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1. Data  
 
We collected social media data through Twitter’s publicly available API by retrieving all messages 
that contained at least one relevant hashtag. For the Gilets Jaune (GJ, Yellow Vest) 
mobilizations, the list of keywords included #GiletsJaunes; #GiletsJaune; #YellowVests; 
#giletJaunes; #giletjaune; #giletJaunes; #giletjaune; #GiletsJaunes; #GiletsJaune; and #giletgialli. 
For the Catalan referendum (1-O), the list included #Catalunya, #Catalonia, #Catalogna, #1Oct, 
#votarem, #referendum, and #1O. Data collection involved monitoring the Twitter stream and 
collecting messages using the Search API, which allowed us to collect all tweets containing any 
of the search terms. Based on Twitter’s rate limits, we estimate that our data collection missed 
less than 1% of all messages with those hashtags during the period we consider (mid-November 
to late December 2018 for the GJ dataset, and mid-September to early October for the 1-O 
dataset). Using a state-of-the-art bot detection technique (more in section 3), we classified users 
in our datasets as being bot or human. We then distinguished bot accounts that are also verified 
by Twitter from unverified bot accounts. We labelled the first category “media” because verified 
accounts that have bot-like behavior tend to belong to media organizations, journalists and public 
figures. Only 0.48% of all the accounts in our data fell in the ‘media’ category. Accounts classified 
as ‘bots’ amounted to 38% of all users; the rest were classified as ‘human’. Figure SI1 
summarizes changes in the number of tweets published by each group over the period we 
consider.  
 

 

Figure SI1. Longitudinal Changes in the Volume of Twitter Messages. Panels A1 and A2 
show totals in messages posted and RTs received by the three types of accounts during the 
Gilets Jaunes protests. Panels B1 and B2 show the same information during the Catalan 
Referendum protests.  
 
 
The web-tracking data was provided by Comscore, a media measurement company that 
maintains representative panels of the online population in different countries, including France 
and Spain. We used their MMX Multi-Platform panel, which offers estimates for multi-platform 
media usage, including desktop, tablet, and mobile access. We used the “news and information” 
category to identify relevant web domains, and we then checked that list manually to eliminate 
social media sites and other irrelevant domains. Comscore counts the number of unique visitors 
accessing a given site and offers monthly aggregates of market share or audience reach at the 
domain level, so we averaged the estimates for November-December 2018 (GJ data) and for 
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September-October 2017 (1-O data). Tables SI1 and SI2 give the full list of news sites included in 
our web-tracking data, sorted in decreasing order by audience reach.   
 

 
Table SI1. List of News Sites in Web Tracking Data (France, Nov-Dec 2018) 

 

Note: Comscore MMX Multi-Platform, Total Audience, Age 18+, November-December 2018, France. 
Custom Defined List.  
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Table SI2. List of News Sites in Web Tracking Data (Spain, Sep-Oct 2017) 

 

Note: Comscore MMX Multi-Platform, Total Audience, Age 18+, September-October 2017, Spain. Custom 
Defined List. 
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2. Retweet and Mention Networks 

Using the data obtained from the Twitter API, we built the RT and mentions networks that 
emerged during the two mobilizations. Table SI3 shows descriptive statistics for the largest 
connected component (LCC) used in the analyses. In addition to the RT network (on which most 
analyses reported in the main text are based) the table also shows data for the mention networks, 
which includes all the @s interactions that exclude RTs. As the table shows, the mention 
networks are substantially smaller. In all networks, reciprocity is very low.  
 
 

Table SI3. Network Statistics for the Retweet and Mention Networks (LCCs)

 

 
Figure SI2 summarizes the distribution of centrality measures in the RT and mention networks 
(for the directed, asymmetrical version) as they compare with centrality in the larger topology of 
the Twitter networks (i.e., number of followers and number of friends).  
 
