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Supporting Information Text

S1. Dose-responses for activation, derepression, and concerted mechanisms

S1-A. Ordinary differential equations. The ordinary differential equations (ODEs) that govern the dynamics of X, X∗, Y , and
Y ∗ for the concerted mechanism described in the main text are:

dX

dt
= −k1SX + k2X

∗, [S1.1a]

dX∗

dt
= k1SX − k2X

∗, [S1.1b]

dY

dt
= −(k3 + k5X

∗)Y + (k4 + k6X)Y ∗, [S1.1c]

dY ∗

dt
= (k3 + k5X

∗)Y − (k4 + k6X)Y ∗. [S1.1d]

We assume that X +X∗ = XT and Y + Y ∗ = YT , which reduce the above ODEs to
dX∗

dt
= k1S(XT −X∗)− k2X

∗, [S1.2a]

dY ∗

dt
= (k3 + k5X

∗)(YT − Y ∗)− (k4 + k6(XT −X∗))Y ∗. [S1.2b]

Re-arranging terms, we obtain the following system of ODEs
dX∗

dt
= k1XTS − (k1S + k2)X∗, [S1.3a]

dY ∗

dt
= k3YT + k5YTX

∗ − (k3 + k4 + k6XT )Y ∗ − (k5 − k6)X∗Y ∗, [S1.3b]

which is Eq. (1) in the main text.

S1-B. Dose-responses. We term the steady-state responses obtained by varying the stimulus level as dose-responses. The
number of active receptors in steady-state, X∗, and the active switch molecules at steady-state, Y ∗, may be computed by
setting the ODEs in Eq. (S1.3) to zero:

X∗ = k1SXT
k1S + k2

, [S1.4a]

Y ∗ =
k3 + k5

k1SXT
k1S+k2

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2

k1S+k2

. [S1.4b]

Rearranging terms gives Eq. (2) of the main text:

X∗ = SXT
k2
k1

+ S
, [S1.5a]

Y ∗ =
k2k3

k1(k3+k4+k5XT ) + k3+k5XT
k3+k4+k5XT

S

k2(k3+k4+k6XT )
k1(k3+k4+k5XT ) + S

YT . [S1.5b]

It may now be seen that X∗ and Y ∗ have the form:

X∗ = X∗0 ΘX∗ +X∗∞S

ΘX∗ + S
, [S1.6a]

Y ∗ = Y ∗0 ΘY ∗ + Y ∗∞S

ΘY ∗ + S
, [S1.6b]

where

X∗0 = 0, [S1.6c]
X∗∞ = XT , [S1.6d]

ΘX∗ = k2

k1
, [S1.6e]

Y ∗0 = k3YT
k3 + k4 + k6XT

, [S1.6f]

Y ∗∞ = (k3 + k5XT )YT
k3 + k4 + k5XT

, [S1.6g]

ΘY ∗ = ΘX∗
k3 + k4 + k6XT
k3 + k4 + k5XT

. [S1.6h]
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We first note that the dose-response of the receptor (i.e., the receptor occupancy) and that of the switch are of similar form.
Below, we describe the effects of various parameters on these dose-responses.

1. The parameters k1 and k2 do not affect the minimum response X∗0 and the maximum response XT . The ratio ΘX∗ = k2
k1

determines the stimulus level at which X∗ = XT
2 .

2. Increasing the lumped parameter k6XT decreases the minimum response of the switch Y ∗0 . We term k6XT the (total)
repression strength and it has no effect on the maximum response of the switch Y ∗∞.

3. Increasing the lumped parameter k5XT increases the maximum response of the switch Y ∗∞. We term k5XT the (total)
activation strength and it has no effect on the minimum response of the switch Y ∗0 .

4. If the basal activation rate of the switch k3 is zero then Y ∗0 = 0. A non-zero k3 results in a non-zero Y ∗0 and therefore
shifts the dose-response curve upwards. It is worth noting that k3 = 0 implies that k5XT 6= 0 for the switch to generate a
response at all.

5. If the basal deactivation rate of the switch k4 is zero then Y ∗∞ = YT . Note that if we set k4 = 0 then k6XT 6= 0 has to
be true to repress the switch in the absence of the stimulus. A non-zero k4 results in Y ∗∞ < YT and therefore shifts the
dose-response curve downwards.

S1-C. A comment on parameter choice for Fig. 2. Our choice of parameters in Fig. 2 of the main text is guided by the
above observations on dose-responses of X∗ and Y ∗. We also assume that basal rate k3 is much smaller than the ’total
activation strength’ k5XT . Likewise, the basal rate k4 is much smaller than the ’total repression strength’ k6XT . Relaxing
these assumptions would result in effects described by points 4 and 5 above. In addition to ignoring the basal rates wherever
possible (k3 = 0 for activation; k4 = 0 for derepression; k3 = k4 = 0 for concerted), we normalize the stimulus strength by the
binding affinity of the receptor and we only plot fractional responses in Fig. 2. Thus, the qualitative features of our results do
not depend on the exact values of the parameters k1, k2, S, XT and YT .

S2. Background results for transient signaling response and response time

Let R(t) be a signaling response at time t. One convenient way to define the response time is through the center of mass:

TR =
∫∞

0 tR(t)dt∫∞
0 R(t)dt

. [S2.1]

This definition is the same as the one used for ‘signaling time’ in (1). One advantage of this definition is that it is often
analytically tractable if R(t) is available. Equivalently, TR may also be computed in the Laplace (frequency) domain. To that
end, let us define the Laplace transform

R[ω] =
∫ ∞

0
e−ωtR(t)dt. [S2.2]

The integrals corresponding to the numerator and the denominator in the above definition of TR may be computed as:∫ ∞
0

tR(t)dt = − dR[ω]
dω

∣∣∣∣
ω=0

, [S2.3a]∫ ∞
0

R(t)dt = R[ω]|ω=0 . [S2.3b]

Thus, we have that

TR = −
dR[ω]
dω

∣∣
ω=0

R[ω]|ω=0
= − d log (R[ω])

dω

∣∣∣∣
ω=0

. [S2.4]

Because R(t) ≥ 0 to be biologically meaningful response, one limitation of the above definition of TR is that the integrals do
not converge if R = limt→∞R(t) 6= 0. So the definition needs to be modified for responses that have non-zero steady-states,
which is the case for models considered in this work. As done in (2), one can extend the definition to a response with non-zero
steady-state:

TR =
∫∞

0 t
∣∣R−R(t)

∣∣ dt∫∞
0

∣∣R−R(t)
∣∣ dt . [S2.5]

Here |.| takes the absolute value or the modulus of its argument. Note that both definitions are equivalent when R = 0. The
new definition works with the absolute value of the error signal E(t) = R−R(t). The absolute value, |.|, may be dropped from
the above definition if E(t) ≥ 0,∀t ≥ 0, or E(t) ≤ 0, ∀t ≥ 0. In such cases, we can use the frequency domain version of the
definition:

TR = TE = − d log (E [ω])
dω

∣∣∣∣
ω=0

. [S2.6]
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Here E [ω] is the Laplace transform of E(t) that is related with R[ω] as

E [ω] = R

ω
−R[ω]. [S2.7]

Generally speaking, if E(t) changes sign then Eq. (S2.6) only expression serves as an approximation of the response time in
Eq. (S2.1).

In what follows, we compute the response time for a few representative examples of linear dynamical systems that are
pertinent to the models considered in the main text.

S2-A. A simple switch. Consider a protein that transitions between two states A and A∗ as

A
k1S
�
k2

A∗. [S2.8]

Let A(t) and A∗(t)denote the number of molecules that are in states A and A∗, respectively, at time t. We assume that the
total number of molecules is conserved, i.e., AT = A(t) +A∗(t). We quantify the signaling through the switch by A∗(t), i.e.,
the number of molecules in the state A∗. The ordinary differential equation (ODE) governing the dynamics of A∗ is:

dA∗

dt
= k1S(AT −A∗)− k2A

∗. [S2.9]

Let A∗[ω] denote the Laplace transform of A∗(t), then

A[ω] = k1SAT
k1S + k2

( 1
ω
− 1
ω + k1S + k2

)
+ A∗(0)
ω + k1S + k2

, [S2.10]

where A∗(0) < AT is the initial condition. Taking inverse Laplace transform, the solution to this ODE is

A∗(t) = A∗(0)e−(k1S+k2)t + k1SAT
k1S + k2

(
1− e−(k1S+k2)t) . [S2.11]

While we can use A∗(t) to compute the response time as

TA∗ =
∫∞

0 t
∣∣A∗ −A∗(t)∣∣ dt∫∞

0

∣∣A∗ −A∗(t)∣∣ dt , [S2.12]

we instead use the Laplace transform A[ω] to do so. In frequency domain, we have that

TA∗ = − d log (EA[ω])
dω

∣∣∣∣
ω=0

, [S2.13]

where EA = A
ω
−A[ω] is the Laplace transform of the error signal EA(t) = A−A(t). The steady-state value A∗ = limt→∞A(t)

may be computed by taking the limit of the time domain solution or by applying the final value theorem in frequency domain

A∗ = lim
t→∞

A(t) = lim
ω→0

ωA[ω] = k1SAT
k1S + k2

. [S2.14]

With these, we have
EA[ω] =

(
k1SAT
k1S + k2

−A∗(0)
) 1
ω + k1S + k2

, [S2.15]

which results in the following for the response time

TA∗ = − d log (EA[ω])
dω

∣∣∣∣
ω=0

= 1
k1S + k2

. [S2.16]

We thus deduce that if the response is determined by a single kinetic step, the response time defined above is reciprocal of the
rate constant for that step. It is also worth noting that the error signal is zero if A∗(0) = k1SAT

k1S+k2
= A∗ and the response time

has no meaning in that case.
There are other definitions of response time that are based on the time it takes for the response to start from A∗(0) and

reduce its deviation from its steady-state by a factor 0 < f < 1. More specifically, we define Tf as the solution to the following
equation

A∗(Tf )−A∗(0)
A∗ −A∗(0)

= f [S2.17a]

=⇒ A∗(0)e−(k1S+k2)Tf + k1SAT
k1S + k2

(
1− e−(k1S+k2)Tf

)
= A∗(0) + f

(
k1SAT
k1S + k2

−A∗(0)
)
. [S2.17b]
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For A∗(0) 6= k1SAT
k1S+k2

, the above equation reduces to

1− e−(k1S+k2)Tf = f, [S2.18]

which has a straightforward solution
Tf = − log (1− f)

k1S + k2
. [S2.19]

Notably, the response time is set by 1/(k1S + k2) up to a scale which depends on the specific value of f . We discuss three
cases. First, setting f = 1/2 corresponds to the time at which half of the deviation from the steady-state has been reduced.
The corresponding response time is given by

T50% = log 2
k1S + k2

. [S2.20a]

Second, f = (e− 1)/e ≈ 0.632 is also frequently used for which we obtain

T63.2% = 1
k1S + k2

. [S2.20b]

Lastly, a third definition concerns computing the time it takes for the response to travel from 10% to 90% of the difference
between its initial value A∗(0) and steady-state A∗ = k1SAT

k1S+k2
. In this case, we get

T90% − T10% = log 9
k1S + k2

. [S2.20c]

S2-B. Two-tier linear system. We next consider a two-tier linear system

dR1

dt
= η0 − η1R1, [S2.21a]

dR2

dt
= ξ0 + ξ1R1 − ξ2R2, [S2.21b]

with initial conditions (R1(0), R2(0)). The steady-state solution to this system is given by(
R1, R2

)
=
(
η0

η1
,
ξ0 + ξ1

η0
η1

ξ2

)
. [S2.21c]

Let R1[ω] and R2[ω] respectively denote the Laplace transforms of R1(t) and R2(t). Then the solution in Laplace domain
to the above system of ODEs, after some algebraic manipulation, is given by

R1[ω] = η0

η1

(
1
ω
− 1
ω + η1

)
+ R1(0)
ω + η1

, [S2.22a]

R2[ω] = ξ0

ξ2

(
1
ω
− 1
ω + ξ2

)
+ η0ξ1

η1ξ2

(
1
ω
− ω + η1 + ξ2

(ω + η1)(ω + ξ2)

)
+ ξ1R1(0)

(ω + η1)(ω + ξ2) + R2(0)
ω + ξ2

. [S2.22b]

The transient solution may be computed by taking the inverse Laplace transform:

R1(t) = η0

η1

(
1− e−η1t

)
+R1(0)e−η1t, [S2.23a]

R2(t) =
ξ0 + ξ1

η0
η1

ξ2
−
(
ξ0 + ξ1

η0
η1

ξ2
−R2(0)

)
e−ξ2t −

ξ1
(
η0
η1
−R1(0)

)
η1 − ξ2

(
e−ξ2t − e−η1t

)
. [S2.23b]

The solution for the limiting case when η1 = ξ2 may also be obtained by taking the limit η1 → ξ2. Another special case that is
relevant to our discussion in this manuscript is when the initial conditions are specified as R1(0) = 0 and R2(0) = ξ0

ξ2
. For this

case, we have the following

R1(t) = η0

η1

(
1− e−η1t

)
, [S2.24a]

R2(t) =
ξ0 + ξ1

η0
η1

ξ2
− η0ξ1

η1ξ2

(
η1e
−ξ2t − ξ2e

−η1t

η1 − ξ2

)
. [S2.24b]

Next we compute the response time. To that end, we note that the error signals ER1 = R1 −R1 and ER2 = R2 −R2 have
the Laplace transforms

ER1 [ω] =
η0
η1
−R1(0)
ω + η1

, [S2.25a]

ER2 [ω] =
ξ0+ξ1

η0
η1

ξ2
−R2(0)

ω + ξ2
+

ξ1
(
η0
η1
−R1(0)

)
(ω + η1) (ω + ξ2) . [S2.25b]
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Using these, the response times are given by

TR1 = − d log (ER1[ω])
dω

∣∣∣∣
ω=0

= 1
η1
, [S2.26a]

TR2 = − d log (ER2[ω])
dω

∣∣∣∣
ω=0

= 1
ξ2

+ 1
η1

(
η0
η1
−R1(0)

)
ξ1(

η0
η1
−R1(0)

)
ξ1 +

(
ξ0+ξ1

η0
η1

ξ2
−R2(0)

)
η1

. [S2.26b]

We note that the response time TR2 depends upon the initial conditions R1(0) and R2(0). Recalling the steady-state values

of R1 and R2 from Eq. (S2.21c), we recognize η0
η1
−R1(0) and

ξ0+ξ1
η0
η1

ξ2
−R2(0) as R1 −R1(0) and R2 −R2(0), respectively.

