 2’s back to a series of 1’s) and also 
evaluated a “null model” where all years experienced the same set of hazard rates. For each 
model configuration we compute the differences in log hazard rates between the two sets of 
demographic conditions:  
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  (0.8) 

These log differences are informative because the proportional change in age-specific 
instantaneous hazard rates from one time period to another can be calculated as exp(d).  
 
Data fitting 
We compared the observed survey counts of independents (Nobs,t) and pups (Pobs,t) to the 
expected values Nexp,t and Pexp,t generated by the process model, using Markov Chain Monte 
Carlo (MCMC) methods to find the parameter values most likely to have produced the observed 
data.  Previous analyses of sea otter surveys have found that counts are over-dispersed relative to 
a Poisson distribution (10), and thus can be described using negative binomial distributions: 
 
  (0.9) 

  (0.10) 

where tN and tP are inverse-dispersion (or precision) parameters estimated during model fitting. 
We set weak priors for all parameters, including half-Cauchy priors (cauchy(0,1)) for standard 
error (s) and prevision parameters (t), half-normal priors (normal(0,1)) for a, g and f 
parameters, and a beta prior (beta(1,1)) for r.  For each model fit we ran 20 independent chains, 
saving a total of 10,000 posterior samples after a burn-in of 1000 samples.   
 
We used R (R.Core.Team 2014) and STAN (11) software to code and fit the state space model.  
We evaluated model convergence by graphical examination of traceplots and by ensuring the R-
hat statistic was less than 1.05 for all parameters (12). We evaluated model goodness of fit via 
graphical posterior predictive checks (Figure S4), whereby the distributions of out-of-sample 
predictions generated by the model were compared with observed data (13). To determine the 
best-supported number and timing of temporal breaks in demographic conditions (switches 
between alternative sets of hazard rates), we fit models with many alternative configurations of 
the swy vector. For each fit, we calculated the posterior distributions of the log-likelihoods of 
observed data, which we used to compute the “Leave-out-one Information Criteria”, or LooIC 
(14). We evaluated LooIC diagnostics to ensure goodness of fit (all Pareto k estimates < 0.5) and 
selected the model with the lowest LooIC value as the best-supported temporal sequence of vital 
rates for that region. We report tabular summaries of the posterior distributions of parameters 
from the best-supported model for the Monterey region (Table S1), and we present density plots 
of the mean and 90% credible interval (CI) of da, dg, and df for all 3 regions (Figure S5). We use 
the model estimated values of Nexp,t and Pexp,t to plot trends in abundance of pups and 
independent sea otters over the study period in Monterey (Figure S3) and for comparing trends in 
total abundance between Santa Cruz, Monterey and Big Sur (Figure S4, S5).  
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Supporting Information Appendix. Supplementary Tables 
 
Table S1. Summary of parameter estimates from a Bayesian state space demographic model fit 
to survey data from the Monterey study area (see SI methods for parameter definitions and 
dynamics). The posterior distributions of each parameter are described by the mean, standard 
deviation, 2.5% and 97.5% quantiles (which bound the 95% CI), the effective sample size (n_eff) 
and the R-hat statistic, which should be close to 1 if the model converged appropriately resulting 
in well-mixed chains.  
 

Parameter mean sd 2.50% 97.50% n_eff R-hat 
sg 0.3656 0.1613 0.1215 0.7429 734.6 1.022 
sf 0.3835 0.224 0.1125 0.9351 426.2 1.043 
tN 149.6 85.89 54.66 350.7 6026 1.001 
tP 41.94 188.9 9.374 167.8 4813 1.001 
r 0.6913 0.0429 0.6125 0.7826 1536 1.008 
a1 0.9319 0.2666 0.2915 1.303 2511 1.008 
a2 0.2213 0.1714 0.0076 0.6272 9149 0.999 
g1 1.569 0.2519 1.142 2.093 4619 1.003 
g2 0.5824 0.296 0.1097 1.244 8245 1.001 
f1 2.145 0.387 1.494 2.977 2121 1.009 
f2 1.071 0.4379 0.3311 2.019 8525 1.001 
da -0.7105 0.3204 -1.209 0.02943 3411 1.005 
dg -0.9863 0.3974 -1.722 -0.1645 5993 1.002 
df -1.074 0.5825 -2.165 0.1258 2976 1.005 
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Supporting Information Appendix. Supplementary Figures S1-S12 