Figure SI3 shows the correlation between visibility on the web and visibility in the mentions 
network. The correlation is moderate and stronger than the association identified with the network 
of RTs, which means that news organizations with a larger audience base on the web are also 
more likely to be mentioned in the coverage of the two protest events. Figure SI4 shows that, on 
the aggregate, media accounts are the only ones receiving a significantly higher number of 
mentions than expected by chance – a pattern that is similar to that observed with RTs. This 
higher centrality holds even after controlling for account-level attributes (figures SI6 and SI8) and 
when using only the top percentile data (figures SI7 and SI9). Even though both the RT and the 
mention networks have a clear modularity structure (figure SI5), there is no clear clustering of 
accounts in specific communities. Verified accounts are more visible in the larger components of 
the mention networks but the fraction of bot and human accounts in each of these communities is 
roughly proportional to their overall representation in the data. Figure SI10 shows that bots are, 
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again, not creating the discrepancy in visibility when looking at mentions and figure SI11 shows 
that most reciprocal ties exist between human accounts.  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure SI2. Centrality Distributions for Media, Bot, and Human Accounts. The left column 
shows the distributions for the Gilets Jaunes data, the right column shows the distributions for the 
Catalan Referendum data. Centrality is assessed as number of followers (first row), friends 
(second row), retweets received (third row), retweets made (fourth row), mentions received (fifth 
row), and mentions made (sixth row). The findings reported in the main paper focus mostly on the 
RT network because retweets are the main mechanism for information diffusion and, therefore, 
overall visibility in the spread of protest-related information.  
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Figure SI3. Correlation of Rank Position in Percentage Reach and Centrality in the Mention 
Networks. The association between audience reach on the web and number of mentions 
received is higher than the association with RTs (reported in figure 3 of the main text). This 
suggests that Twitter users try to gain the attention of the larger news outlets, in terms of 
audience base, by targeting them more often with mentions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure SI4. Centrality in the Mention Network. These boxplots summarize the values obtained 
from permutations of the data where the category labels were randomly reshuffled across 
accounts. The observed centrality of media accounts in the mentions network is, again, 



 

 

8 

 

significantly higher than expected by chance in both mobilizations. Human accounts receive and 
make significantly less mentions. The axes preserve different scales to allow visual identification 
of distance between permutations and observed values.  

 

 

 

Figure SI5. Composition of the Largest Communities in the Retweet and Mention 
Networks. The modularity scores Q are derived from a random-walk community detection 
algorithm [1]. Each community is represented by a pie-chart summarizing the composition of the 
ten largest communities in the RT (left column) and mentions (right column) networks. The 
analysis reveals no clear evidence of clustering by account type.  
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Figure SI6. Factors Explaining Strength Centrality in the Retweet Networks. Results of linear 
regression with robust confidence intervals predicting in- and out- centrality in the weighted RT 
network. Media accounts are verified by Twitter; the ‘news site’ category includes the accounts for 
which we also have web tracking data. Human accounts are the base category.  

 
 

 

Figure SI7. Factors Explaining Strength Centrality in the Retweet Networks (Upper Decile). 
Results of quantile regression with bootstrapped confidence intervals predicting in- and out- 
centrality in the weighted RT network. Media accounts are verified by Twitter; the ‘news site’ 
category includes the accounts for which we also have web tracking data. Human accounts are 
the base category. 

 

 
 

 

 



 

 

10 

 

 

 

 

 

 
 

Figure SI8. Factors Explaining Strength Centrality in the Mention Networks. Results of linear 
regression with robust confidence intervals predicting in- and out- centrality in the weighted 
mention network. Media accounts are verified by Twitter; the ‘news site’ category includes the 
accounts for which we also have web tracking data. Human accounts are the base category. 

 

 

 

Figure SI9. Factors Explaining Strength Centrality in the Mention Networks (Upper Decile). 
Results of quantile regression with bootstrapped confidence intervals predicting in- and out- 
centrality in the weighted mention network. Media accounts are verified by Twitter; the ‘news site’ 
category includes the accounts for which we also have web tracking data. Human accounts are 
the base category. 
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Figure SI10. Number of Bots Mentioning News Outlets. The scatterplots measure the 
association between the number of unverified bots mentioning news outlets and the differences in 
visibility rankings. As with the RT network discussed in the main text (figure 5), the moderate 
association disappears once we normalize the number of bots as a fraction of the neighborhood.  

 

 
 

Figure SI11. Number of Mutual Ties in the Retweet and Mention Networks. The networks are 
very asymmetrical (the reciprocity scores are, as table SI3 shows, very low) but when 
reciprocated connections exist, most of them connect human accounts.   
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3. Bot Identification 
 
To identify automated accounts, we use the same classification technique used in previous 
research [2]. For training and validation, we used publicly available datasets [3, 4] and we added 
other lists of humans and bots (from [2]). Overall, the training and validation dataset consists of 
22,993 users: 14,218 bots and 8,775 humans. We used 80% of the dataset for training and 20% 
for validation. We carried the division between these two sets respecting the balance between 
bots and humans present at the level of the original datasets to have different types of bots in the 
training and validation stages. To fix the parameters, we fitted the models using three-fold cross 
validation on the training dataset.  
 
