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Supplementary Information Text 

 

Finite element analysis.  The commercial software ABAQUS was used to design the 3D 

mesostructures actuated by Lorentz forces, optimize their mechanical performance and analyze 

their thermal properties.  

Modeling the deformation driven by Lorentz force involved the electrics-mechanics coupling 

of electrical current and structural deformation, which was not directly available in ABAQUS.  

Therefore, a home-made python script was developed and combined with ABAQUS to model this 

coupling process.  The modeling started with the simulation of the electrical current in the current 

structural configuration generated by the voltage.  The simulation was divided into several loading 

steps.  At the first step, a small portion of the total voltage was applied as the electrical boundary 

condition in the thermal-electrical module of ABAQUS, with eight-node linearly coupled thermal-

electrical elements (DC3D8E).  Based on the simulated distribution of current density J, the 

Lorentz force per unit volume was calculated by the python script as F = J×B, where B is the 

uniform magnetic field.  The Lorentz force was then imported into the mechanics module of 

ABAQUS as the body force, and the actuated structural deformation was simulated with finite-

deformation, four-node shell elements (S4R).  As the structural configuration changed due to 

Lorentz force, the current distribution was simulated again to account for this update in 

configuration.  The above process was performed iteratively until convergency, i.e. the 

configuration of two iterations became the same (within a small tolerance).  After convergency, 

the voltage was increased by a small portion and the above process was repeated until all 

voltages were applied.  Refined mesh was used in all simulation cases to ensure accuracy.  All 

the deformations in the analysis were within elastic limits, therefore, the materials were modeled 

by linear elastic constitutions.  The elastic modulus (E), Poisson’s ratio (ν) were EPI = 2.5 GPa, νPI 

= 0.34 for PI, ECu = 119 GPa, νCu = 0.34 for copper, ENi = 200 GPa, νNi = 0.31 for nickel. 

For thermal simulations, eight-node linear heat transfer elements (DC3D8) were applied to 

both the device and the artificial skin.  The device was built in the same geometry as that in the 
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experiment setup and a body heat flux was applied to the heater.  The air convection was applied 

to each surface to simulate the heat exchange with the surrounding environment.  Refined mesh 

was used in the model, especially the region around the heater and the sensor, to ensure 

accuracy.  The mass density (ρ), thermal conductivity (k) and heat capacity (c) were ρPI = 1200 

kg⋅m-3, kPI = 1.0 W⋅m-1⋅K-1, cPI = 1090 J⋅kg-1⋅K-1 for PI; ρCu = 8960 kg⋅m-3, kCu = 397 W⋅m-1⋅K-1, cCu 

= 386 J⋅kg-1⋅K-1 for copper.  The thermal convection coefficient with air was 25 W⋅m-2⋅K-1.  The 

thermal conductivity of PI and the thermal convection coefficient were fitted with experiments on 

the artificial materials Sylgard 184 and Sylgard 160 and their bilayers. 

 

Derivation of the scaling law for the normalized out-of-plane displacement actuated by 

Lorentz force.  For Eq. 1 in the main text, dimensional analysis suggests that the out-of-plane 

displacement (deflection) of the suspended serpentine structure (u, see Fig. S4A) is inversely 

proportional to the out-of-plane bending stiffness (Ebh3 / 12), and is also linearly proportional to 

the applied Lorentz force (BIL).  FEA further shows that for sufficiently large deformation (u / L > 

5%), the deflection is inversely proportional to the unit cell length (λ) and the square of the width 

(b), and linearly proportional to the cube of the serpentine height (H) and the total length (L), 

which gives  

2 3
4

2 3
=4.6 10

u BIL H

L Eb h λ

 , 5%
u

L

 
 

 
,       (S1) 

with the slope 4.6×10-4 fitted from FEA.  Fig. S4B shows FEA validation of Eq. S1.  With the 

baseline values E = 2.5 GPa, h = 7 μm, b = 300 μm, λ= 1800 μm, H = 9120 μm, L = 16200 μm, I 