 
 

Figure S1. Subtidal rocky reef survey sites along the Monterey Peninsula, California, USA. 
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Figure S2. Subtidal survey sites (panel A) from 2018 showing the relationship between kelp 
density (panel B), urchin density (panel C), and gonad index (panel D). Black triangles show sea 
otter-sea urchin focal patches. The data in panels B-D were interpolated from 121 randomly 
sampled subtidal locations (both ‘reference’ and ‘urchin focal patch’ sites were sampled using 
the same protocol) using inverse distance weighting in ArcGIS. All interpolated maps are 
constrained to rocky reef in the 5–20 meters depth range.  
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Figure S3. Trends in abundance of independent otters (blue line) and an index of pup production 
(orange line) for the Monterey study area, as estimated by a Bayesian state space model.  The 
shaded band represent the 95% credible intervals (CI) around the mean estimated values.  
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Figure S4. Posterior distributions for d parameters estimated by a state space model fit to sea 
otter survey data from Santa Cruz (panel A), Monterey (panel B) and Big Sur (panel C). Each d 
value represents the difference between log hazard rates for different time periods (indicated in 
the plot titles), and are calculated separately for adults (a), subadults (g) and pups (f). 
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Figure S5. Trends in total abundance of sea otters for Santa Cruz (green line), Monterey (orange 
line), and Big Sur (blue line) as estimated by a Bayesian state space model. Each shaded band 
represents the 95% credible intervals (CI) around the mean estimated values.  
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Figure S6. Dietary mean proportion of sea urchins for sea otters specializing on individual prey 
items before (2000-2013) and after (2014-2018) the urchin outbreak. Error bars are 95% 
confidence intervals surrounding the mean.  

 

              
Figure S7. Population-level dietary mean proportion of sea urchins in sea otter diets before 
(2000-2013) and after (2014-2018) the urchin outbreak. Error bars are 95% confidence intervals 
surrounding the mean.  
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Figure S8. Estimated proportional contributions to southern sea otter diets of urchins, mussels, 
and urchins and mussels combined, based on observational data collected in the Monterey study 
area during two time periods: 2000-2013, and 2014-2018. Relative dietary abundance is 
measured in terms of the proportion of total consumed biomass contributed by each prey type, 
based on fitting a Monte Carlo-based re-sampling model to observational field data collected 
from foraging otters (15), and incorporating the empirically derived functional relationships 
between prey diameter (estimated by observers via comparison with known paw widths) and 
edible biomass. 
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Figure S9. Subtidal radial sampling design. Each line radiating from the center of the site 
represents a 5-meter long transect with two 1-m2 quadrats (16 quadrats per site). Quadrats were 
randomly stratified in order to avoid over or under-sampling by accounting for increasing arc 
length with increasing distance from the center of the site. The radial sampling design was 
selected in order to compliment shore observations of sea otter foraging, where a sub-bout was 
recorded at the surface as any number of repetitive dives made within a 10-meter diameter zone.   
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Figure S10. Sea otter population survey regions along the central coast of California, USA. 
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Figure S11. Relative kelp stipe density (A), proportion of exposed (i.e., active foraging) urchins 
(B), mean urchin density (C), and mean gonad index (D) between reference survey sites (green) 
and sea otter focal patches (orange) with 95% confidence intervals surrounding each mean.  
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Figure S12. Posterior predictive check plots for a Bayesian state-space model fit to sea otter 
survey data from the Monterey region. Panel A) shows the mean observed value of independent 
otters from all surveys (vertical black line) compared to a frequency distribution of out-of-
sample predictions from the model (the observed value should be in the center of the distribution 
for a well-fit model).  Panel B) shows a density plot of observed counts across years, with grey 
lines showing replicate density plots for out-of-sample predictions. 
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