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Evaluating a Prognostic Biomarker

In general, a measure of association between X and Y , say δg(p1, p0) = g(p1)− g(p0), can be

estimated by substituting estimates of (p1, p0). If δg(p1, p0) is the log-odds ratio, log[p1(1−

p0)/{p0(1− p1)}], it can also be expressed in terms of (q1, q0) as log[q1(1− q0)/{q0(1− q1)}]

(e.g., Agresti, 2013, Chapter 2), and thus can be estimated by substituting estimates of

(q1, q0). For a different measure of association, δg(p1, p0) is not a function of (q1, q0); however,

estimates of (q1, q0) may still be useful for estimating (p1, p0) because, by Bayes’ theorem,

p1 =
λq1

λq1 + (1− λ)q0
,

p0 =
λ(1− q1)

λ(1− q1) + (1− λ)(1− q0)
,

(S.1)

where λ = P(Y = 1).

The “full data”can be represented as (Xi, Yi), i = 1, . . . , n, where the subscript i denotes

the ith subject in the trial. Under the standard design, the full data are fully observed, and

it is straightforward to estimate px as a sample proportion:

p̂Sx =

∑n
i=1 I(Xi = x)Yi∑n
i=1 I(Xi = x)

, x = 0, 1,
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where I(·) is the indicator function and the superscript S denotes the standard design. The

resulting estimate of δg(p1, p0) is simply δg(p̂S1 , p̂
S
0 ).

Under the RS design, the Xi’s are incompletely observed. Let Ri = 1 if Xi is observed;

0 otherwise. The RS design implies that

P(Ri = 1|Xi, Yi) = P(Ri = 1|Yi),

so Xi is missing at random in the sense of Rubin (1976). This further implies that

P(Xi = 1|Yi = y,Ri = 1) = P(Xi = 1|Yi = y) = qy, y = 0, 1,

which motivates the following estimates:

q̂RS
y =

∑n
i=1 I(Ri = 1, Yi = y,Xi = 1)∑n

i=1 I(Ri = 1, Yi = y)
, y = 0, 1.

As noted earlier, if δg(p1, p0) is the log-odds ratio, it can be estimated as δg(q̂RS
1 , q̂RS

0 ). For

other measures of association, we can invoke (S.1) and estimate (p1, p0) as

p̂RS
1 =

λ̂q̂RS
1

λ̂q̂RS
1 + (1− λ̂)q̂RS

0

,

p̂RS
0 =

λ̂(1− q̂RS
1 )

λ̂(1− q̂RS
1 ) + (1− λ̂)(1− q̂RS

0 )
,

where λ̂ = n−1
∑n

i=1 Yi. The resulting estimate of δg(p1, p0) is δg(p̂RS
1 , p̂RS

0 ).

In the GT design, we allow pools in the same stratum to have different sizes for full

generality. Suppose the subjects in the Y = y stratum are randomly grouped into my pools

of sizes kjy, j = 1, . . . ,my. The marker status of the jth pool in the Y = y stratum is given

by X∗jy = max1≤i≤kjy Xijy, where Xijy is the marker status of the ith subject in the same

pool. It follows that

P(X∗jy = 1) = 1− (1− qy)kjy ,

and the likelihood for qy is

my∏
j=1

{
1− (1− qy)kjy

}X∗
jy
{

(1− qy)kjy
}1−X∗

jy ,

which can be maximized to estimate qy. The resulting maximum likelihood estimates of

(q1, q0) can be used to estimate δg(p1, p0) in the same manner as in the RS design.
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Evaluating a Predictive Biomarker

In general, the interaction coefficient βTX can be estimated by substituting estimates of the

ptx’s into equation (2) in the main text. For the logit link,

βTX = log

{
p11(1− p10)(1− p01)p00
(1− p11)p10p01(1− p00)

}
can be alternatively expressed as

βTX = log

{
q11(1− q10)(1− q01)q00
(1− q11)q10q01(1− q00)

}
; (S.2)

see, for example, Liu et al. (2012, Supplementary Materials). Thus, in this case, βTX can

also be estimated by substituting estimates of the qty’s. For a different link function, βTX

is not a function of the qty’s but its estimation can be helped by estimation of the qty’s, as

Bayes’ theorem implies that

pt1 =
λtqt1

λtqt1 + (1− λt)qt0
,

pt0 =
λt(1− qt1)

λt(1− qt1) + (1− λt)(1− qt0)
,

(S.3)

where λt = P(Y = 1|T = t), t = 0, 1.

In this setting, the full data can be represented as (Xi, Ti, Yi), i = 1, . . . , n, where the

subscript i denotes the ith subject in the trial. Under the standard design, where all variables

are fully observed, each ptx can be estimated as a sample proportion:

p̂Stx =

∑n
i=1 I(Ti = t,Xi = x)Yi∑n
i=1 I(Ti = t,Xi = x)

,

which can then be substituted into equation (2) to estimate βTX .