= 10 mA, and B = 0.1 T, variation of any of the paramters in Eq. S1 yields approximately the 

same straight line for the relationship of the normalized out-of-plane displacement (u / L) vs. the 

material combination 
2 3

2 3

BIL H

Eb h λ
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Derivation of the scaling law for the critical current of state switching.  For Eq. 2 in the main 

text, dimensional analysis suggests that the critical force (BIL)c for the state switching of the 

buckled serpentine ribbon is proportional to the out-of-plane bending stiffness (Ebh3 / 12). FEA 

suggested that the critical force is inversely proportional to L0.5 and H2.5, and linearly proportional 

to λ, which gives  

  
3

0.5 2.5c

Ebh λ
BIL α

L H
,         (S2) 

or equivalently  

3

c 1.5 2.5
=

Ebh λ
I α

BL H
,          (S3) 

where the slope α depends on the prestrain used to buckle the serpentine ribbon in the 

mechanics-guided 3D assembly and is fitted from FEA. For a biaxial prestrain (εx-pre = 50% and εy-

pre = 11%), α = 5.7.  Fig. S8B shows FEA validation of Eq. S3.  With the baseline values E = 2.5 

GPa, h = 7 μm, b = 300 μm, λ = 1800 μm, H = 9120 μm, L = 16200 μm and B = 0.1 T, variation of 

any of the paramters in Eq. S3 yields approximately the same straight line for the relationship of 

the critical current (Ic) vs. the material combination 
3

1.5 2.5

Ebh λ

BL H
. 

 

The sensing depth analysis.  For the analytical model consisting of a heater on a semi-infinite, 

homogeneous medium (Fig. S13B), the temperature below the heater (r = 0, with r being the 

distance to the center of the heater) is (1)  

2 22
ierfc ierfc

2 2

q αt z z a
T

k αt αt

    
            

,      (S4) 

where q is the heat flux, t is the heating time, α and k are the medium thermal diffusivity and 

conductivity respectively, z is the position under the center of the heater and a is the radius of the 

heater. The function ierfc( ) is the inverse complementary error function. 
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The normalized temperature with respect to the maximum temperature at z = 0 [ΔTmax = ΔT(z 

= 0)] is 

2

2

normalized

max

ierfc ierfc 1
2 2

,
1

ierfc
2

a z a z
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T F
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π αt
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       
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 

,    (S5) 

as shown in Fig. S13C.  With a sufficiently long time (t) such that a2/(αt) tends to zero, ΔTnormalized 

can be simplified to  

2

normalized 1
z z

T
a a

 
    

 
,        (S6)  

which is the single-variable function of z/a. This analysis suggests that for sufficiently long heating 

time (t), the heat penetration depth is independent of the material property and increases with the 

heater size (a). 

For the parameters used in the device and the artificial skin shown in Fig. 5A, a ≈ 0.33 mm, α 

≈ 0.15 mm2/s and t ≈ 30 s, such that a2/(αt) in Eq. S5 is sufficiently small (≈ 0.02) and has a 

negligible effect on the heat penetration depth.  Therefore, the heater size plays a major role in 

determining the heat penetration depth of the device. 

 

Error analysis for the thermal conductivities.  Using the measurement of the two sensing units 

of the device shown in Fig. 5A, the thermal conductivity ktop of the top layer and kbottom of the 

bottom layer can be solved from two coupled equations, i.e. 

 1 1 top bottom,  T G k k  ,         (S7) 

 2 2 top bottom, T G k k  .         (S8) 
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The nonlinear functions G1 and G2 are obtained by FEA with the variables in the range 

   top bottom0.27W m K , 0.60W m Kk k    , which are the typical range of the thermal 

conductivity of skin (2).  Numerical results showed that ktop and kbottom can be solved from Eqs. S7 

and S8 successfully.  

The error in the temperature measurement of the device δT leads to errors in the determined 

thermal conductivities ktop and kbottom.  For 
1T δT   and 

2T δT   , the coupled equations (Eqs. 