Thus, if R1(0) = R1, meaning that the upstream component is at its steady-state, then we obtain TR2 = 1/ξ2. The dependence
on R1(0) and R2(0) also drops for the special case when R1(0) = 0 and R2(0) = ξ0

ξ2
. In this case, TR2 simplifies to

TR2 = 1
ξ2

+ ξ2

η1 + ξ2

1
η1
, [S2.27]

where the first-term is the response time if R1 were at steady-state, and the second term is the time-averaged TR1 .

S2-C. Two-tier linear system with two inputs. Next, we consider a variant of the two-tier linear system in Eq. (S2.21). Here the
dynamics of R2 is affected by two upstream components R11 and R12 as below:

dR2

dt
= ξ0 + ξ11R11 + ξ12R12 − ξ2R2. [S2.28]

We do not specify the dynamics of R11 and R22, but assume that their Laplace transforms, R11[ω] and R12[ω] are known.
Consequently, we can compute the steady-states, R11 and R12, using the final value theorem. Furthermore the Laplace
transforms of the error signals may also be computed as

ER11 [ω] = R11

ω
−R11[ω], [S2.29a]

ER12 [ω] = R12

ω
−R12[ω]. [S2.29b]

Taking Laplace transform of Eq. (S2.28) gives

R2[ω] =
ξ0
ω

+R2(0)
ω + ξ2

+ ξ11

ω + ξ2
R11[ω] + ξ12

ω + ξ2
R12[ω]. [S2.30]

The transient solution may be computed by taking the inverse Laplace transform of the above equation once R11[ω] and R22[ω]
are specified. We can, however, compute a generic form for the the response time of R2.

To compute the response time of R2, we first note that the steady-state response R2 is given by

R2 = ξ0 + ξ11R11 + ξ12R12

ξ2
. [S2.31]

Therefore, the Laplace transform of the error signal may be computed as

ER2 [ω] = R2

ω
−R2[ω] [S2.32a]

=
ξ0+ξ11R11+ξ12R12

ξ2

ω
−

ξ0
ω

+R2(0)
ω + ξ2

− ξ11

ω + ξ2
R11[ω]− ξ12

ω + ξ2
R12[ω] [S2.32b]

=
ξ0
ξ2
−R2(0)
ω + ξ2

+
ξ11
ξ2
R11 + ξ11ER11 [ω]

ω + ξ2
+

ξ12
ξ2
R12 + ξ12ER12 [ω]

ω + ξ2
, [S2.32c]

= R2 −R2(0)
ω + ξ2

+ ξ11ER11 [ω]
ω + ξ2

+ ξ12ER12 [ω]
ω + ξ2

, [S2.32d]

where we have used Eq. (S2.29) to substitute for R11[ω] and R12[ω]. The response time is then given by

TR2 = − d log (ER2[ω])
dω

∣∣∣∣
ω=0

[S2.33a]

= 1
ω + ξ2

∣∣∣∣
ω=0
−

ξ11
dER11[ω]

dω
+ ξ12

dER12[ω]
dω

R2 −R2(0) + ξ11ER11[ω] + ξ12ER12[ω]

∣∣∣∣
ω=0

[S2.33b]

= 1
ξ2
−

ξ11
dER11[ω]

dω

∣∣
ω=0

+ ξ12
dER12[ω]

dω

∣∣
ω=0

R2 −R2(0) + ξ11ER11[0] + ξ12ER12[0]
[S2.33c]

= 1
ξ2

+ TR11
ξ11ER11[0]

R2 −R2(0) + ξ11ER11[0] + ξ12ER12[0]
+ TR12

ξ12ER12[0]
R2 −R2(0) + ξ11ER11[0] + ξ12ER12[0]

. [S2.33d]
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If R11(0) = R11, then ER11 [0] = 0. Likewise, if R12(0) = R12 implies ER12 [0] = 0. Thus, if R11 and R12 are at steady-state then
the response time is given by 1/ξ2. The second and the third terms in the above expression are the time-averaging terms.

S3. Transient solution and response time for molecular switch architectures

In this section, we consider two-tier cascades of Fig. 1 in the main text. Because activation and derepression are special cases
of the concerted mechanism, we concern ourselves only with the ODEs of a concerted mechanism here.

The ordinary differential equations (ODEs) that govern the dynamics are

dX∗

dt
= k1S(XT −X∗)− k2X

∗, [S3.1a]

dY ∗

dt
= (k3 + k5X

∗) (YT − Y ∗)− (k4 + k6 (XT −X∗))Y ∗, [S3.1b]

with initial conditions
X∗(0) = 0, Y ∗(0) = k3YT

k3 + k4 + k6XT
. [S3.1c]

The steady-states of X∗ and Y ∗ are computed by setting the derivatives to zero.

X∗ = k1SXT
k1S + k2

, Y ∗ =
k3 + k5

k1SXT
k1S+k2

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT
k1S+k2

YT . [S3.2]

Recall that plugging k6 = 0 and k5 = 0, result in ODEs for the activation and derepression mechanisms, respectively.
Furthermore, we term the special case k5 = k6 as perfect concerted mechanism, where the activation and repression strengths
match.

Analytical solutions for nonlinear ODEs such as those in Eq. (S3.1) typically do not exist. However, a careful look at
Eq. (S3.1) shows that the nonlinear term is (k5−k6)X∗Y ∗. Thus for a special case when k5 = k6 (perfect concerted mechanism),
the system is linear, which has an analytical solution. The solutions for other cases can be computed numerically. We also
provide an approximate solution using linearization around the steady-state solution (X∗, Y ∗).

S3-A. Transient solution for a perfect concerted model. A perfect concerted model is characterized by k5 = k6. Substituting
k5 = k6 in Eq. (S3.1) results in

dX∗

dt
= k1SXT − (k1S + k2)X∗, [S3.3a]

dY ∗

dt
= k3YT + k6YTX

∗ − (k3 + k4 + k6XT )Y ∗, [S3.3b]

with initial condition (X∗(0), Y ∗(0)) =
(
0, k3YT

k3+k4+k6XT

)
. We note that the form of Eq. (S3.3) is same as that of Eq. (S2.21),

with parameters η0 = k1SXT , η1 = k1S + k2, ξ0 = k3YT , ξ1 = k6YT , and ξ2 = k3 + k4 + k6XT . Thus, we can use Eq. (S2.24)
to get the transient solution

X∗(t) = k1SXT
k1S + k2

(
1− e−(k1S+k2)t) , [S3.4a]

Y ∗(t) =
k3 + k6

k1SXT
k1S+k2

k3 + k4 + k6XT
YT −

k6
k1SXT
k1S+k2

k3 + k4 + k6XT
YT

(k1S + k2)e−(k3+k4+k6XT )t − (k3 + k4 + k6XT )e−(k1S+k2)t

k1S + k2 − (k3 + k4 + k6XT ) . [S3.4b]

For the special case when k1S + k2 = k3 + k4 + k6XT , we have

Y ∗(t) =
k3 + k6

k1SXT
k1S+k2

k3 + k4 + k6XT
YT −

k6
k1SXT
k1S+k2

k3 + k4 + k6XT
YT e

−(k3+k4+k6XT )t (1 + (k3 + k4 + k6XT )t) . [S3.4c]

S3-B. Approximate transient solution using linearization. The ODE system in Eq. (S3.1) contains the nonlinear term X∗Y ∗,
which can be linearized around the steady-state solution (X∗, Y ∗) as

X∗Y ∗ ≈ Y ∗X∗ +X∗Y ∗ −X∗ Y ∗, [S3.5a]

where

X∗ = k1SXT
k1S + k2

, [S3.5b]

Y ∗ =
k3 + k5

k1SXT
k1S+k2

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

YT . [S3.5c]
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Substituting this for the nonlinear term in Eq. (S3.1), we get the following

dX∗

dt
= k1SXT − (k1S + k2)X∗, [S3.6a]

dY ∗

dt
=
(
k3YT + (k5 − k6)X∗ Y ∗

)
+
(
k5YT − (k5 − k6)Y ∗

)
X∗ − (k3 + k4 + k6XT + (k5 − k6)X∗)Y ∗. [S3.6b]

These ODEs are similar to those in Eq. (S2.21). The parameters are: η0 = k1SXT , η1 = k1S+ k2, ξ0 = k3YT + (k5− k6)X∗ Y ∗,
ξ1 = k5YT −(k5−k6)Y ∗, and ξ2 = k3 +k4 +k6XT +(k5−k6)X∗. With the initial conditions (X∗(0), Y ∗(0)) =

(
0, k3YT

k3+k4+k6XT

)
,

the solution same as that in Eq. (S2.24) and is given by.

X∗(t) = k1SXT
k1S + k2

(
1− e−(k1S+k2)t) , [S3.7a]

Y ∗(t) =
k3 + k5

k1SXT
k1S+k2

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

YT −
k1SXT
k1S + k2

(k4k5 + k3k6 + k5k6XT )YT(
k3 + k4 + k6XT + (k5 − k6) k1SXT

k1S+k2

)2×

(k1S + k2)e−
(
k3+k4+k6XT+(k5−k6) k1SXT

k1S+k2

)
t −
(
k3 + k4 + k6XT + (k5 − k6) k1SXT

k1S+k2

)
e−(k1S+k2)t

k1S + k2 −
(
k3 + k4 + k6XT + (k5 − k6) k1SXT

k1S+k2

) . [S3.7b]

The special case when the timescales match may be computed by taking the limit of the above solution.

S3-C. Response time for a perfect concerted mechanism. For this case, we can simply adapt the results of Eq. (S2.26a) and
Eq. (S2.27).

TX∗ = 1
k1S + k2

, [S3.8a]

TY ∗ = 1
k3 + k4 + k6XT

+ 1
k1S + k2

× k3 + k4 + k6XT
k1S + k2 + k3 + k4 + k6XT

. [S3.8b]

S3-D. Response time for the linear approximation. As with the response time for the perfect concerted mechanism, here too
we adapt the results of Eq. (S2.26a) and Eq. (S2.27).

TX∗ = 1
k1S + k2

, [S3.9a]

TY ∗ ≈
1

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

+ 1
k1S + k2

×
k3 + k4 + k6XT + (k5 − k6) k1SXT

k1S+k2

k1S + k2 + k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

. [S3.9b]

How good is the above approximation of response time? One check is to plug in k5 = k6 to obtain the approximation for the
perfect concerted model for which we have the exact expression of the response time in Eq. (S3.8). Indeed, substituting k5 = k6
in Eq. (S3.9) yields

TX∗ = 1
k1S + k2

, [S3.10a]

TY ∗ = 1
k3 + k4 + k6XT

+ 1
k1S + k2

× k3 + k4 + k6XT
k1S + k2 + k3 + k4 + k6XT

, [S3.10b]

which is exactly same as Eq. (S3.8). Thus the linear approximation is exact for the perfect concerted model. This is not
surprising because the perfect concerted model is linear by construction.A second check of how good the approximation in
Eq. (S3.9) is through numerical computation, which is discussed in a later section.

S3-E. Response time for ratiometric signaling. Ratiometric signaling is the special case where the signaling output does not
depend upon the total number of receptors XT . In Eq. (5) of the main text, we show that when k3 = 0 and k4 = 0, then the
steady-state response is independent of XT . Here we ask whether setting k3 = 0 and k4 = 0 also result in the response time
being independent from XT . To this end, we plug these values in the expression of TY ∗ in Eq. (S3.9):

TY ∗ ≈
1

k6XT + (k5 − k6) k1SXT
k1S+k2

+ 1
k1S + k2

×
k6XT + (k5 − k6) k1SXT

k1S+k2

k1S + k2 + k6XT + (k5 − k6) k1SXT
k1S+k2

. [S3.11]

Clearly, the response time depends upon XT , thereby establishing that the ratiometric signaling is only applicable for the
dose-response. We further ask how XT affects the response time. To this end, the most convenient limit to check is when the
receptor dynamics is fast, i.e., k1S + k2 � k6XT + (k5 − k6) k1SXT

k1S+k2
, which gives us

TY ∗ ≈
1

k6XT + (k5 − k6) k1SXT
k1S+k2

. [S3.12]
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Thus, if everything else is constant then increasing XT decreases the response time. Even when the receptor dynamics is not
fast, we can verify this effect by looking at the sign of the derivative of TY ∗ with respect to X∗

dTY ∗
dXT

= − (k1S + k2)5 + 2(k1S + k2)3(k2k6XT + k1Sk5XT )
XT (k2k6XT + k1Sk5XT ) ((k1S + k2)2 + k2k6XT + k1Sk5XT )2 < 0. [S3.13]

Next, we discuss the numerical method to compute response time which we use to validate our approximations.

