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1. Representation of molecular signaling knowledge 
 

In the design of the network database of OmniPath, we focused on resources that follow the 

activity flow representation where nodes are linked with signed and directed edges representing 

a certain influence. The alternative process description representation describes the underlying 

processes as biochemical reactions (Le Novère et al, 2009). Integrative resources such as STRING 

(Szklarczyk et al, 2019), PathwayCommons (Cerami et al, 2011a), ConsensusPathDB (Kamburov et al, 

2013), PathMe and ComPath (Domingo-Fernández et al, 2019) use mostly the major process 

description resources (e.g. Reactome (Jassal et al, 2020) and ACSN (Kuperstein et al, 2015)) and 

resources with undirected interactions (e.g. IntAct (Orchard et al, 2014) and BioGRID (Oughtred 

et al, 2019)), and only few activity flow resources. For example, Pathway Commons works from 22 

resources while OmniPath from 66 resources, and they have only seven in common. 

However, for many applications, process description representation must undergo a conversion 

to activity flow representation (Cerami et al, 2011b). This conversion is technically challenging, 

leads to information loss (Tang et al, 2015; Demir et al, 2013; Cerami et al, 2011c), alters the 

network topology, and affects downstream applications. On the other extreme, undirected 

interactions lack information about directionality and stimulatory and inhibitory effects, which 

are essential for many analytical methods, in particular those that aim to capture causal 

relationships. Combination of process description resources converted to networks with the 

large undirected PPI resources (IntAct, BioGRID) in other integrative databases, result in a 

network density much higher compared to OmniPath.  

In the activity flow representation the interactions are presented as signed and directed edges, 

regardless of the underlying biochemistry. Due to this abstraction, activity flow has limitations 

and the stimulatory and inhibitory nature of the interactions can be ambiguous (Appendix 

Figure S4; (Touré et al, 2020b). Despite these limitations, activity flow databases are widely used 

because their level of abstraction provides a convenient input for multiple analysis techniques 

(Touré et al, 2020a). Importantly, OmniPath lays an emphasis on literature curated data and 
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integrates a number of small resources which otherwise would be difficult to access for data 

analysis and modeling applications. 

Besides interaction data, process description resources include information about complexes, 

enzyme-substrate relationships, localization and other attributes as an integral part of their data 

representation. In contrast, OmniPath contains these information in separate databases 

(complexes, enzyme-substrate relationships, annotations), allowing easy access without 

complicated parsing. 

 

2. Joint analysis of intra- and intercellular processes in SARS-CoV-2 
infected lung epithelial cancer (Calu3) cells 
 

In this note, we provide further details and supporting literature for the results obtained in the 

SARS-CoV-2 case study and presented in Figure 5a, Figure EV5 and Appendix Figure S2. In 

addition, we support our choices and discuss the potential limitations of our approach. In this 

case study, we aim to explore the potential autocrine regulatory effect of ligands overexpressed 

in SARS-CoV-2 infection of epithelial lung cancer cells (Calu3) on the expression of 

inflammatory response genes. We used expression data from a recent publication (Blanco-Melo 

et al, 2020).  

We first performed a differential expression analysis of SARS-CoV-2 infected cells versus mock 

treated controls. This allowed us to carry out a gene set enrichment analysis revealing 

inflammatory response as one of the most enriched sets (Figure EV5a). We subsequently 

selected the most relevant genes involved in inflammatory response (Methods). In addition, we 

selected overexpressed ligands after infection that are likely to be secreted to the extracellular 

milieu (Methods). We then applied our OmniPath-based version of NicheNet to rank the 

overexpressed ligands secreted by infected Calu3 cells that are most likely to be involved in the 

regulation of inflammatory response related genes (Methods). Out of a total of 117 

overexpressed ligands, we selected the 12 top-ranked ones for subsequent analysis according to 
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the distribution of correlation values (Figure EV5b) and nichenetr guidelines (Browaeys et al, 

2019). Among them, we found different types of cytokines: interleukins (IL23A and IL1A), 

tumor necrosis factors (TNF and TNFSF13B) and chemokines (CXCL5, CXCL9 and CXCL10). 

These proteins are known to be involved in the immune and inflammatory response, hence 

supporting our OmniPath-based approach. Indeed, NicheNet scores describing the potential 

influence of the 12 top-ranked ligands on the set of inflammatory genes are significantly higher than on 

sets of randomly selected genes (average p-value=3.25e-08 from Fisher’s exact tests after 10 cross-

validation rounds). These results suggest that our top-ranked ligands regulate to some extent 

the expression of inflammatory response related genes in Calu3 cells upon SARS-CoV-2 

infection. 