S7 and S8) are solved again and the differences in the solutions give the errors.  For δT = 0.1 K, 

the maximum relative errors in the predictions of ktop and kbottom are derived as 3% and 10%, 

respectively (Table S1 and S2).  
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Fig. S1.  Schematic illustration of a customized platform with a couple of disk-shaped magnets. 
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Fig. S2.  (A) Illustration of two independently addressable channels of the deployable 3D ribbon 
mesostructure.  (B) The energy difference ratios for four stable states of the deployable 3D ribbon 
mesostructure.  (C) Schematic illustration that shows the transformation between State 2 and 
State 3 or 4 by applying Lorentz forces.  (D) Schematic illustration that shows the transformation 
between State 3 and State 4 by applying Lorentz forces.   
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Fig. S3.  (A) FEA results for a deployable 3D ribbon mesostructure show the distribution of the 
maximum principal strain.  (B) Cyclic testing of a deployable 3D ribbon mesostructure actuated by 
Lorentz forces at a frequency of ~ 2 Hz for 3000 cycles.  The four images correspond to the initial 
state, and the states after 600, 1600, and 3000 cycles.  Scale bars, 2 mm. 
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Fig. S4.  (A) FEA result that shows the deformation process of a suspended serpentine 
mesostructure by applying external magnetic field and current.  (B) Dependence of the 
normalized out-of-plane displacement on the geometry, material, electricity, and magnetic field 
parameters.  
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Fig. S5.  Deformed configurations of a suspended serpentine mesostructure with different 
directions of the magnetic field.  Scale bars, 5 mm. 
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Fig. S6.  2D precursors of the 3D mesostructures in Fig. 2 B-D and F. 
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Fig. S7.  (A) 2D precursor of a cartoon dog face.  (B) Optical images and FEA results of the initial 
configuration and three temporary configurations actuated by Lorentz forces.  Scale bars, 4 mm. 
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Fig. S8.  (A) FEA result that shows the mode transition of a suspended serpentine mesostructure 
by applying external magnetic field and current.  (B) Dependence of the critical current on the 
geometry, material, and magnetic field parameters.  
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Fig. S9.  2D precursors of the reconfigurable 3D mesostructures in Fig. 3 C-G. 
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Fig. S10.  (A-B) Optical images of a suspended serpentine mesostructure (corresponding to Fig. 
3A) at a smaller scale.  Scale bars, 1 mm.  (C) 2D precursor of the suspended serpentine 
mesostructure with L = 1.095 mm.  (D) Optical images of the suspended serpentine 
mesostructure that show the initial 3D configuration and deformed configuration by applying 
magnetic field (B = 0.4 T) and current (I = 15 mA).  Scale bars, 400 μm.  (E) Optical images and 
FEA results of a bistable mesostructure (corresponding to Fig. 3C) at a larger scale.  Scale bars, 
5 mm. 
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Fig. S11.  2D precursors of the deployable and reconfigurable 3D mesostructures with magnetic 
materials in green regions corresponding to Fig. 4 A-G. 
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Fig. S12.  Strain energy as a function of the out-of-plane displacement (u) for the device with 
suspended state (A) and flat state (B).  The insets show the initial configuration. 
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Fig. S13.  (A) Cross-sectional illustration of the simulation model for analyzing the heat 
penetration depth.  (B) Schematic illustration of a heater on a semi-infinite, homogeneous 
medium.  (C) The normalized temperature (ΔTnormalized) as a function of z/a with different a2/(αt). 
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Fig. S14.  Schematic illustration of the fabrication process of 3D mesostructures by 
photolithography.  Scale bars, 1 mm. 
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Fig. S15.  Schematic illustration of the fabrication process of 3D mesostructures by laser cutting. 
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Table S1.  Relative errors for the thermal conductivity of top layer in a bilayer material. 

k1 
k2 

0.3 0.4 0.5 0.6 

0.3 0.013 0.013 0.010 0.005 

0.4 0.013 0.008 0.008 0.010 

0.5 0.013 0.015 0.014 0.007 

0.6 0.027 0.028 0.032 0.028 
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Table S2.  Relative errors for the thermal conductivity of bottom layer in a bilayer material. 

k1 
k2 

0.3 0.4 0.5 0.6 

0.3 0.063 0.073 0.083 0.097 

0.4 0.078 0.095 0.095 0.090 

0.5 0.076 0.076 0.088 0.100 

0.6 0.103 0.062 0.073 0.083 
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Movie S1 (separate file).  Reconfigurable and deployable 3D mesostructure actuated by Lorentz 
forces.   
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