S3-F. Numerical computation of the response time. One convenience in using the center of mass definition of the response time

TY ∗ =
∫∞

0 t
∣∣Y ∗ − Y ∗(t)∣∣ dt∫∞

0

∣∣Y ∗ − Y ∗(t)∣∣ dt [S3.14]

is that it can be computer numerically via solution of an augmented ODE system
dX∗

dt
= k1S(XT −X∗)− k2X

∗, [S3.15a]

dY ∗

dt
= (k3 + k5X

∗) (YT − Y ∗)− (k4 + k6 (XT −X∗))Y ∗, [S3.15b]

dV1

dt
=
∣∣Y ∗ − Y ∗∣∣ , [S3.15c]

dV2

dt
= 1, [S3.15d]

dV3

dt
= V1V2. [S3.15e]

Here V1(t), V2(t) and V3(t) are the augmented states to the original ODE system. The initial conditions are given by

(X∗(0), Y ∗(0), V1(0), V2(0), V3(0)) =

(
0, k3YT
k3 + k4 + k6XT

,

(
k3 + k5

k1SXT
k1S+k2

)
YT

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT
k1S+k2

− k3YT
k3 + k4 + k6XT

, 0, 0

)
.

[S3.15f]
Note that the state V1(t) computes the integral in the denominator upto a time horizon t, V2(t) tracks the time, and V3(t)
computes the numerator up to time horizon t. If we choose t to be large enough such that the system has reached steady-state,
then V3(t)

V1(t) computes the response time. It is easy to see that the approximation gets better with a larger t. We can use the
approximation of response time in Eq. (S3.9) to set a time for the integration.

S3-G. Validity of linear approximation. Except for the case of the perfect concerted mechanism for which the nonlinearity in
the dynamics of Y ∗ drops out, we have to approximate the dynamics of our ODE system. We have relied upon linearization of
the dynamics around the steady-state to obtain an approximate transient solution as well as analytically tractable results on
response time. Strictly speaking, linear approximation of a dynamical system is only valid in a small neighborhood around
the point of linearization (the steady-state solution in our case). Therefore, our approximations of the response times are
technically valid for small perturbations around steady-states. Thus, it is imperative that we validate our results using computer
simulations.

Our results on response time in the Fig. 3 of the main text show that the analytical results are reasonably accurate even for
activation and derepression mechanisms. The quality of approximation is excellent in the regime where receptor dynamics is
much faster than the switch dynamics and deteriorates as the receptor dynamics becomes slow. This could be explained by the
fact that when receptor dynamics is much faster, we can assume that Y ∗ only see a constant X∗ = X∗. The dynamics of Y ∗
thus becomes linear in this limit, providing accurate match between our approximation and the numerical results.

S3-H. A comment on parameter choice for Fig. 3. We note that both steady-state response and the response time may be
decoupled in the case of the receptor. Specifically, the response time is 1/(k1S+k2) whereas the steady-state receptor occupancy
is k1SXT /(k1S + k2). Thus, it is possible to maintain same steady-state fractional occupancy of the receptor by maintaining
k1S/k2 while varying k2 to change the response time. We exploit this feature to mathematically control the comparison of
different signaling mechanisms.

S4. Stochastic analysis of two-tier cascades

Here we consider a two-tier model for signal transduction as described in Table 1 in the main text. Let Pm,n(t) denote the
probability of finding m molecules of X∗ and n molecules of Y ∗ at time t. Then, we can write the chemical master equation
(CME) that describes the time evolution of Pm,n

dPm,n(t)
dt

= k1S(XT − (m− 1))Pm−1,n + k2(m+ 1)Pm+1,n + k3(YT − (n− 1))Pm,n−1

+ k5m(YT − (n− 1))Pm,n−1 + k4(n+ 1)Pm,n+1 + k6(XT −m)(n+ 1)Pm,n+1

− (k1S(XT −m) + k2m+ k3(YT − n) + k5m(YT − n) + k4n+ k6(XT −m)n)Pm,n, [S4.1]
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where m = 0, 1, . . . , XT and n = 0, . . . , YT (3, 4). It is often difficult to analytically solve the CME. Because the dynamics of
X∗ is linear and it does not depend upon Y ∗, it is possible to provide an analytical solution Pm. As for Pm,n, we only provide
approximate and exact computations of its first two moments.

S4-A. Stochastic solution to receptor dynamics. The CME that governs the time evolution of Pm(t) is:
dPm(t)
dt

= k1S (XT − (m− 1))Pm−1(t) + k2(m+ 1)Pm+1(t)− (k1S (XT −m) + k2m)Pm(t). [S4.2]

We define a generating function

G(z) =
∞∑
m=0

zmPm, |z| ≤ 1 [S4.3]

to solve Eq. (S4.2). Multiplying both sides by zm and summing over m yields

∂G

∂t
= k1SXT

∞∑
m=0

zmPm−1 − k1S

∞∑
m=0

zm (m− 1)Pm−1 + k2

∞∑
m=0

zm (m+ 1)Pm+1

− k1SXT

∞∑
m=0

zmPm + (k1S − k2)
∞∑
m=0

zmmPm. [S4.4]

The above equation becomes the following partial differential equation (PDE)
∂G

∂t
= k1SXT (z − 1)G+

(
−k1Sz

2 + k2 + (k1S − k2) z
) ∂G
∂z

. [S4.5]

We solve this PDE using method of characteristics, assuming the initial condition G(z, 0) = 1 which corresponds to 0 molecules
of X∗. The solution is given by

G(z, t) =
(

1− k1S

k1S + k2

(
1− e−(k1S+k2)t)+ k1S

k1S + k2
z
(
1− e−(k1S+k2)t))XT . [S4.6]

Using Binomial theorem, the above expression can be written as

G(z, t) =
XT∑
m=0

(
XT
m

)(
k1S

k1S + k2

(
1− e−(k1S+k2)t))m (1− k1S

k1S + k2

(
1− e−(k1S+k2)t))XT−m zm. [S4.7]

The probability Pm(t) is given by the coefficient of zm

Pm(t) =
(
XT
m

)(
k1S

k1S + k2

(
1− e−(k1S+k2)t))m (1− k1S

k1S + k2

(
1− e−(k1S+k2)t))XT−m . [S4.8]

The stationary distribution Pm is computed by taking limit t→∞

Pm =
(
XT
m

)(
k1S

k1S + k2

)m (
1− k1S

k1S + k2

)XT−m
, [S4.9]

which is a Binomial distribution with parameters XT and k1S
k1S+k2

(5). The stationary moments of this distribution are given by

〈X∗〉 = k1SXT
k1S + k2

, [S4.10a]〈
X∗2

〉
− 〈X∗〉2 = k1Sk2XT

(k1S + k2)2 , [S4.10b]

CV 2
X∗ =

〈
X∗2

〉
− 〈X∗〉2

〈X∗〉2
= k2

k1SXT
. [S4.10c]

S4-B. Moment dynamics. We are specifically concerned with moments of the two-tier model. To this end, we take the well-
established approach of using the ODEs that govern the moment dynamics (e.g., see (6, 7)). A generic moment may be written
as
d 〈X∗m1Y ∗m2〉

dt
= 〈k1S(XT −X∗) ((X∗ + 1)m1Y ∗m2 −X∗m1Y ∗m2 )〉+ 〈k2X

∗ ((X∗ − 1)m1Y ∗m2 −X∗m1Y ∗m2 )〉

+ 〈(k3 + k5X
∗) (YT − Y ∗) (X∗m1 (Y ∗ + 1)m2 −X∗m1Y ∗m2 )〉

+ 〈(k4 + k6(XT −X∗))Y ∗ (X∗m1 (Y ∗ − 1)m2 −X∗m1Y ∗m2 )〉 . [S4.11]
Here we have used 〈.〉 to denote the expected value of a random variable. Our focus in this work is to compute the first two
moments in steady-state. However, due to the nonlinearity X∗Y ∗ in these equations, the moment dynamics is not closed in
that a lower-order moment depends upon a higher-order moment (6–8). It turns out that for the special case k5 = k6 (perfect
concerted model), the moments may be computed exactly. We provide approximate formulas for moments using a linear
approximation when k5 6= k6.
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S4–B–a. Moment computation for a perfect concerted model. For the concerted model, k5 = k6. Let us write moment dynamics for
first two moments.

d 〈X∗〉
dt

= k1SXT − (k1S + k2) 〈X∗〉 , [S4.12a]

d 〈Y ∗〉
dt

= k3YT + k6YT 〈X∗〉 − (k3 + k4 + k6XT ) 〈Y ∗〉 , [S4.12b]

d
〈
X∗2

〉
dt

= k1SXT + (k1S(2XT − 1) + k2) 〈X∗〉 − 2(k1S + k2)
〈
X∗2

〉
, [S4.12c]

d 〈X∗Y ∗〉
dt

= k3YT 〈X∗〉+ k1SXT 〈Y ∗〉+ k6YT
〈
X∗2

〉
− (k1S + k2 + k3 + k4 + k6XT ) 〈X∗Y ∗〉 , [S4.12d]

d
〈
Y ∗2
〉

dt
= k3YT + k6YT 〈X∗〉+ (k3(2YT − 1) + k4 + k6XT ) 〈Y ∗〉+ 2k6(YT − 1) 〈X∗Y ∗〉 − 2(k3 + k4 + k6XT )

〈
Y ∗2
〉
.

[S4.12e]

We can solve for steady-state moments by setting each of the derivatives equal to zero. For example, the means are given by

〈X∗〉 = k1S

k1S + k2
XT , [S4.13a]

〈Y ∗〉 = k3 + k6 〈X∗〉
k3 + k4 + k6XT

YT =
k3 + k6

k1S
k1S+k2

XT

k3 + k4 + k6XT
YT . [S4.13b]

Next, we compute second order moments.
〈
X∗2

〉
is given by

〈
X∗2

〉
=
(

k1S

k1S + k2
XT

)2
+ k1Sk2XT

(k1S + k2)2 , [S4.14]

where the first term is 〈X∗〉2. The cross moment 〈X∗Y ∗〉 is

〈X∗Y ∗〉 = k1Sk2k6XTYT
(k1S + k2)2(k1S + k2 + k3 + k4 + k6XT ) +

(
k1S

k1S + k2
XT

)(k3 + k6
k1S

k1S+k2
XT

k3 + k4 + k6XT
YT

)
. [S4.15]

Here the second term is 〈X∗〉 〈Y ∗〉. Finally, the second order moment
〈
Y ∗2
〉
in terms of the other moments is

〈
Y ∗2
〉

= k3YT
2(k3 + k4 + k6XT ) + k6YT 〈X∗〉

2(k3 + k4 + k6XT ) + (k3(2YT − 1) + k4 + k6XT ) 〈Y ∗〉
2(k3 + k4 + k6XT ) + 2k6(YT − 1)) 〈X∗Y ∗〉

2(k3 + k4 + k6XT ) [S4.16a]

= k3YT + k4 + k6XT
k3 + k4 + k6XT

〈Y ∗〉+ k6(YT − 1) 〈X∗Y ∗〉
k3 + k4 + k6XT

. [S4.16b]

Using the moments computed above, we can compute the centered moments. For example, the variance of X∗ is

〈
X∗2

〉
− 〈X∗〉2 = k1Sk2XT

(k1S + k2)2 , [S4.17]

the centered cross moment is

〈X∗Y ∗〉 − 〈X∗〉 〈Y ∗〉 = k1Sk2k6XTYT
(k1S + k2)2(k1S + k2 + k3 + k4 + k6XT ) , [S4.18]

and the variance of Y ∗ is

〈
Y ∗2
〉
− 〈Y ∗〉2 =

(
k3YT + k4 + k6XT
k3 + k4 + k6XT

)(k3 + k6
k1S

k1S+k2
XT

k3 + k4 + k6XT
YT

)
+ k6(YT − 1)
k3 + k4 + k6XT

×(
k1Sk2k6XTYT

(k1S + k2)2(k1S + k2 + k3 + k4 + k6XT ) + k1SXT
k1S + k2

k3 + k6
k1S

k1S+k2
XT

k3 + k4 + kXT
YT

)
−

(
k3 + k6

k1S
k1S+k2

XT

k3 + k4 + k6XT
YT

)2

. [S4.19]

We use the centered moments computed above to quantify noise in X∗ and Y ∗ using coefficient of variation squared.
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Coefficient of variation squared. Let CV 2
X∗ and CV 2

Y ∗ respectively are the coefficient of variation squared for X∗ and Y ∗. Then

CV 2
X∗ =

〈
X∗2

〉
− 〈X∗〉2

〈X∗〉2
= k2

k1SXT
, [S4.20]

and

CV 2
Y ∗ =

〈
Y ∗2
〉
− 〈Y ∗〉2

〈Y ∗〉2
[S4.21]

=
(
k3YT + k4 + k6XT
k3 + k4 + k6XT

)(k3 + k6
k1S

k1S+k2
XT

k3 + k4 + k6XT
YT

)
1
Y 2
T

(
k3 + k4 + k6XT

k3 + k6
k1S

k1S+k2
XT

)2

+ 1
Y 2
T

(
k3 + k4 + k6XT

k3 + k6
k1S

k1S+k2
XT

)2
k6(YT − 1)

k3 + k4 + k6XT

(
k1Sk2k6XTYT

(k1S + k2)2(k1S + k2 + k3 + k4 + k6XT )

)

+ 1
Y 2
T

(
k3 + k4 + k6XT

k3 + k6
k1S

k1S+k2
XT

)2
k6(YT − 1)

k3 + k4 + k6XT

(
k1SXT
k1S + k2

k3 + k6
k1S

k1S+k2
XT

k3 + k4 + k6XT
YT

)
− 1. [S4.22]

On simplifying, we get

CV 2
Y ∗ = 1

YT

k3YT + k4 + k6XT

k3 + k6
k1S

k1S+k2
XT

+ YT − 1
YT

k6 (k3 + k4 + k6XT ) (k1Sk2k6XT )
(k1S + k2)2

(
k3 + k6

k1S
k1S+k2

XT
)2 (k1S + k2 + k3 + k4 + k6XT )

+ YT − 1
YT

k6k1SXT(
k3 + k6

k1S
k1S+k2

XT
)

(k1S + k2)
. [S4.23]

Decomposing the coefficient of variation squared into different sources. We expect that CV 2
Y ∗ has two sources of noise: acti-

vation/deactivation events for X∗ and activation/deactivation events for Y ∗. To tease out the contribution from activa-
tion/deactivation events for Y ∗, we consider a scenario the dynamics of X∗ is deterministic. In this case, the moment dynamics
is given by

dX∗

dt
= k1SXT − (k1S + k2)X∗, [S4.24a]

d 〈Y ∗〉
dt

= k3YT + k6YTX
∗ − (k3 + k4 + kXT ) 〈Y ∗〉 , [S4.24b]

d
〈
Y ∗2
〉

dt
= k3YT + k6YTX

∗ + (k3(2YT − 1) + k4 + k6XT ) 〈Y ∗〉+ 2k6(YT − 1)X∗ 〈Y ∗〉 − 2(k3 + k4 + k6XT )
〈
Y ∗2
〉
. [S4.24c]

The steady-state solution for the coefficient of variation squared computed from these equations is given by

CV 2
Y ∗
∣∣
act./deact.