The classification of accounts as human or bot relies on ten features, which recent studies have 
shown to yield the best classification accuracy [5, 6]: (1) statuses count; (2) followers count; (3) 
friends count; (4) favorites count; (5) listed count; (6) default profile; (7) geo enabled; (8) profile 
use background image; (9) protected; and (10) verified. As Figure SI4 shows, the deep learning 
technique (DL) used in this study is comparable in accuracy, specificity, sensitivity and other 
statistical indicators to previous existing methods including logistic regression (LOGR), ada-boost 
classfier (AB), random forest (RNF) and stochastic gradient descent (SGD). 
For all the models except DL we use the scikit-learn implementation of the algorithms 
(http://scikit-learn.org). For the DL model, we use the pytorch framework (http://pytorch.org/), 
which consists of four fully-connected layers of 2 x Nfeats, 4 x Nfeats, Nfeats and 2 hidden nodes 
respectively. For all layers we use a rectified linear activation unit (or ReLU) function, with the 
exception of the last layer, for which we use a sigmoid function. A dropout of 0.2 was also applied 
between the fully-connected layers in order to prevent overfitting.  
 
 

 
Figure SI12. Comparison of Model Performance in the Classification of Bot Accounts. The 
deep learning technique (DL) used in this study is comparable in accuracy, specificity, sensitivity 
and other statistical indicators to previous existing methods including logistic regression (LOGR), 
ada-boost classfier (AB), random forest (RNF) and stochastic gradient descent (SGD). 
 

http://scikit-learn.org/
http://pytorch.org/
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To verify if the bot detection model built by training and validating on publicly available datasets 
[2, 3, 4] is reliable on new social systems, we applied it on an independent data set, i.e., a list of 
manually curated bot/human classifications not used to train and validate our model. This data set 
was built during the 2018 US midterm elections [7] and provides information about 8,092 humans 
and 42,446 bots. We chose this specific data set because it encodes a political event of national 
relevance, as the two events analyzed in this study, and it is publicly available and used in the 
literature. 
 
The statistical indicators of this analysis are reported in Figure SI13. Overall, the results are 
satisfactory, with accuracy and balanced accuracy close to 60% and an F1-score of 71.5%. The 
precision (Positive Predictive Value) is 93%, with a recall (Sensitivity) of 58%. In other words, the 
rate of false positives (i.e., labeling a human as bot) is 7%, while the rate of false negatives (i.e., 
labeling a bot as human) is 42%. These numbers highlight that, on the one hand, the bot 
detection model generalizes well enough to be applied on new social systems and, on the other 
hand, that performance degrades with respect to training/validation sets – as expected [8]. Out-
of-domain performance is still an open (and challenging) problem for many online ML systems. 
Developing a better bot detection classifier is not the primary purpose of this study, but future 
research will only benefit from advances in this area.  
 
 

 
Figure SI13. Cross-validation of the DL Model Performance on a New Independent Data 
Set. Overall, the results are satisfactory, with accuracy and balanced accuracy close to 60% and 
an F1-score of 71.5%. The precision (Positive Predictive Value) is 93%, with a recall (Sensitivity) 
of 58%. In other words, the rate of false positives (i.e., labeling a human as bot) is 7%, while the 
rate of false negatives (i.e., labeling a bot as human) is 42%. 

 
 
More generally, what the results of this cross-validation confirm is that, as is common with all 
automated classification techniques, the best performing models for a given training dataset 
might still generate inaccurate outputs when applied to novel data. However, when the analyses 
involve hundreds of thousands of accounts (as is our case), using scalable methods becomes 
unavoidable, even when those methods will end up misclassifying some accounts. For instance, 
of all the legitimate news organizations for which we have Twitter and web-browsing data (N = 
126 in France and N = 73 in Spain), our bot identification technique gave us the following outputs. 
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In the case of France, 36 are classified as unverified bots, 75 as verified bots (media); and 15 as 
human accounts. In the case of Spain, 21 are classified as unverified bots, 44 as media, and 8 as 
human. Our bot identification approach, in other words, gets most of the classifications right (~ 
90% of news accounts are correctly classified as not human), but it still introduces some miss-
classifications (it is worth noting here that many of these news organizations did not have the 
verified badge that Twitter uses to identify accounts of public interest).  
 