NicheNet ranks the ligands based on their potential effect to regulate the whole set of 

inflammatory response genes (Browaeys et al, 2019). To get more detailed functional and 

mechanistic insights, we next investigated the inter- and intracellular signaling events that can 

lead to the activation of a particular ligand-target link. First, we explored the NicheNet 

regulatory potential scores between our top-scored ligands and the top inflammatory response 

target genes according to our OmniPath-based prior knowledge network (Figure EV5c). Then, 

we selected the receptors expressed in Calu3 cells after infection that can potentially bind our 

top ranked ligands, i.e. a known interaction is described between them in our ligand-receptor 

network (methods). The most likely ligand-receptor pairs according to their NicheNet prior 

interaction potential score are displayed in Figure EV5d. We finally inferred the most likely 

paths connecting some of our top ranked ligands to their inflammatory response target genes 

(Figure 5a and Methods).  

Among the top predicted ligands, we found three C-X-C motif chemokines (CXCL5, CXCL9 and 

CXCL10). CXCL9 and CXCL10 are well known pro-inflammatory chemokines that participate 

in the inflammatory response by recruiting immune cells to infected areas (Qin et al, 2011). 

According to our results, these ligands may potentially bind to C-X-C chemokine receptors 

(CXCR1 and CXCR2) and to the CCR3 receptor (Figure 5a). Then, CXCR1 and CCR3 can both 

activate MAPK14, a serine/threonine kinase which plays a key role in the signalling responses 
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to extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct 

activation of transcription factors (Lee et al, 1994). In addition, CXCR1, CXCR2 and CCR3 

directly interact with JAK2, activating the STAT transcription factors. In particular, JAK2 

mediates the cytokine-driven activation of the FOS transcription factor, which is a key 

component in the regulation of  proinflammatory genes (Lee et al, 2004).  Consequently, the use 

of ruxolitinib, a JAK1 and JAK2 inhibitor, has been suggested as a potential way to prevent the 

harmful effects of the excessive secretion of proinflammatory proteins, the so-called cytokine 

storm, in severe cases of COVID-19 (Goker Bagca & Biray Avci, 2020). 

We also identified two interleukins (IL23A and IL1A) among the top predicted ligands. IL23A 

forms a heterodimeric cytokine by associating with IL12B, the IL-23 interleukin. IL-23 binds to 

the IL12RB1-IL23R receptor complex and activates the JAK-STAT signaling cascade promoting 

the production of proinflammatory cytokines. Furthermore, IL-23 induces autoimmune 

inflammation and its inhibition is the main treatment for psoriasis, an autoimmune 

disease(Fotiadou et al, 2018). In our results (Figure 5a), we identified the interaction between 

IL23A and IL12RB1, and how IL12RB1 directly activates some of the STAT transcription factors 

(STAT1, STAT3 and STAT4). IL1A is known to play key roles in the regulation of the immune 

and the inflammatory response. It binds to the interleukin-1 receptor, interaction that was 

partially recovered in our signaling network (IL1R2, Figure 5a). Then, IL1R2 activates CASP3, 

whose role in the modulation of cytokine expression and inflammation has been proposed 

(Martinon & Tschopp, 2004), although is not as straightforward as in the previous discussed 

examples.  

We additionally retrieved some tumor necrosis factors (TNF and TNFSF13B) as top ligands 

potentially regulating the expression of inflammatory response related genes. The main 

functions of TNF are the regulation of immune cells and the systemic inflammatory response. 

Once TNF comes to contact with their potential receptors, the TRADD protein can also bind to 

the receptor resulting in the potential initiation of three different pathways:  activation of the 

NFKB pathway, activation of the MAPK pathway or induction of death signaling (Wajant et al, 

2003). Our results capture the interaction between TNF and TRADD to their potential receptor, 
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TNFRSF21, which in turn activates RELA (Figure 5a). The activation of RELA suggests an 

activation of the NF-kB  pathway, known to be active in SARS-CoV-2 infection (Mahase, 2020). 

The TNFSF13B gene encodes the B-cell activating factor (BAFF) protein, which can bind to the  

TNFRSF13C receptor as identified in our results. The interaction between BAFF and its 

receptors triggers the activation of the classical and non-canonical NF-kB signaling pathway 

(Gardam & Brink, 2014). In our results, we identified the activation of MAP3K14, which indeed 

appears to be involved in the activation of the NF-kB complex and its transcriptional activity 

(Liao et al, 2004).  

To further characterize the potential medical relevance of these results, we investigated the 

drugs targeting the genes shown in Figure 5a (Dataset EV14). As expected, we found several 

compounds used in the treatment of multiple inflammatory diseases such as rheumatoid 

arthritis, inflammatory bowel disease and multiple sclerosis. Among the most interesting 

results, we identified minocycline, an antibiotic and anti-inflammatory drug targeting CASP3. 

CASP3 is a marker of caspase-dependent apoptosis which interestingly shows an increased 

activity in the presence of  the SARS-CoV-2-encoded protein ORF3a (Ren et al, 2020). 