= 1
YT

k4 + k6XT
k2

k1S+k2

k3 + k6XT
k2

k1S+k2

. [S4.25]

We do not provide detailed calculations here. One sanity check is that this expression is consistent with coefficient of variation
squared for a binomial distribution, which is expected if X∗ were constant.

Subtracting Eq. (S4.25) from Eq. (S4.23), we obtain the contribution of noise in X∗ to noise in Y ∗:

CV 2
Y ∗ − CV 2

Y ∗
∣∣
act./deact.

= YT − 1
YT

(k3 + k4 + k6XT )(k1Sk2k
2XT )

(k1S + k2 + k3 + k4 + k6XT )(k1S + k2)2
(
k3 + k6XT

k1S
k1S+k2

)2 . [S4.26]

We expect that the term on the right hand side should have contribution from CV 2
X∗ , which is time-averaged. Recall Eq. (S3.8)

that k1S + k2 is response time of the receptor and that k3 + k4 + k6XT is response time of the switch if the receptor dynamics
is fast. Thus, k3+k4+k6XT

k1S+k2+k3+k4+k6XT
can be interpreted as the timescale averaging. Therefore, we write

CV 2
Y ∗ = 1

YT

k4 + k6XT
k2

k1S+k2

k3 + k6XT
k1S

k1S+k2︸ ︷︷ ︸
contribution from act./deact. of Y ∗

+ k3 + k4 + k6XT
k1S + k2 + k3 + k4 + k6XT︸ ︷︷ ︸

time-averaging

YT − 1
YT

(
k6XT

k1S
k1S+k2

k3 + k6XT
k1S

k1S+k2

)2

︸ ︷︷ ︸
coupling

CV 2
X∗ , [S4.27]

where CV 2
X∗ = k2

k1SXT
.
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S4–B–b. Approximate moment dynamics using linear approximation. As discussed earlier, the moment dynamics is not closed when
k5 − k6 is non-zero. To estimate moments, we first linearize the nonlinear term around the solution of the deterministic model
(9). Let (X∗det, Y ∗det) be solution to the ODE model

dX∗det
dt

= k1SXT − (k1S + k2)X∗det, [S4.28a]

dY ∗det
dt

= k3YT + k5YTX
∗
det − (k3 + k4 + k6X

∗
det)Y ∗det − (k5 − k6)X∗detY ∗det. [S4.28b]

The stochastic model with linearized transition rates is shown in Table S1.

Event Update Transition rate

X → X∗ X∗ 7→ X∗ + 1 k1S(XT −X∗)
X∗ → X X∗ 7→ X∗ − 1 k2X∗

Y → Y ∗ Y ∗ 7→ Y ∗ + 1 (k3YT + k5YTX∗)− k3Y ∗ − k5
(

Y ∗detX
∗ + X∗detY

∗ −X∗detY
∗
det

)
Y ∗ → Y Y ∗ 7→ Y ∗ − 1 (k4 + k6XT )Y ∗ − k6

(
Y ∗detX

∗ + X∗detY
∗ −X∗detY

∗
det

)
Table S1. Transitions and associated rates for the stochastic model.

The second order moments with the above linearized propensity model satisfy the following differential equations

d
〈
X∗2

〉
dt

= k1SXT + (2k1SXT − k1S + k2)X∗det − 2(k1S + k2)
〈
X∗2

〉
, [S4.29a]

d 〈X∗Y ∗〉
dt

= (k3YT + k5X
∗
detY

∗
det − k6X

∗
detY

∗
det)X∗det + k1SXTY

∗
det + (k5YT − k5Y

∗
det + k6Y

∗
det)

〈
X∗2

〉
− (k1S + k2 + k3 + k4 + k5X

∗
det + k6XT − k6X

∗
det) 〈X∗Y ∗〉 , [S4.29b]

d
〈
Y ∗2
〉

dt
= k3YT + k5X

∗
detY

∗
det + k6X

∗
detY

∗
det + (k5YT − k5Y

∗
det − k6Y

∗
det)X∗det

+ (2k3YT − k3 + k4 + 2k5X
∗
detY

∗
det − k5X

∗
det + k6XT − k6X

∗
det)Y ∗det + 2 (k5YT − k5Y

∗
det + k6Y

∗
det) 〈X∗Y ∗〉

− 2 (k3 + k4 + k5X
∗
det + k6XT − k6X

∗
det)

〈
Y ∗2
〉
. [S4.29c]

Computing these moment equations, along with the solutions to the deterministic dynamics, approximates the moments.
Using a symbolic solver to solve for moments in steady-state, we get the following for the coefficient of variation of X∗.

CV 2
X∗ = k2

k1SXT
. [S4.30]

The formula for CV 2
Y ∗ can be obtained in the same manner as done for the perfect concerted model and is given by

CV 2
Y ∗ ≈

1
YT

k4 + k6XT
k2

k1S+k2

k3 + k5XT
k1S

k1S+k2︸ ︷︷ ︸
contribution from act./deact. of Y ∗

+

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT
k1S+k2

k1S + k2 + k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT
k1S+k2︸ ︷︷ ︸

time-averaging

×

(
k1SXT
k1S+k2

)2 (k4k5 + k6(k3 + k5XT ))2(
k3 + k5

k1SXT
k1S+k2

)2 (
k3 + k4 + k5

k1SXT
k1S+k2

+ k6
k2XT
k1S+k2

)2︸ ︷︷ ︸
coupling

CV 2
X∗ . [S4.31]

Because we already have exact moment formulas when k5 = k6, we can immediately check the validity of linear approximation
for that case. Plugging k5 = k6 shows that the noise approximation above differs from Eq. (S4.27) by a factor (YT − 1)/YT
that multiplies CV 2

Y ∗ . Typically (YT − 1)/YT ≈ 1 for large YT , indicating that our linear approximation is reasonably good for
a concerted model.

S4–B–c. Coefficient variation squared for ratiometric signaling. For ratiometric signaling, in which the steady-state response does not
depend upon the total number of receptors XT , we need k3 = 0 and k4 = 0. Substituting these in the expression of CV 2

Y ∗ in
Eq. (S4.31), we get

CV 2
Y ∗ ≈

1
YT

k2k6

k1Sk5
+ k2

6(
k1S + k2 + k5

k1SXT
k1S+k2

+ k6
k2XT
k1S+k2

) (
k1Sk5
k1S+k2

+ k2k6
k1S+k2

) k2

k1S
. [S4.32]

Thus, increasing XT decreases overall noise because XT increases the denominator terms in the above above formula. Next, we
provide exact computation of moments using a semi-analytical approach.
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S4–B–d. Accuracy of linear approximation. As mentioned earlier, the moment dynamics in Eq. (S4.11) is not closed, as in a
lower-order moment depends on a higher-order moment, except for the case of a perfect concerted model. There are several
techniques that approximate the moments for such systems, linearization being one of them. We have chosen linearization here
because of the analytical tractability it provides. Determining the accuracy of approximations obtained through this technique
as well as other moment closure techniques is beyond the scope of this paper and has been dealt elsewhere, e.g., see (7, 8). We
rely on validating the approximations using exact computations made possible by employing a slightly different formulation
described below.

S4-C. A comment on parameter choice for Fig. 4. When comparing the noise properties, we mathematically control for the
mean response. Usually these two quantities are coupled. However, we exploit the fact that we are able to decompose the noise
in Y ∗ into different sources of noise: noise in activation/deactivation of Y ∗, time-averaging of noise in X∗ and how strongly Y ∗
is coupled of X∗. Thus, we are able to independently tune time-averaging and the coupling to gain insights into how the noise
in X∗ transmits to Y ∗.

S4-D. Exact moment computation. Our goal here is to compute the first two moments of Y ∗. As discussed earlier, a moment
of lower order depends upon moments of higher order, resulting in the problem of moment closure. Here, we exploit the fact
that XT is finite to come up with an alternate state space where moment dynamics is closed. The computations follow the
formalism proposed in (10). Another closely related method is the method of conditional moments described in (11).

Let us define indicator variables bi, i = 0, 1, . . . , XT as

bi =
{

1, X∗ = i,

0, otherwise .
[S4.33a]

It then follows that
XT∑
i=0

bi = 1, bibj = 0, i 6= j, b2
i = bi. [S4.33b]

We now recast our original model in the new state-space
[
b0 b1 . . . bXT Y ∗

]>. The transitions (i.e., reactions) and the
corresponding transition intensities are as follows.

1. Receptor activation: the transition intensity of a receptor activation event is given by
∑XT

i=0 k1bi(XT − i). Whenever this
event occurs, the states reset as

[
b0 b1 . . . bXT Y ∗

]> 7→ [b0 b1 . . . bXT Y ∗
]> − XT−1∑

i=0

bi
[
ei Y ∗

]> +
XT−1∑
i=0

bi
[
ei+1 Y ∗

]>
,

where ei is a column vector of dimension XT + 1, with all zeros except at the ith position. This reset map simplifies to[
b0 b1 b2 . . . bXT−1 bXT Y ∗

]> 7→ [0 b0 b1 . . . bXT−2 bXT−1 + bXT Y ∗
]>
. [S4.34a]

2. Receptor deactivation: the transition intensity is given by
∑XT

i=0 bik2i, with the map

[
b0 b1 . . . bXT Y ∗

]> 7→ [b0 b1 . . . bXT Y ∗
]> − XT∑

i=1

bi
[
ei Y ∗

]> +
XT∑
i=1

bi
[
ei−1 Y ∗

]>
.

The reset map further simplifies to[
b0 b1 b2 . . . bXT−1 bXT Y ∗

]> 7→ [b0 + b1 b2 b3 . . . bXT 0 Y ∗
]>
. [S4.34b]

3. State Y ∗ to Y ∗ + 1 occurs with transition intensity
∑XT

i=0 k3bi(YT − Y ∗) +
∑XT

i=0 k5ibi(YT − Y ∗) and map

XT∑
i=0

bi
[
b0 b1 . . . bXT Y ∗

]> 7→ XT∑
i=0

bi
[
b0 b1 . . . bXT Y ∗ + 1

]>
,

which results in[
b0 b1 b2 . . . bXT−1 bXT Y ∗

]> 7→ [b0 b1 b2 . . . bXT−1 bXT Y ∗ + 1
]>
. [S4.34c]
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4. State Y ∗ to Y ∗ − 1 occurs with transition intensity
∑XT

i=0 k4biY
∗ +
∑XT

i=0 k6XT biY
∗ −
∑XT

i=0 k6ibiY
∗ and map

XT∑
i=0

bi
[
b0 b1 . . . bXT Y ∗

]> 7→ XT∑
i=0

bi
[
b0 b1 . . . bXT Y ∗ − 1

]>
.