Under the RS design, the Xi’s are incompletely observed. Let Ri = 1 if Xi is observed;

0 otherwise. The RS design implies that

P(Ri = 1|Xi, Ti, Yi) = P(Ri = 1|Ti, Yi),

or equivalently,

P(Xi = 1|Ti, Yi, Ri = 1) = P(Xi = 1|Ti, Yi).
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Therefore, we can estimate each qty with

q̂RS
ty =

∑n
i=1 I(Ri = 1, Ti = t, Yi = y,Xi = 1)∑n

i=1 I(Ri = 1, Ti = t, Yi = y)
.

These estimates can be substituted into equation (S.2) to estimate βTX under the logit link.

For other link functions, equation (S.3) suggests that each ptx can be estimated as

p̂RS
t1 =

λ̂tq̂
RS
t1

λ̂tq̂RS
t1 + (1− λ̂t)q̂RS

t0

,

p̂RS
t0 =

λ̂t(1− q̂RS
t1 )

λ̂t(1− q̂RS
t1 ) + (1− λ̂t)(1− q̂RS

t0 )
,

where λ̂t =
∑n

i=1 I(Ti = t)Yi/
∑n

i=1 I(Ti = t), t = 0, 1. The p̂RS
tx ’s can be substituted into

equation (2) to estimate βTX .

For the GT design, suppose the subjects in the (T = t, Y = y) stratum are randomly

grouped into mty pools of sizes kjty, j = 1, . . . ,mty. The marker status of the jth pool in

the (T = t, Y = y) stratum is given by X∗jty = max1≤i≤kjty Xijty, where Xijty is the marker

status of the ith subject in the same pool. It follows that

P(X∗jty = 1) = 1− (1− qty)kjty ,

and the likelihood for qty is

mty∏
j=1

{
1− (1− qty)kjty

}X∗
jty
{

(1− qty)kjty
}1−X∗

jty .

Maximum likelihood estimates of the qty’s can be used to estimate βTX in the same manner

as in the RS design.

Choosing a Pool Size

When planning the retrospective part of a P-R biomarker study with GT, the relevant

variance to minimize is the conditional variance of an estimator given observed data from

the prospective part of the study. To fix ideas, consider a predictive biomarker study aiming

to estimate βTX for an arbitrary (but specified) link function g. Given O = {(Ti, Yi) : i =

1, . . . , n}, the conditional variance of β̂GT
TX is a monotone function of the conditional variance

4



of q̂GT = (q̂GT
11 , q̂

GT
10 , q̂

GT
01 , q̂

GT
00 )′, the vector of maximum likelihood estimates of the qty’s.

Specifically, var(β̂GT
TX |O) decreases when var(q̂GT |O) becomes smaller in the sense of non-

negative definiteness. Because var(q̂GT |O) is a diagonal matrix, var(β̂GT
TX |O) is monotone in

var(q̂GT
ty |O) for each (t, y) pair. Now, consider a fixed (t, y) pair, and assume that the mty

pools in the (T = t, Y = y) stratum have the same size, say k. If mty is reasonably large,

var(q̂GT
ty |O) is approximately the inverse of the Fisher information about qty in {X∗jty, j =

1, . . . ,mty}, which is easily found to be mtyIk(qty), where

Ik(qty) =
k2(1− qty)2(k−1)

(1− qty)k{1− (1− qty)k}
(S.4)

is the Fisher information about qty in a single pooled assay result X∗jty. If mty is fixed and nty

is large enough, then the optimal value of k is the one that maximizes Ik(qty). Although this

argument is made for a predictive biomarker, it can be applied to a prognostic biomarker

with minor modifications.

Dealing with Misclassification

In the presence of possible misclassification, it is necessary to distinguish the true marker

status Z from the measured marker status X based on a particular assay. Misclassification

occurs when X 6= Z. To fix ideas, consider a predictive biomarker study aiming to estimate

βTX defined by equation (2) for some link function g. Note that the estimand has not changed

despite possible misclassification, because X (not Z) is the biomarker being evaluated for

potential adoption in clinical practice. Since X can be observed (fully or partially) in the

standard and RS designs, no changes are required in the estimation methods described

earlier for these designs. In the rest of this section, we will focus on developing appropriate

estimation methods for the GT design.

We assume that misclassification is non-differential in the sense that

P(X = 1|Z = z, T, Y ) = P(X = 1|Z = z) =: φz, z = 0, 1. (S.5)

In this notation, φ1 and 1− φ0 are, respectively, the sensitivity and specificity of the assay.