Minocycline has been very recently proposed to alleviate the effects of  SARS-CoV-2 severe 

infection in the central nervous system (Oliveira et al, 2020). In addition, minocycline 

successfully decreases inflammatory cytokines such as TNF, which is highly expressed in severe 

COVID19-patients and linked to an increased neurological damage (Sharma et al, 2018; Chen et 

al, 2020). It is to note that TNF was identified in our approach as a top ligand regulating the 

immune response.  

Finally, to further support the relevance of the selected ligands versus the remaining 

overexpressed ligands, we conducted a hypergeometric test on our 12 top-ranked ligands on the 

list of curated pathways from MsigDB. We set as background the 117 overexpressed ligands 

after SARS-CoV-2 infection of the Calu-3 cell line. The significantly enriched pathways are 

shown in Appendix Figure S2. We found some pathways directly related to our list of 12 

prioritised ligands (IL23, CXCR3 and IL10 pathways). The NFKB pathway appears as the most 

enriched process. We described above how this pathway is connected to some of our predicted 
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ligands and its activation during SARS-CoV-2 infection. Toll-like receptors are a class of proteins 

that are well known for their key role in the innate immune system. In addition, we retrieved an 

enrichment in the dilated cardiomyopathy pathway and in the HSP27 pathway. Interestingly, it 

has been postulated that the sustained immune activation upon SARS-CoV-2 infection increases 

the risk of developing dilated cardiomyopathy in COVID-19 patients (Komiyama et al, 2020). 

Passive immunization using anti-HSP27 antibodies has been suggested as a potential treatment 

against the inflammatory complications of SARS-CoV-2 infection (O’Brien & Sandhu, 2020). 

2.1. Discussion 

In summary, we studied how the ligands secreted after SARS-CoV-2 infection could influence 

the inflammatory response of neighboring cells. We were able to capture known biological 

processes supported by the literature. These processes and signaling cascades may lead to the 

exacerbated inflammatory response observed in the most severe COVID-19 cases. We also 

explored the drugs known to target the genes involved in these signaling events in order to 

highlight the potential medical relevance of our results.  

The main goal of this section is to emphasize the usefulness of OmniPath as a prior knowledge 

resource to study cell-cell communication through the integration of inter- and intracellular 

interactions. We consequently decided to investigate a general biological process known to be 

mediated by cellular communication: the inflammatory response triggered upon viral infection. 

Several other pathways and biological processes are perturbed by the SARS-CoV-2 infection, 

such as fatty acid metabolism (Figure EV5a), but their link to cell communication is not so 

straightforward. On the other hand, It would have been interesting to narrow down the analysis 

to a more specific cell-communication mediated process. However, the results could be harder 

to interpret and lack support from existing literature, hence requiring experimental validations 

which are out of the scope of this work.  

It is to note that all the ligands considered in our OmniPath-based NicheNet procedure are 

overexpressed after SARS-CoV-2 infection. We consequently identified potentially interesting 

ligands not ranked among the top 12. For instance, Del Valle et al. (Valle et al, 2020) found that 
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high expression of IL6 and TNF are strong predictors of COVID-19 severity and patient 

survival, independently of other markers or factors. TNF was ranked second in our approach 

whereas IL6 was not selected among our top hits. Thus, we were able to find some relevant 

ligands in the context of the COVID-19 disease, but also missed important ones, as is expected 

when using an exploratory data analysis method based on our unavoidably incomplete prior 

knowledge. 
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Figures 
 

 
Appendix Figure S1: Quantitative description of the post-transcriptional network by resource. Panels and 

notations are the same as on Figure EV1.  
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Appendix Figure S2: Pathway enrichment analysis of the 12 ligands with highest NicheNet scores using 

the 117 ligands overexpressed in SARS-CoV-2 infection as a background. Hypergeometric test, p < 0.05 

shown.  



13 

 
Appendix Figure S3: Cell-cell interactions in healthy condition vs. ulcerative colitis with different 

database knowledge. The width of arrows is proportional to the number of connections. Left column: healthy 

condition; right column: ulcerative colitis. Top row: network connections from Pathway Commons and ligand-

receptor annotations from Ramilowski et al; middle row: network from Pathway Commons and ligand-receptor 

annotations from OmniPath; bottom row: both network and annotations from OmniPath.  
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Appendix Figure S4: Pairwise inconsistency of protein-protein interaction resources. Relative consistency 

was calculated as the number of inconsistent edges divided by the overlapping edges between two resources. (a) 

Direction inconsistency: one resource states A affects B while the other states B affects A. (b) Effect sign 

inconsistency: one resource states A stimulates B while the other states A inhibits B.  
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Appendix Figure S5: Workflow of the second case study. We used scRNA-Seq data from Smillie et al 2019 to 

study the rewiring of inter- and intracellular pathways in ulcerative colitis. We filtered the interacting partners by 

their condition specific expression. Then we build intercellular interaction networks between five selected cell types 

and the intracellular pathways 2 steps downstream of receptors in Treg cells. See more details in the Results. 