 

4. Sentiment Analysis 

To quantify the sentiment of each Tweet, we use a well-established natural language processing 
technique named VADER (Valence Aware Dictionary and Sentiment Reasoner, [9]). VADER is a 
lexicon and rule-based sentiment analysis tool that is specifically designed to analyze sentiments 
expressed in social media. By design, the original version of VADER is built to analyze English 
text. For the English language, VADER uses a human-rated dictionary of word emotions for 7,513 
lexical items annotated through Amazon Mechanical Turk. Lexical features of individual words are 
summed up and normalized over the text length. VADER accounts for individual words' lexical 
features as well as word capitalization, punctuation (e.g. “amazing!”), degree modifiers, polarity 
shifts due to connectors and polarity negation. There is a version of VADER supporting the 
analysis of text in multiple languages (https://pypi.org/project/vader-multi/). However, this version 
has the strong drawback of performing the sentiment analysis of the text translated from its 
original language to English. This is an important limitation, since languages vary substantially in 
how emotional content is associated to words, and the meaning of humorous or ironic sentences 
is often lost in translation.  

To overcome this limitation, we adopt the same approach used in [5] and modify VADER to 
natively support sentiment analysis of texts in Spanish and Catalan by enriching the tool with 
sentiment lexica for those languages as obtained from the ML-SentiCon datasets [10]. The 
Catalan (Spanish) lexicon included 7,816 (7,377) lexical items with annotated sentiment polarities 
renormalized between -1 and 1. Accordingly, polarity negation, connectors and degree modifiers 
were also modified to account for specific lexical rules characterizing both Spanish and Catalan. 

Similarly, we have further extended the range of applicability of VADER to include lexical rules 
specific for the French language (https://github.com/thomas7lieues/vader_FR), which is also 
relevant for the areas of our interest (Catalonia and France). This expansion and enrichment of 
VADER allows us to compute the sentiment of English, Catalan, Spanish and French text within 
one consistent framework for sentiment analysis. 

Figure SI14 shows the distribution of these sentiment scores, which range from -1 (extremely 
negative sentiment) to + 1 (extremely positive sentiment), with 0 values representing neutral 
messages.   

https://pypi.org/project/vader-multi/
https://github.com/thomas7lieues/vader_FR
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Figure SI14. Distribution of Sentiment Scores. The figure shows the distribution of sentiment 
scores that range from -1 (extremely negative sentiment) to + 1 (extremely positive sentiment), 
with 0 values representing neutral messages . 

 

5. Message-Level Regression models 

To identify the factors that predict the number of RTs messages receive, we used mixed effects 
models at the message-level [11, 12]. Messages are nested within unique users, so we use 
‘account ID’ as the random effect, which also allows us to control for unmeasured characteristics 
at the user-level. Our fixed effects include three control variables (number of followers and friends 
and the sentiment score of messages), and two explanatory variables (i.e., whether the account 
posting the messages is classified as media or as human, with ‘bots’ as the base category). 
Overall, the model is expressed as:  

𝑦𝑦𝑖𝑖 =  𝑋𝑋𝑖𝑖𝑏𝑏 +  𝑍𝑍𝑖𝑖𝑣𝑣 + 𝑒𝑒𝑖𝑖 

Where 𝑦𝑦𝑖𝑖 is the number of RTs a message i receives, 𝑋𝑋𝑖𝑖 are the fixed effects or predictor 
variables, 𝑏𝑏 are the regression coefficients, 𝑍𝑍𝑖𝑖 are the random effects, 𝑣𝑣 are the estimated 
coefficients for the random effects, and 𝑒𝑒𝑖𝑖 are the residuals.  

As a robustness test, we fit the models with and without neutral messages in the data (i.e., 
messages with a sentiment score 0, which are the majority of the messages in our data, see 
figure SI13). Figure SI15 shows that the results remain qualitatively unchanged.  
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Figure SI15. Predictors of Number of RTs Received by Messages (with and without Neutral 
Messages). Comparison of estimated effects on number of retweets received when messages 
classified as neutral are removed. Media accounts are verified by Twitter; the ‘news site’ category 
includes the accounts for which we also have web tracking data (i.e., prominent news 
organizations).  
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