The values of (φ0, φ1) are assumed known from previous validation data. Any remaining
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uncertainty about these values can be addressed in a sensitivity analysis. We further assume

that there is no dilution effect in the sense that

P(X∗jty = 1|Z∗jty) = Z∗jtyφ1 + (1− Z∗jty)φ0, (S.6)

where X∗jty is a pooled assay result, Z∗jty = max1≤i≤kjty Zijty, Zijty is the true marker status

of the ith subject in the jth pool of the (T = t, Y = y) stratum, and kjty is the size of the

jth pool of the (T = t, Y = y) stratum.

As before, the key to estimating βTX in the GT design is the estimation of qty = P(X =

1|T = t, Y = y) for each (t, y) pair. Let γty = P(Z = 1|T = t, Y = y); then it follows from

assumption (S.5) and the law of total probability that

qty = γtyφ1 + (1− γty)φ0. (S.7)

Thus, an estimate of qty can be obtained by converting an estimate of γty. To this end, we

note that

P(Z∗jty = 0) = P(Zijty = 0, i = 1, . . . , kjty) = (1− γty)kjty

and assumption (S.6) then implies

P(X∗jty = 1) = φ0(1− γty)kjty + φ1

{
1− (1− γty)kjty

}
.

Therefore, the likelihood for γty based on {X∗jty, j = 1, . . . ,mty} can be written as

mty∏
j=1

([
φ0(1− γty)kjty + φ1

{
1− (1− γty)kjty

}]X∗
jty

×
[
1− φ0(1− γty)kjty − φ1

{
1− (1− γty)kjty

}]1−X∗
jty

)
.

Maximizing this likelihood yields the maximum likelihood estimate of γty, which can be

substituted into equation (S.7) to obtain the maximum likelihood estimate of qty. The

resulting estimates of the qty’s can be used to estimate βTX in the same manner as described

earlier.

In what follows, we report a simulation study that incorporates assay error (i.e., mis-

classification). The simulation settings are the same as those in the “Methods” section,

except that the assay is now imperfect with specificity 1 − φ0 and sensitivity φ1. We set
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1 − φ0 = φ1 ∈ {0.90, 0.95, 0.99}. Table S1 below presents the simulation results in terms

of relative efficiency and cost-efficiency for evaluating a predictive biomarker. When the

sensitivity and specificity are both 0.99, the results are very similar to those in Table 3

(for a perfect assay). As the sensitivity and specificity go down, the relative efficiency and

cost-efficiency of the GT designs decrease slightly. However, even when the sensitivity and

specificity are 0.90, the GT designs remain competitive, with relative cost-efficiency 0.96-

1.03 for GT-2 and 1.03-1.27 for GT-3. Thus, although misclassification appears to have an

adverse effect on GT designs, such designs remain advantageous in cost-efficiency over the

standard and RS designs.
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Table S1. Simulation results for evaluating a predictive biomarker with misclassification in

the setting of the E1900 trial. 1− φ0 and φ1 are the specificity and sensitivity of the assay.

Biomarker
1− φ0 Link for Relative Efficiency Relative Cost-Efficiency

= φ1 Interaction RS-2 RS-3 GT-2 GT-3 RS-2 RS-3 GT-2 GT-3

FLD3-ITD 0.90 logit 0.54 0.36 0.50 0.37 1.09 1.07 1.01 1.11

log 0.51 0.33 0.48 0.34 1.02 0.99 0.96 1.03

identity 0.54 0.36 0.49 0.35 1.07 1.07 0.98 1.06

0.95 logit 0.54 0.35 0.65 0.52 1.08 1.05 1.31 1.56

log 0.50 0.32 0.64 0.51 1.01 0.96 1.27 1.53

identity 0.53 0.35 0.64 0.51 1.07 1.05 1.28 1.54

0.99 logit 0.55 0.35 0.80 0.67 1.10 1.06 1.60 2.02

log 0.50 0.32 0.80 0.67 1.01 0.95 1.60 2.01

identity 0.54 0.35 0.80 0.67 1.08 1.06 1.60 2.01

DNMT3A 0.90 logit 0.58 0.37 0.52 0.42 1.17 1.11 1.03 1.27

log 0.53 0.34 0.50 0.39 1.07 1.03 1.00 1.18

identity 0.56 0.36 0.50 0.40 1.11 1.08 1.00 1.21

0.95 logit 0.57 0.37 0.67 0.57 1.14 1.12 1.34 1.71

log 0.52 0.34 0.66 0.54 1.04 1.02 1.33 1.63

identity 0.54 0.36 0.66 0.55 1.09 1.09 1.32 1.65

0.99 logit 0.57 0.36 0.83 0.72 1.15 1.08 1.67 2.17

log 0.53 0.33 0.82 0.69 1.07 1.00 1.64 2.08

identity 0.55 0.35 0.82 0.70 1.11 1.06 1.65 2.11
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