On simplifying, the above map becomes[
b0 b1 b2 . . . bXT−1 bXT Y ∗

]> 7→ [b0 b1 b2 . . . bXT−1 bXT Y ∗ − 1
]>
. [S4.34d]

We can now write the dynamics of moments of the form 〈biY ∗m〉 for m = 0, 1, 2. Let us begin with 〈bi〉.

d 〈b0〉
dt

= −k1XT 〈b0〉+ k2 〈b1〉 , [S4.35a]

d 〈bi〉
dt

= k1 (XT − i+ 1) 〈bi−1〉 − k1 (XT − i) 〈bi〉+ k2(i+ 1) 〈bi+1〉 − k2i 〈bi〉 , 1 ≤ i ≤ XT − 1, [S4.35b]

d 〈bXT 〉
dt

= k1 〈bXT−1〉 − k2XT 〈bXT 〉 . [S4.35c]

Recalling the definition of bi, we note that 〈bi〉 is same as the probability that X∗ = i. We have solved these equations in a
slightly different notation in Eq. (S4.8). Therefore, the solution to these ODEs is

〈bi〉 =
(
XT
i

)(
k1

k1 + k2

(
1− e−(k1+k2)t))i (1− k1

k1 + k2

(
1− e−(k1+k2)t))XT−i . [S4.36]

Next, we write the dynamics for 〈biY ∗〉.

d 〈b0Y
∗〉

dt
= − (k1XT + k3 + k4 + k6XT ) 〈b0Y

∗〉+ k2 〈b1Y
∗〉+ k3YT 〈b0〉 , [S4.37a]

d 〈biY ∗〉
dt

= k1 (XT − i+ 1) 〈bi−1Y
∗〉 − (k1 (XT − i) + k2i+ k3 + k4 + k5i+ k6 (XT − i)) 〈biY ∗〉+ k2(i+ 1) 〈bi+1Y

∗〉

+ k3YT 〈bi〉+ k5YT i 〈bi〉 , 1 ≤ i ≤ XT − 1, [S4.37b]
d 〈bXT Y

∗〉
dt

= k1 〈bXT−1Y
∗〉 − (k2XT + k3 + k4 + k5XT ) 〈bXT Y

∗〉+ k3YT 〈bXT 〉+ k5YTXT 〈bXT 〉 . [S4.37c]

Finally, the ODEs describing the time evolution of
〈
biY
∗2〉 are as follows.

d
〈
b0Y

∗2〉
dt

= −k1XT
〈
b0Y

∗2〉+ k2
〈
b1Y

∗2〉+ k3YT 〈b0〉+ (−k3 + k4 + k6XT + 2k3YT ) 〈b0Y
∗〉 − (2k3 + 2k4 + 2k6XT )

〈
b0Y

∗2〉 ,
[S4.38a]

d
〈
biY
∗2〉

dt
= k1 (XT − i+ 1)

〈
bi−1Y

∗2〉− k1 (XT − i)
〈
biY
∗2〉+ k2(i+ 1)

〈
bi+1Y

∗2〉− k2i
〈
biY
∗2〉

+ (k3YT + k5YT i) 〈bi〉+ (−k3 − k5i+ k4 + k6XT − k6i+ 2k3YT + 2k5YT i) 〈biY ∗〉

− (2k3 + 2k5i+ 2k4 + 2k6XT − 2k6i)
〈
biY
∗2〉 , 1 ≤ i ≤ XT − 1, [S4.38b]

d
〈
bXT Y

∗2〉
dt

= k1
〈
bXT−1Y

∗2〉− k2XT
〈
bXT Y

∗2〉+ (k3YT + k5YTXT ) 〈bi〉+ (−k3 − k5XT + k4 + 2k3YT + 2k5YTXT ) 〈biY ∗〉

− (2k3 + 2k5XT + 2k4)
〈
biY
∗2〉 . [S4.38c]

These ODEs require initial condition to compute transient moments which we discuss below.

Setting initial condition. In absence of stimulus, we have that 〈b0〉=1, because no receptors should be active. All other 〈bi〉 = 0.
Furthermore, 〈biY ∗〉 = 〈bi〉 〈Y ∗〉 and

〈
biY
∗2〉 = 〈bi〉 〈Y ∗2〉. Therefore the mean and the second moment at time t = 0 are given

by the first two moments of the Binomial distribution with parameters k3
k3+k4+k6XT

and YT . Therefore, the initial condition is

〈b0Y
∗〉 = k3

k3 + k4 + k6XT
YT ,

〈
b0Y

∗2〉 = k2
3Y

2
T + k3(k4 + k6XT )YT
(k3 + k4 + k6XT )2 . [S4.39]
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Semi-analytical solution using linear algebra. Let µ0 =
[
〈b0〉 〈b1〉 . . . 〈bXT 〉

]> be the collection of the moments of bi. Then
the ODEs can be compactly written as

dµ0

dt
= M0µ0, [S4.40]

which has the solution µ0(t) = eM0tµ0(0). We also note that
∑

i
〈bi〉 = 1 at all times.

The matrix M0 is tridiagonal, but its inverse does not exist. This does not affect computation of the transient solution as
long as we respect the constraint that all 〈bi〉 sum up to one. For steady-state solution, however, we have to solve

M0µ0 = 0, [S4.41]

which only exhibits a trivial solution µ0 = 0. To force the summation requirement, we reduce the system such that we get rid
of the last equation corresponding to 〈bXT 〉. We then substitute 〈bXT 〉 = 1−

∑XT−1
i=0 〈bi〉 wherever we have 〈bXT 〉. This gives

us a reduced system of equation
M̃0µ̃0 + c = 0, [S4.42]

which can be straightforwardly solved using standard linear algebra tools.
It is important to note that we already know the transient as well as the stationary solution for these equations - since 〈bi〉

are probabilities. However, we present the linear algebra approach for completeness. We will this approach to compute the
higher order moments for which analytical solutions are not known.

Let us now solve for the moments 〈biY ∗〉. To this end, we collect all the required moments in µ1 defined as

µ1 =
[
〈b0〉 . . . 〈bXT 〉 〈b0Y

∗〉 . . . 〈bXT Y
∗〉 .
]

[S4.43]

The corresponding ODE system is then
dµ1

dt
=
[
M0 0
M10 M11

]
µ1 [S4.44]

As before, we can now compute the solution using matrix exponential. For the moments
〈
biY
∗2〉, we can similarly define µ2

µ2 =
[
〈b0〉 . . . 〈bXT 〉 〈b0Y

∗〉 . . . 〈bXT Y
∗〉

〈
b0Y

∗2〉 . . .
〈
bXT Y

∗2〉 .] [S4.45]

Then we can write the ODE system:

dµ2

dt
=

[
M0 0 0
M10 M11 0
M20 M21 M22

]
µ2. [S4.46]

S5. Time-dependent input signals

In this section, we examine how molecular switch architectures process pulsating inputs. To this end, we modify the ODEs for
the model as

dX∗

dt
= k1S(t)(XT −X∗)− k2X

∗, [S5.1a]

dY ∗

dt
= (k3 + k5X

∗) (YT − Y ∗)− (k4 + k6 (XT −X∗))Y ∗. [S5.1b]

We assume that the system is in pre-stimulus steady-state at t = 0. Thus the initial condition of the above ODE system is

(X∗(0), Y ∗(0)) =
(

0, k3YT
k3 + k4 + k6XT

)
. [S5.2]

Finally, the pulsating stimulus, S(t), is given by

S(t) =
{
Sp, nτ ≤ t ≤ nτ +Dτ, n = 0, 1, 2, 3, . . .
0, otherwise,

[S5.3]

where τ is the period of the pulsating input, Sp is the amplitude, and D < 1 is the duty-cycle.
To study the approximate transient solution of the system of ODEs in Eq. (S5.1), we study the solutions to the following

two systems:

ΞH :
{
dX∗

dt
= k1Sp(XT −X∗)− k2X

∗,
dY ∗

dt
= (k3 + k5X

∗) (YT − Y ∗)− (k4 + k6 (XT −X∗))Y ∗.
[S5.4a]

ΞL :
{
dX∗

dt
= −k2X

∗,
dY ∗

dt
= (k3 + k5X

∗) (YT − Y ∗)− (k4 + k6 (XT −X∗))Y ∗.
[S5.4b]

Here the first system ΞH corresponds to the dynamics when the pulse is high (on) and the second system ΞL corresponds to
the dynamics when the pulse is low (off). We then combine these solutions to obtain the approximate long-term solution of
Eq. (S5.1).
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(b) response to medium pulse

0.0 2.5 5.0 7.5 10.0

time

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 re

sp
on

se

max.

min.

response to constant
stimulus of half amplitude

(c) response to fast pulse

2 0 2

log((k1Sp + k2)D )

2

1

0

1

2

lo
g(

k 2
(1

D
)

)

fast

medium

slow

(d) min. during a pulse

2 0 2

log((k1Sp + k2)D )

2

1

0

1

2

lo
g(

k 2
(1

D
)

)

fast

medium

slow

(e) max. during a pulse

2 0 2

log((k1Sp + k2)D )

2

1

0

1

2

lo
g(

k 2
(1

D
)

)

(f) max. min.

fast

medium

slow

0.0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Fig. S5.1. Effect of pulsating input on receptor dynamics. (a)–(c) show the typical responses of the receptor to pulses of different frequencies. (d)–(f) illustrate the three
features of the receptor response as the normalized on period and the normalized off period of the pulse are varied.

S5-A. Approximate solution when pulse is on. To develop the approximate solution to ΞH , we linearize the nonlinearity X∗Y ∗
around the steady-state solution of ΞH as :

X∗Y ∗ ≈ Y ∗HX∗ +X∗HY
∗ −X∗H Y ∗H , [S5.5a]

where

X∗H = k1SpXT
k1Sp + k2

, [S5.5b]

Y ∗H =
k3 + k5

k1SpXT
k1Sp+k2

k3 + k4 + k6XT + (k5 − k6) k1SpXT
k1Sp+k2

YT . [S5.5c]

The resulting linear system of ODEs is given by

dX∗

dt
= k1SpXT − (k1Sp + k2)X∗, [S5.6a]

dY ∗

dt
≈
(
k3YT + (k5 − k6)X∗H Y ∗H

)
+
(
k5YT − (k5 − k6)Y ∗H

)
X∗ − (k3 + k4 + k6XT + (k5 − k6)X∗H)Y ∗. [S5.6b]

These ODEs are similar to those in Eq. (S2.21). If we use the short-hand notation as η0H = k1SpXT , η1H = k1Sp + k2,
ξ0H = k3YT + (k5 − k6)X∗H Y ∗H , ξ1H = k5YT − (k5 − k6)Y ∗H , and ξ2H = k3 + k4 + k6XT + (k5 − k6)X∗H , then the solution
to ΞH is given by

X∗(t) = X∗H −
(
X∗H −X∗(0)

)
e−η1H t, [S5.7a]

Y ∗(t) ≈ Y ∗H −
(
Y ∗H − Y ∗(0)

)
e−ξ2H t +

ξ1H
(
X∗H −X∗(0)

)
η1H − ξ2H

(
e−η1H t − e−ξ2H t

)
. [S5.7b]

S5-B. Approximate solution to dynamics when pulse is off. To develop the approximate solution to ΞL, we linearize the
nonlinearity X∗Y ∗ around the steady-state solution of ΞL as :

X∗Y ∗ ≈ Y ∗LX∗ +X∗LY
∗ −X∗L Y ∗L, [S5.8a]
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where

X∗L = 0, [S5.8b]

Y ∗L = k3YT
k3 + k4 + k6XT

. [S5.8c]

The resulting linear system of ODEs is given by

dX∗

dt
= −k2X

∗, [S5.9a]

dY ∗

dt
≈ k3YT +

(
k5YT − (k5 − k6)Y ∗L

)
X∗ − (k3 + k4 + k6XT )Y ∗. [S5.9b]

These ODEs are similar to those in Eq. (S2.21). Using the notation η0L = 0, η1L = k2, ξ0L = k3YT , ξ1L = k5YT − (k5−k6)Y ∗L,
and ξ2L = k3 + k4 + k6XT , the approximate solution ΞL is given by

X∗(t) = X∗(0)e−η1Lt, [S5.10a]

Y ∗(t) ≈ Y ∗L +
(
Y ∗(0)− Y ∗L

)
e−ξ2Lt − ξ1LX

∗(0)
η1L − ξ2L

(
e−η1Lt − e−ξ2Lt

)
. [S5.10b]

S5-C. Long-term approximate solution to pulsating input. One consequence of using a pulsating stimulus is that for many
systems, the effect of initial conditions disappears from the dynamics after an initial ‘burn-in’ period and the solutions become
periodic with the same period as the stimulus. For the ODE system under consideration, this may be more rigorously shown
using the Theorem 2 in (12).

To compute the long-term solution, let (X∗(nτ), Y ∗(nτ)) denote the levels of the active receptors and the active switches at
the end of the nth period of the pulse. Then using the solutions of ΞH and ΞL, the dynamics of X∗ over the (n+ 1)th period is

X∗(t) =
{
X∗H −

(
X∗H −X∗(nτ)

)
e−η1H (t−nτ), nτ ≤ t ≤ nτ +Dτ,

X∗He
−η1L(t−nτ−Dτ) −

(
X∗H −X∗(nτ)

)
e−(η1HDτ+η1L(t−nτ−Dτ)), nτ +Dτ ≤ t ≤ (n+ 1)τ

[S5.11a]

Likewise, the dynamics of Y ∗(t) is
Y ∗H −

(
Y ∗H − Y ∗(nτ)

)
e−ξ2H (t−nτ) + ξ1H(X∗H−X∗(nτ))

η1H−ξ2H

(
e−η1H (t−nτ) − e−ξ2H (t−nτ)) , nτ ≤ t ≤ nτ +Dτ,

Y ∗L − ξ1X
∗(nτ+Dτ)
η1L−ξ2L

(
e−η1L(t−nτ−Dτ) − e−ξ2L(t−nτ−Dτ))+ Y ∗He

−ξ2L(t−nτ−Dτ)

−
((
Y ∗H − Y ∗(nτ)

)
e−ξ2HDτ + ξ1H(X∗H−X∗(nτ))

η1H−ξ2H

(
e−η1HDτ − e−ξ2HDτ

))
e−ξ2L(t−nτ−Dτ)

−Y ∗Le−ξ2L(t−nτ−Dτ), nτ +Dτ ≤ t ≤ (n+ 1)τ.
[S5.11b]

From above equations, we obtain X∗((n+ 1)τ) and Y ∗ ((n+ 1)τ) as

X∗((n+ 1)τ) = X∗He
−η1L(1−D)τ −

(
X∗H −X∗(nτ)

)
e−(η1HDτ+η1L(1−D)τ), [S5.12a]

Y ∗((n+ 1)τ) = Y ∗L −
ξ1L
(
X∗H −

(
X∗H −X∗(nτ)

)
e−η1HDτ

)
η1L − ξ2L

(
e−η1L(1−D)τ − e−ξ2L(1−D)τ)+ Y ∗He

−ξ2L(1−D)τ

−

((
Y ∗H − Y ∗(nτ)

)
e−ξ2HDτ +

ξ1H
(
X∗H −X∗(nτ)

)
η1H − ξ2H

(
e−η1HDτ − e−ξ2HDτ

))
e−ξ2L(1−D)τ

− Y ∗Le−ξ2L(1−D)τ . [S5.12b]

Let n → ∞, such that the effect of initial conditions disappears. Then, the above dynamics repeats for every period,
implying X∗(nτ) = X∗((n+ 1)τ) = X∗p and Y ∗(nτ) = Y ∗((n+ 1)τ) = Y ∗p. With this assumption, we obtain the following:

X∗p = X∗H
e−η1L(1−D)τ − e−(η1HDτ+η1L(1−D)τ)

1− e−(η1HDτ+η1L(1−D)τ) , [S5.13a]

Y ∗p = Y ∗L +
(
Y ∗H − Y ∗L

) e−ξ2L(1−D)τ (1− e−ξ2HDτ
)

1− e−ξ2HDτ−ξ2L(1−D)τ

+X∗H

(
ξ1H

η1H − ξ2H

e−η1HDτ − e−ξ2HDτ

1− e−(η1HDτ+η1L(1−D)τ)
e−ξ2L(1−D)τ − e−η1L(1−D)τ−ξ2L(1−D)τ

1− e−ξ2HDτ−ξ2L(1−D)τ

)
−X∗H

(
ξ1L

η1L − ξ2L

1− e−η1HDτ

1− e−(η1HDτ+η1L(1−D)τ)
e−η1L(1−D)τ − e−ξ2L(1−D)τ

1− e−ξ2HDτ−ξ2L(1−D)τ

)
. [S5.13b]

The main takeaway from these expressions is that the receptor response at the beginning of a pulse X∗p normalized by the
maximum response if the input were constant (X∗H) only depends upon the parameter combinations η1L(1−D)τ and η1HDτ .
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Here η1L(1 −D)τ represents the "off" period of the pulse normalized by the relaxation timescale (or response time) of the
receptor while η1HDτ represents the "on" period of the pulse normalized by the response time of the receptor. The expression
for Y ∗p is more involved, but it may still be seen that the power of the exponential functions contain these same normalized
timescales. Two addition timescales ξ2HDτ and ξ2L(1−D)τ also appear, which refer to the on and off periods of the pulse
with respect to the timescales of the switch.

We note that if the pulse is on for long enough, then the response reaches its steady-state. If the off period of the pulse
is long enough too, then the response returns to the basal level. This behavior repeats over subsequent pulses (Fig. S5.1(a).
Instead, if the pulse frequency is increased, then the response does not reach the steady-state and pulsates around a lower
value (Fig. S5.1(b)). For a pulse of very high frequency, the response approaches to that to a constant stimulus with half
amplitude(Fig. S5.1(c)).

We further illustrate the effect of relative timescales on X∗p (minimum response during a pulse) as well as the maximum
response during a pulse (computed as X∗peeta1L(1−D)τ and the difference between the maximum and the minimum response
for the receptor in Fig. S5.1 in Figs. S5.1(d)–(e). It is seen that the minimum response does not return to the basal level if
the relative on period of the pulse dominates the relative off period. In this case, the maximum response also approaches the
steady-state value to a constant stimulus of same amplitude.

A thorough analysis of the switch dynamics involves four relative timescales and is beyond the scope of this work. However,
we note that if the receptor dynamics is fast enough to immediately follow the pulsating input, then the switch dynamics may
be understood in the same manner as the results in Fig S5.1. We illustrate this in Fig. S5.2.

S6. Effect of receptor removal

In this section, we include removal of both inactive and active receptors and examine how receptor removal influences the three
properties: dose-response, response time, and noise.

S6-A. Model description. As shown in Fig. S6.1, we modify our model by including the production of inactive receptors with
rate kp, removal of inactive receptors with rate kd, and removal of active receptors of k∗d. The ODE model for the set up is

dX

dt
= kp − kdX − k1SX + k2X

∗ [S6.1a]

dX∗

dt
= k1SX − k2X

∗ − k∗dX∗ [S6.1b]

dY ∗

dt
= (k3 + k5X

∗)(YT − Y ∗)− (k4 + k6X)Y ∗. [S6.1c]

We specify the initial condition (X(0), X∗(0), Y ∗(0)) as the steady-state in the absence of the stimulus:

X(0) = kp
kd
, X∗(0) = 0, Y ∗(0) = k3

k3 + k4 + k6kp
kd

. [S6.2]

S6-B. Dose responses. The steady-state numbers of inactive receptors, active receptors, and active switches are computed by
setting the derivatives in Eq. (S6.1):

X =
kp
kd

kd
k∗
d

k2+k∗
d

k1

S + k2+k∗
d

k1
kd
k∗
d

, [S6.3a]

X∗ =
kp
kd

kd
k∗
d
S

S + k2+k∗
d

k1
kd
k∗
d

, [S6.3b]

Y ∗ =

k3 + k5

kp
kd

kd
k∗
d

S

S+
k2+k∗

d
k1

kd
k∗
d

k3 + k4 + k5

kp
kd

kd
k∗
d

S

S+
k2+k∗

d
k1

kd
k∗
d

+ k6

kp
kd

kd
k∗
d

k2+k∗
d

k1

S+
k2+k∗

d
k1

kd
k∗
d

YT =

k3 + k5

kp
kd

kd
k∗
d

S

S+
k2+k∗

d
k1

kd
k∗
d

S + k2+k∗
d

k1
kd
k∗
d

k3+k4+k6
kp
kd

k3+k4+k5
kp
kd

kd
k∗
d

YT . [S6.3c]

Re-arranging terms gives

X = X0ΘX +X∞S

ΘX + S
[S6.4a]

X∗ = X∗0 ΘX∗ +X∗∞S

ΘX∗ + S
, [S6.4b]

Y ∗ = Y ∗0 ΘY ∗ + Y ∗∞S

ΘY ∗ + S
, [S6.4c]
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(a) activation
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(b) derepression
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Fig. S5.2. Illustration of switch response to a pulsating input. For each signaling mechanism, we use slow pulses that allows the switch response to attain steady-state when
pulse is on and to relax back to basal level when the pulse is off (left column). Likewise, we use pulses of medium frequency (middle column) and high frequency (right column).
The responses are qualitatively similar to those of the receptor in Fig. S5.1. The parameters are chosen such that the receptor dynamics is much faster than that of the switch.
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where

X0 = kp
kd
, [S6.4d]

X∞ = 0, [S6.4e]

ΘX = kd
k∗d

k2 + k∗d
k1

, [S6.4f]

X∗0 = 0, [S6.4g]

X∗∞ = kd
k∗d

kp
kd
, [S6.4h]

ΘX∗ = ΘX , [S6.4i]

Y ∗0 = k3YT

k3 + k4 + k6
kp
kd

, [S6.4j]

Y ∗∞ =

(
k3 + k5

kd
k∗
d

kp
kd

)
YT

k3 + k4 + k5
kd
k∗
d

kp
kd

, [S6.4k]

ΘY ∗ = ΘX

k3 + k4 + k6
kp
kd

k3 + k4 + k5
kd
k∗
d

kp
kd

. [S6.4l]

These formulas reveal that except for few scaling operations, the dose-responses exhibit the same behavior as the minimal
model.

Finally, we also note that the total number of receptors

X +X∗ =
kp
kd

kd
k∗
d

k2+k∗
d

k1
+ kp

kd

kd
k∗
d
S

S + k2+k∗
d

k1
kd
k∗
d

, [S6.5]

which equals kp/kd if kd = k∗d, is less than kp/kd if kd < k∗d, and is greater than kp/kd if kd > k∗d.

stimulus

X X*

Y Y*

k1

k2

k6

k5

k4

k3

kp

kd

k*
d ØØ

Fig. S6.1. Concerted mechanism with receptor production and degradation.

S6-C. Solution to the receptor dynamics. Our goal here is to examine the effect of receptor removal on different signaling
mechanisms. To that end, let us first compute the dynamics at the receptor level.

dX

dt
= kp − kdX − k1SX + k2X

∗, [S6.6a]

dX∗

dt
= k1SX − k2X

∗ − k∗dX∗. [S6.6b]

Let X [ω] and X ∗[ω] respectively denote the Laplace transforms of X(t) and X∗(t). Taking the initial conditions as
(X(0), X∗(0)) =

(
kp
kd
, 0
)
, the Laplace transforms of above ODEs results in the following algebraic equations

ωX [ω]− kp
kd

= kp
ω
− (k1S + kd)X [ω] + k2X ∗[ω], [S6.7a]

ωX ∗[ω] = k1SX [ω]− (k2 + k∗d)X ∗[ω]. [S6.7b]
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The solution to above system of equations is

X [ω] = kp
kd

(ω + kd) (ω + k2 + k∗d)
ω (ω2 + (k1S + k2 + kd + k∗d)ω + k1Sk∗d + k2kd + kdk∗d) , [S6.8a]

X ∗[ω] = k1Skp
kd

(ω + kd)
ω (ω2 + (k1S + k2 + kd + k∗d)ω + k1Sk∗d + k2kd + kdk∗d) . [S6.8b]

Special case when receptor removal rates are equal We first examine the special case when kd = k∗d for which the above expressions
simplify to

X [ω] = kp
kd

ω + k2 + kd
ω (ω + k1S + k2 + kd)

, [S6.9a]

X ∗[ω] = kp
kd

k1S

ω (ω + k1S + k2 + kd)
. [S6.9b]

Taking inverse Laplace transform gives

X(t) = kp
kd

k2+kd
k1

S + k2+kd
k1

+

(
kp
kd
− kp
kd

k2+kd
k1

S + k2+kd
k1

)
e−(k1S+k2+kd)t, [S6.10a]

X∗(t) = kp
kd

S

S + k2+kd
k1

− kp
kd

S

S + k2+kd
k1

e−(k1S+k2+kd)t. [S6.10b]

These solutions monotonically reach their respective steady-states. Furthermore, the response time for each solution may be
computed straightforwardly as

TX = TX∗ = 1
k1S + k2 + kd

. [S6.11]

Unequal receptor removal rates We first define the following parameters

ζ = k1S + k2 + kd + k∗d

2
√

(k1S + kd)(k2 + k∗d)− k1Sk2
, [S6.12a]

κ =
√

(k1S + kd)(k2 + k∗d)− k1Sk2. [S6.12b]

The roots of the term ω2 + 2ζκω + κ2 are
ω1,2 = κ(−ζ ±

√
ζ2 − 1). [S6.13a]

The following usual relations hold for ω1 and ω2:

ω1 + ω2 = −2κζ, [S6.13b]
ω1ω2 = κ2, [S6.13c]

ω1 − ω2 = 2κ
√
ζ2 − 1. [S6.13d]

Then, the transient solution for active receptors is given by

X∗(t) = k1kpS

κ2 + c∗1e
ω1t + c∗2e

ω2t. [S6.14a]

Here the terms c∗1 and c∗2 are

c∗1 = k1S

2κ
√
ζ2 − 1

(
kp
kd

+ kpω2

κ2

)
, c∗2 = − k1S

2κ
√
ζ2 − 1

(
kp
kd

+ kpω1

κ2

)
. [S6.14b]

Using the solution of X∗(t), X(t) can also be computed as follows.

X(t) = kp(k2 + k∗d)
κ2 +

(
c∗1ω1 + c∗1(k2 + k∗d)

k1S

)
eω1t +

(
c∗2ω2 + c∗2(k2 + k∗d)

k1S

)
eω2t. [S6.14c]

Having determined these solutions, we next show that ζ > 1, which implies that the roots ω1,2 are real. To see this, we look
at ζ2

ζ2 = (k1S + k2 + kd + k∗d)2

4 (k2kd + kdk∗d + k1k∗dS) [S6.15a]

= (k1S + kd)2 + (k2 + k∗d)2 + 2(k1S + kd)(k2 + k∗d)
4 ((k1S + kd)(k2 + k∗d)− k1Sk2) . [S6.15b]
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This implies that

(k1S + kd)2 + (k2 + k∗d)2 + (2− 4ζ2)(k1S + kd)(k2 + k∗d) + 4ζ2k1Sk2 = 0 [S6.15c]

=⇒ ((k1S + kd)− (k2 + k∗d))2 + (4− 4ζ2)(k1S + kd)(k2 + k∗d) + 4ζ2k1Sk2 = 0. [S6.15d]

Because all terms in the above equation are positive, except may be for 4− 4ζ2, a real solution for ζ exists only if 4− 4ζ2 < 0.
Therefore, ζ > 1. Consequently, the roots ω1 and ω2 defined in Eq. (S6.13a) are negative and satisfy

ω2 < ω1 < 0, |ω1| < |ω2|. [S6.16]

Examining the transient solutions X(t) and X∗(t) in Eq. (S6.14) shows that the both X and X∗ have two timescales for
relaxing to their respective steady-states, determined by ω1 and ω2. Because |ω2| > |ω1|, we refer to the timescale set by ω2 as
fast timescale and the one set by ω1 as the slow timescale. The parameter ζ controls the difference between the magnitudes of ω1
and ω2. One consequence of these two timescales is that X(t) now starts from the initial condition X(t) = kp/kd and may reach
its steady-state non-monotonically. Likewise, X∗(t) starts from X∗(0) = 0 and may reach its steady-state non-monotonically.

Our results in the case of kd = k∗d show that in that case, X(t) and X∗(t) are monotonic. Therefore, we ask whether a
difference between kd and k∗d is enough to enable the non-monotonic behaviors. Note that dX∗/dt > 0 right after t = 0, the
non-monotonocity would be a maximum. Assuming that X∗(t) attains a maximum at a time tmax, we must have that tmax is a
solution to

dX∗

dt
= 0, [S6.17]

which implies

tmax = 1
ω2 − ω1

log
(
−c
∗
1ω1

c∗2ω2

)
. [S6.18]

Because ω2 − ω1 < 0, tmax > 0 requires that the argument of the logarithmic function above is positive but less than 1. With
some algebraic manipulation, this requirement simplifies to

0 <
k1S + k2 + k∗d − kd −

√
(k1S + k2 + k∗d − kd)2 − 4k1S(k∗d − kd)

k1S + k2 + k∗d − kd +
√

(k1S + k2 + k∗d − kd)2 − 4k1S(k∗d − kd)
≤ 1. [S6.19]

The above inequality is satisfied when k∗d > kd. That is, X∗(t) attains a maximum at this time. To repeatthe same analysis for
X(t), it is easy to see that X(t) decreases in right after t = 0, so the non-monotonocity would be a minimum. Let this occur at
time tmin, which is solution to

dX

dt
= 0, [S6.20]

giving the inequality

0 <
k1S + k2 + kd − k∗d −

√
(k1S + k2 + kd − k∗d)2 − 4k2(kd − k∗d)

k1S + k2 + kd − k∗d +
√

(k1S + k2 + kd − k∗d)2 − 4k2(kd − k∗d)
≤ 1. [S6.21]

This inequality is satisfied when kd > k∗d.
Thus our analysis shows that the difference between kd and k∗d gives rise to non-monotonicity. In particular, when kd > k∗d,

then we have that X(t) first undershoots and then increases to its steady-state. Likewise when k∗d > kd, then X∗(t) first
overshoots and then decrease to its steady-state.

S6-D. Response times. We compute the ‘approximate’ response time using the frequency domain approach. To this end, the
Laplace transforms of the error signals, EX = X −X and EX∗ = X∗ −X∗, are

EX [ω] = X

ω
−X [ω] = kp(k2 + k∗d)

κ2
2ζκω + κ2

ω2 + 2ζκω + κ2 −
kp
kd

(ω + k2 + k∗d) + kp

ω2 + 2ζκω + κ2

= kp
kdκ2

(
2ζκ(k2kd + kdk

∗
d)− κ2 (k2 + kd + k∗d)

)
+ (kdk∗d + k2kd − κ2)ω

(ω2 + 2ζκω + κ2) [S6.22]

EX∗ [ω] = X∗

ω
−X ∗[ω] = k1kpS

κ2ω
−

(
k1kpS
kd

ω2 + 2ζκω + κ2 + k1kpS

ω(ω2 + 2ζκω + κ2)

)
= k1kpS

kdκ2
(ω + 2ζκ)kd − κ2

(ω2 + 2ζκω + κ2) . [S6.23]

The response times for these are given by

TX = 2ζ
κ

+ k2(kd + k∗d)− κ2

(k2 + kd + k∗d)κ2 − 2ζκ(k2kd + kdk∗d) = k1S + k2 + kd + k∗d
(k1S + kd)(k2 + k∗d)− k1Sk2

− k∗d
k2(k∗d − kd) + k∗2d

, [S6.24]

TX∗ = 2ζ
κ

+ kd
κ2 − 2kdζκ

= k1S + k2 + kd + k∗d
(k1S + kd)(k2 + k∗d)− k1Sk2

+ kd
k1S(k∗d − kd)− k2

d

. [S6.25]
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In the special case where kd = k∗d, we have that

TX = TX∗ = 1
k1S + k2 + kd

. [S6.26]

Next, we compute the response time for the switch. The differential equation that governs Y ∗ in Eq. (S6.1) consists of two
nonlinear terms, XY ∗ and X∗Y ∗. Linearizing around steady-state solution (X,X∗, Y ∗) leads to

XY ∗ ≈ Y ∗X +XY ∗ −X Y ∗, [S6.27a]
X∗Y ∗ ≈ Y ∗X∗ +X∗Y ∗ −X∗ Y ∗, [S6.27b]

where

X =
kp
kd

kd
k∗
d

k2+k∗
d

k1

S + k2+k∗
d

k1
kd
k∗
d

, [S6.28]

X∗ =
kp
kd

kd
k∗
d
S

S + k2+k∗
d

k1
kd
k∗
d

, [S6.29]

Y ∗ =

k3 + k5

kp
kd

kd
k∗
d

S

S+
k2+k∗

d
k1

kd
k∗
d

S + k2+k∗
d

k1
kd
k∗
d

k3+k4+k6
kp
kd

k3+k4+k5
kp
kd

kd
k∗
d

YT . [S6.30]

Substituting these in Eq. (S6.1) yields

dX

dt
= kp − kdX − k1SX + k2X

∗ [S6.31a]

dX∗

dt
= k1SX − k2X

∗ − k∗dX∗ [S6.31b]

dY ∗

dt
= k3YT + k5YTX

∗ − (k3 + k4)Y ∗ − k5
(
Y ∗X∗ +X∗Y ∗ −X∗ Y ∗

)
− k6

(
Y ∗X +XY ∗ −X Y ∗

)
. [S6.31c]

The last equation above can be rearranged as

dY ∗

dt
=
(
k3YT + k5X∗ Y ∗ + k6X Y ∗

)
+ k5

(
YT − Y ∗

)
X∗ − k6Y ∗X −

(
k3 + k4 + k5X∗ + k6X

)
Y ∗, [S6.31d]

which has the same form as the two-tier linear system with two inputs in Eq. (S2.28) with ξ0 = k3YT + k5X∗ Y ∗ + k6X Y ∗,
ξ11 = −k6Y

∗, ξ12 = k5(YT − Y ∗), and ξ2 = k3 + k4 + k5X∗ + k6X. Using Eq. (S2.33d), we can write the response time as

TY ∗ = 1
ξ2

+ ξ11TXEX [0] + ξ12TX∗EX∗ [0]
Y ∗ − Y (0) + ξ11EX [0] + ξ12EX∗ [0]

. [S6.32]

We compute EX [0] from Eq. (S6.22) and EX∗ [0] from Eq. (S6.23)

E0[ω] = kp
kdκ2

(
2ζκ(k2kd + kdk

∗
d)− κ2 (k2 + kd + k∗d)

)
κ2 [S6.33]

EX∗ [0] = k1kpS

kdκ2
2ζκkd − κ2

κ2 . [S6.34]

S7. Receptor kinetic proofreading

Let us consider a scenario in which the active form of the receptor undergoes n states as in X∗1 , X∗2 , . . . , X∗n. We assume that
the ligand binding occurs at a rate k1S whereas ligand unbinding from all the states occurs at the rate k2. The forward
transition through the states occurs through the rate kf (Fig. S7.1).
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X X*1 X*2 X*3 X*n

𝑘1𝑆

𝑘𝑓 𝑘𝑓 𝑘𝑓 𝑘𝑓

𝑘2
𝑘2 𝑘2

𝑘2

Fig. S7.1. A scheme for receptor kinetic proofreading

The ODE for this model are given by

dX∗1
dt

= k1S

(
XT −

n∑
i=1

X∗i

)
− k2X

∗
1 − kfX∗1 [S7.1a]

dX∗2
dt

= kfX
∗
1 − k2X

∗
2 − kfX∗2 [S7.1b]

dX∗3
dt

= kfX
∗
2 − k2X

∗
3 − kfX∗3 [S7.1c]

...
... [S7.1d]

dX∗n
dt

= kfX
∗
n−1 − k2X

∗
n. [S7.1e]

Let us first compute the steady-state solution. Let us denote ε = kf
kf+k2

. We start by computing the solutions X∗2 onward.
We note that

X∗2 = εX∗1 [S7.2a]
X∗3 = εX∗2 = ε2X∗1 [S7.2b]

...
... [S7.2c]

X∗n−1 = εX∗n−2 = εn−2X∗1 . [S7.2d]

First, we compute the steady-state for X∗n in terms of X∗n−1:

X∗n = kf
k2
X∗n−1. [S7.3]

Substituting these gives

X∗1 = k1SXT

k1S
(
1 + ε+ ε2 + . . .+ εn−2 + εn−1

1−ε

)
+ k2 + kf

[S7.4]

= k1SXT
k1S
1−ε + k2 + kf

[S7.5]

=
k1

(
1− kf

k2+kf

)
SXT

k1S + (k2 + kf )
(

1− kf
k2+kf

) [S7.6]

=
k2

k2+kf
SXT

S + k2
k1

[S7.7]
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Rest of the steady-states may be computed as below.

X∗2 = k2kf
(k2 + kf )2

SXT

S + k2
k1

[S7.8]

X∗3 =
k2k

2
f

(k2 + kf )3
SXT

S + k2
k1

[S7.9]

. . . . . . [S7.10]

X∗n−1 =
k2k

n−2
f

(k2 + kf )n−1
SXT

S + k2
k1

[S7.11]

X∗n =
kn−1
f

(k2 + kf )n−1
SXT

S + k2
k1

. [S7.12]

The total amount of receptors that are ligated is given by the sum
∑n

i=1 X
∗
i . We compute it below.

n∑
i=1

X∗i = SXT

S + k2
k1

, [S7.13]

which is independent of kf .
An interesting point to note is that if only X∗n is signaling competent, then having intermediate steps only affects the overall

response in terms of amplitude, but not its shape. Thus, our dose-response curves generalize to the scenario when there is
kinetic proofreading.

We also note that the ratio of the signaling competent complex with the sum of all ligated complexes is

X∗n∑n

i=1 X
∗
i

=
kn−1
f

(k2 + kf )n−1 , [S7.14]

which is consistent with previous results (13–15).

S7-A. Dose-response of the switch. We consider the following dynamics through which the receptor affects the switch.

dY ∗

dt
= (k3 + k5X

∗
n) (YT − Y ∗)− (k4 + k6 (XT −X∗n))Y ∗. [S7.15]

Here we assume that all receptor states are capable of repressing the downstream switch, except X∗n which is the only competent
state for activating the downstream switch (section SI). Moreover, all receptors are assumed to be unligated before the arrival
of the stimulus. Therefore, the initial conditions are X∗i = 0 ∀i ∈ {1, 2, . . . , n} and Y ∗ = k3YT

k3+k4+k6XT
.

The steady-state response for the switch is then given by

Y ∗ =
k2k3

k1(k3+k4+k′5XT ) + k3+k′5XT
k3+k4+k′5XT

S

k2(k3+k4+k6XT )
k1(k3+k4+k′5XT ) + S

YT , [S7.16]

where k′5 =
k5k

n−1
f

(k2+kf )n−1 . Thus, all properties of the dose-response curve are similar to that of the two-tier model in Fig. 1 in the
main text, except for activation strength being k′5XT .

S7-B. Response times of receptor states. Taking Laplace transform of the system of equations, we obtain:

ωX ∗1[ω] = k1SXT
ω

− k1S

n∑
i=1

X ∗i[ω]− k2X ∗1[ω]− kfX ∗1[ω] [S7.17]

ωX ∗2[ω] = kfX ∗1[ω]− k2X ∗2[ω]− kfX ∗2[ω] [S7.18]
ωX ∗3[ω] = kfX ∗2[ω]− k2X ∗3[ω]− kfX ∗3[ω] [S7.19]

...
... [S7.20]

ωX ∗n[ω] = kfX ∗n−1[ω]− k2X ∗n[ω] [S7.21]
[S7.22]
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Here we have assumed that there are no active receptors before arrival of the stimulus. We can solve the algebraic equations
iteratively. To this end, let εw = kf

ω+k2+kf
. Then, we have that

X ∗2[ω] = εwX ∗1[ω] [S7.23]
X ∗3[ω] = εwX ∗2[ω] = ε2

wX ∗1[ω] [S7.24]
...

... [S7.25]
X ∗n−1 = εwX ∗n−2 = εn−2X ∗1. [S7.26]

Moreover, X ∗n = kf
ω+kf

X ∗n−1. Solving for X1[ω]

X1[ω] = k1SXT
ω

ω + k2

(ω + k2 + kf )(ω + k1S + k2) . [S7.27]

The rest of term are

X ∗2[ω] = kf
ω + k2 + kf

k1SXT
ω

ω + k2

(ω + k2 + kf )(ω + k1S + k2) [S7.28]

X ∗3[ω] =
(

kf
ω + k2 + kf

)2
k1SXT
ω

ω + k2

(ω + k2 + kf )(ω + k1S + k2) [S7.29]

...
... [S7.30]

X ∗n−1 =
(

kf
ω + k2 + kf

)n−2
k1SXT
ω

ω + k2

(ω + k2 + kf )(ω + k1S + k2) [S7.31]

Finally X ∗n[ω] is

X ∗n[ω] = kf
ω + k2

(
kf

ω + k2 + kf

)n−2
k1SXT
ω

ω + k2

(ω + k2 + kf )(ω + k1S + k2) [S7.32]

To compute the response time of X∗n, we find the error signal as

EX∗n [ω] = X∗n
ω
−X ∗n[ω] [S7.33]

=
kn−1
f

(k2 + kf )n−1
k1SXT
k1S + k2

1
ω
− kf
ω + k2

(
kf

ω + k2 + kf

)n−2
k1SXT
ω

ω + k2

(ω + k2 + kf )(ω + k1S + k2) [S7.34]

=
kn−1
f

(k2 + kf )n−1
k1SXT
k1S + k2

(
k1S + k2

ω + k1S + k2
+ 1
ω + k1S + k2

n−2∑
i=0

(k2 + kf )i

(ω + k2 + kf )i+1

)
[S7.35]

Note that here we have assumed n ≥ 2. The case of n = 1 is same as the toy-model, so we do not consider it here. We can now
compute the response time of X ∗n as

TX∗n = −
d log

(
EX∗n [ω]

)
dω

∣∣∣∣∣
ω=0

= 1
k1S + k2

+ n

2
1

k2 + kf

(n− 1)(k1S + k2)
(k2 + kf ) + (n− 1)(k1S + k2) . [S7.36]

S7-C. Response time for switch. The differential equation that governs Y ∗ consists of the nonlinear term, X∗nY ∗. Linearizing
around steady-state solution (X∗n, Y ∗) leads to

X∗nY
∗ ≈ Y ∗X∗n +X∗nY

∗ −X∗n Y ∗. [S7.37]

This results in dynamics that resembles the one studied in the section S2-B. The response time is thus given by

TY ∗ ≈
1

k3 + k4 + k6XT + (k′5 − k6) k1SXT
k1S+k2

+ 1
k1S + k2

×
k3 + k4 + k6XT + (k′5 − k6) k1SXT

k1S+k2

k1S + k2 + k3 + k4 + k6XT + (k′5 − k6) k1SXT
k1S+k2

. [S7.38]

S8. Alternating activation and derepression

In this section, we consider signaling cascades consisting of alternating activation and derepression based switches. The first
cascade is shown in Fig. S8.1(a). It is built upon the activation mechanism of Fig. 1(a) in the main text, where the receptor
activates a downstream switch (Y � Y ∗). We add a downstream switch (Z � Z∗) which is derepressed. The second cascade,
shown in Fig. S8.1(b), is a modification of the derepression mechanism of Fig. 1(b) in the sense that a downstream component
is now activated by the derepressed switch.
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k3
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Z Z*

k8

k7

k9

Fig. S8.1. Three tier cascades with alternating activation and derepression mechanisms
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S8-A. Activation followed by derepression. The ODEs that govern the dynamics of this cascade are

dX∗

dt
= k1SXT − (k1S + k2)X∗ [S8.1a]

dY ∗

dt
= (k3 + k5X

∗)(YT − Y ∗)− k4Y
∗ [S8.1b]

dZ∗

dt
= k7(ZT − Z∗)− (k8 + k10(YT − Y ∗))Z∗ [S8.1c]

We obtain the steady-states by setting each of the derivatives to zero. We express each of the steady-states in a similar form as
that of Eq. (3) in the main text

R = R0ΘR +R∞S

ΘR + S
. [S8.2]

For example, steady-state of X∗ is specified by

X∗0 = 0, [S8.3a]
X∗∞ = XT , [S8.3b]

ΘX∗ = k2

k1
. [S8.3c]

The steady-state of Y ∗ is specified by

Y ∗0 = k3

k3 + k4
YT , [S8.4a]

Y ∗∞ = k3 + k5XT
k3 + k4 + k5XT

YT , [S8.4b]

ΘY ∗ = ΘX∗
k3 + k4

k3 + k4 + k5XT
< ΘX∗ . [S8.4c]

As expected, activation caused the dose-response of Y ∗ to shift towards left in comparison with that of X∗, i.e., ΘY ∗ < ΘX∗ .
Finally, the steady-state of Z∗ is specified by

Z∗0 = k7ZT

k7 + k8 + k10
k4YT
k3+k4

, [S8.5a]

Z∗∞ = k7ZT

k7 + k8 + k10
k4YT

k3+k4+k5XT

, [S8.5b]

ΘZ∗ = ΘY ∗
k7 + k8 + k10

k4YT
k3+k4

k7 + k8 + k10
k4YT

k3+k4+k5XT

> ΘY ∗ . [S8.5c]

We observe that ΘZ > ΘY ∗ . This means that the derepression layer has an opposite effect of activation and shifts the
dose-response back towards right.

S8-B. Derepression followed by activation. The ODEs that govern the dynamics of this cascade are

dX∗

dt
= k1SXT − (k1S + k2)X∗ [S8.6a]

dY ∗

dt
= k3(YT − Y ∗)− (k4 + k6(XT −X∗))Y ∗ [S8.6b]

dZ∗

dt
= (k7 + k9Y

∗)(ZT − Z∗)− k8Z
∗ [S8.6c]

For this model, the steady-state of X∗ has the same specification as Eq. (S8.3). The steady-state Y ∗ is prescribed by

Y ∗0 = k3

k3 + k4 + k6XT
YT , [S8.7a]

Y ∗∞ = k3

k3 + k4
YT , [S8.7b]

ΘY ∗ = ΘX
k3 + k4 + k6XT

k3 + k4
> ΘX∗ . [S8.7c]
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Because ΘY ∗ > ΘX∗ , the dose response of Y ∗ is towards the right to that of X∗. This results from the fact that this switch is
governed by a derepression mechanism. We now look at the parameters specifying Z∗:

Z∗0 =
k7 + k9

k3YT
k3+k4+k6XT

k7 + k8 + k9
k3YT

k3+k4+k6XT

ZT , [S8.8a]

Z∗∞ =
k7 + k9

k3YT
k3+k4

k7 + k8 + k9
k3YT
k3+k4

ZT , [S8.8b]

ΘZ∗ = ΘY ∗
k7 + k8 + k9

k3YT
k3+k4+k6XT

k7 + k8 + k9
k3YT
k3+k4

< ΘY ∗ . [S8.8c]

We see that ΘZ∗ < ΘY ∗ . So, the dose-response of Z∗ is towards the left of Y ∗, which implies that activation of the third
layer counteracts the shifting caused of derepression of the second layer. It is important to point out that the effects of these
mechanisms on Z∗0 and Z∗∞ are different. A systematic analysis of these effects on alternating cascades will be carried out in a
future work.

S8-C. Response time for a representative three-tier system. Let us consider the following representative system of ordinary
differential equations

dR1

dt
= η0 − η1R1, [S8.9a]

dR2

dt
= ξ0 + ξ1R1 − ξ2R2, [S8.9b]

dR3

dt
= ν0 + ν1R2 − ν2R3, [S8.9c]

with initial condition

(R1(0), R2(0), R3(0)) =

(
0, ξ0

ξ2
,
ν0 + ν1

ξ0
ξ2

ν2

)
. [S8.9d]

Taking Laplace transforms, we obtain the following

R1[ω] = η0

η1

(
1
ω
− 1
ω + η1

)
− R1(0)
ω + η1

, [S8.10a]

R2[ω] = ξ0

ξ2

(
1
ω
− 1
ω + ξ2

)
+ η0ξ1

η1ξ2

(
1
ω
− ω + η1 + ξ2

(ω + η1)(ω + ξ2)

)
+ ξ1R1(0)

(ω + η1)(ω + ξ2) + R2(0)
ω + ξ2

, [S8.10b]

R3[ω] = ν0

ν2

( 1
ω
− 1
ω + ν2

)
+ ν1

ω + ν2
R2[ω] + R3(0)

ω + ν2
, [S8.10c]

where R1[ω] and R2[ω] are same as those in Eq. (S2.22).
The response times for R1[ω] and R2[ω] are same as those in Eq. (S2.26). The response time for R3[ω] may be computed in

the same manner by defining an error signal ER3 = R3 −R3. Its Laplace transform is then given by

ER3 [ω] = ν0 + ν1R2 −R3(0)
ω + ν2

+ ν1

ω + ν2
ER2 [ω]. [S8.11]

With some algebraic manipulation, the response time may be computed as

TR3 = − d log (ER3[ω])
dω

∣∣∣∣
ω=0

= 1
ν2

+ TR2

1 + η1ξ2
(η+ξ2)ν2

. [S8.12a]

S8-D. Response time for activation followed by derepression. To compute the response time, we linearize the dynamics of
Y ∗ and Z∗ around (X∗, Y ∗, Z∗). With this linearization, we have that η0 = k1SXT , η1 = k1S + k2, ξ0 = k3YT + k5X∗ Y ∗,
ξ1 = k5(YT − Y ∗), ξ2 = k3 + k4 + k5X∗, ν0 = k7ZT − k10Y ∗Z∗, ν1 = k10Z∗, and ν2 = k7 + k8 + k10(YT − Y ∗). With these
parameters, it is straightforward to see that 1/ν2 is an increasing function of S, which is expected as derepression is operating
at Z∗. Our analysis of response time of two-tier cascade has already shown that TR2 is a decreasing function of S for this
activation at Y ∗. The time-averaging term is upper-bounded by 1. Therefore, the response time varies less strongly with
stimulus as it is sum of two functions, one increasing and another decreasing.

S8-E. Response time for derepression followed by activation. With the same arguments as above, we have that 1/ν2 decreases
with the stimulus, whereas TR2 increases with stimulus. Thus, the response time varies less strongly with stimulus.
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S9. Noise analysis for general upstream kinetics

Our analysis of the stochastic two-tier model in the section S4 assumed that the total number of receptors are conserved. Thus,
dynamics of the statistical moments of active receptors, X∗, are sufficient to describe the dynamics of X and X∗. In practice, X
and X∗ may be more complicated, as the receptor dynamics may involve receptor removal (section S6) or kinetic proofreading
(section S7), etc. In a more general scenario, we can generalize such a model such that X and X∗ are two correlated stochastic
processes that do not depend of Y ∗.

Our goal here is to understand how such a generalization affects the abilities of activation, derepression, and concerted
mechanisms to process upstream fluctuations. Let (Xdet, X∗det, Y ∗det) be the steady-state solution of the deterministic description
of the model. Linearizing the transition rates of Y → Y ∗ and Y ∗ → Y around (Xdet, X∗det, Y ∗det) gives

(k3 + k5X
∗)(YT − Y ∗) ≈ (k3 + k5X

∗
det)(YT − Y ∗det) + k5(YT − Y ∗det) (X∗ −X∗det)− (k3 + k5X

∗
det) (Y ∗ − Y ∗det) [S9.1a]

(k4 + k6X)Y ∗ ≈ (k4 + k6Xdet)Y ∗det + k6Y
∗
det(X −Xdet) + (k4 + k6Xdet))(Y ∗ − Y ∗det) [S9.1b]

With these linearized rates, we have that 〈Y ∗ − Y ∗det〉 = 0, giving the following in steady-state:

(k3 + k5X
∗
det)(YT − Y ∗det)− (k4 + k6Xdet)Y ∗det = 0, [S9.2]

where we have also used 〈X −Xdet〉 = 0 and 〈X∗ −X∗det〉 = 0.
Further, the second centered moment (i.e., variance) of Y ∗ in steady-state satisfies

d
〈
(Y ∗ − Y ∗det)

2〉
dt

≈

〈((k3 + k5X
∗
det)(YT − Y ∗det) + k5(YT − Y ∗det) (X∗ −X∗det)− (k3 + k5X

∗
det) (Y ∗ − Y ∗det)) (1 + 2Y ∗ − 2Y ∗det)〉

〈((k4 + k6Xdet)Y ∗det + k6Y
∗
det(X −Xdet) + (k4 + k6Xdet))(Y ∗ − Y ∗det)) (1− 2Y ∗ + 2Y ∗det)〉 . [S9.3a]

Using the fact the centered means are zero for X, X∗ and Y ∗, we get

d
〈
(Y ∗ − Y ∗det)

2〉
dt

≈ (k3 + k5X
∗
det)(YT − Y ∗det) + (k4 + k6Xdet)Y ∗det + 2k5(YT − Y ∗det) 〈(X∗ −X∗det) (Y ∗ − Y ∗det)〉

− 2k6Y
∗
det 〈(X −Xdet) (Y ∗ − Y ∗det)〉 − 2 (k3 + k4 + k5X

∗
det + k6Xdet)

〈
(Y ∗ − Y ∗det)2〉 . [S9.3b]

Thus, we obtain the steady-state variance〈
(Y ∗ − Y ∗det)2〉 ≈ (k3 + k5X

∗
det)(YT − Y ∗det) + (k4 + k6Xdet)Y ∗det

2 (k3 + k4 + k5X∗det + k6Xdet)
+ k5(YT − Y ∗det) 〈(X∗ −X∗det) (Y ∗ − Y ∗det)〉

k3 + k4 + k5X∗det + k6Xdet

− k6Y
∗
det 〈(X −Xdet) (Y ∗ − Y ∗det)〉
k3 + k4 + k5X∗det + k6Xdet

. [S9.3c]

Here 〈(X∗ −X∗det) (Y ∗ − Y ∗det)〉 is the correlation between X∗ and Y ∗, which is positive as increase in X∗ increases Y ∗.
Moreover, 〈(X −Xdet) (Y ∗ − Y ∗det)〉 is the correlation between X and Y ∗, which is negative as increase in X implies decrease
in Y ∗. A simple example to see this is the different signs of these correlations is the two-tier model where Xdet +X∗det = XT ,
yielding

〈(X −Xdet) (Y ∗ − Y ∗det)〉 = −〈(X∗ −X∗det) (Y ∗ − Y ∗det)〉 . [S9.3d]
We can now use Eq. (S9.3c) to show that activation and derepression mechanisms have less noise than a concerted mechanism.

Note that noise, defined by the coefficient of variation, equals the variance over squared of mean. As long as we control of the
mean across different signaling mechanisms, Eq. (S9.3c) is enough to compare their noise properties. To keep the same forward
and backward transition rates of the switch, we keep k3 + k5X

∗
det and k4 + k6Xdet across the signaling mechanisms. In that

case, it is straightforward to see that the variance decreases for activation (k6 = 0) and for derepression (k5 = 0).
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