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A A heuristic measure of overall connectivity

For purposes of choosing high- and low-connectivity correlation matrices to be dis-
played in Fig. 1, we defined — log | R| as a global connectivity score for a given correla-
tion matrix R. This score equals the LogDet divergence (Kulis et al., 2009) between R
and the identity matrix, and its statistical properties have been investigated by Jiang
(2019). As can be seen in Fig. 1, the score —log |R| distinguishes clearly between
fMRI scans evincing high versus low degrees of connectivity.

B The /1 — r distance

The /1 — r distance introduced in Section 4 follows Shehzad et al. (2014), who used
V2(1 —r) as a distance among fMRI connectivity matrices (the multiplicative con-
stant v/2 clearly has no effect on dbICC). To explain the rationale for this, we consider
a collection Ry, ..., Ry of correlation matrices, and let r;; denote the Pearson cor-
relation between the lower-triangular elements of R; and those of R;. Since the
correlation-of-correlations matrix C' = (r;;)1<ij<n 1S positive semidefinite, a result
of Gower (1966) (see Theorem 14.2.2 of Mardia et al., 1979) implies that the dis-
tance matrix D = [\/2(1 — r;;)]1<ij<n is Euclidean, that is, there exist N points
in a Fuclidean space whose inter-point distances are given by D. An alternative
correlation-based distance would be 1 — r (Walther et al., 2016), but we opted for
v/ 1 — r since this Euclidean property makes it a natural comparator for the Euclidean
(¢5) distance between (vectorized) correlation matrices.

C Further results on time series length and SNR

Fig. 6 presented log-log plots relating time series length to the SNR ﬁ, where p is
based on the ¢y distance. Figure W1 presents analogous plots for the ¢; and /1 —r

1



pm/ (1 - pm)

pm/ (1 - pm)

Covariance matrix
—— Independent
“|—~— AR(1),corr.=0.6
—<— AR(1),corr.=0.9

5.0

2.0

1.0

0.5
|

0.2

0.1

5.0

0.1

Correlation matrix
Independent
AR(1),corr.=0.6
AR(1),corr.=0.9
fMRI data

o
e
—A—

50 100 200

Covariance matrix
—— Independent
“|—~— AR(1),corr.=0.6
—<— AR(1),corr.=0.9

5.0

2.0

1.0

0.5
|

0.2

0.1

J1-r distance

5.0

2.0

1.0

0.5

0.2

0.1

Correlation matrix
Independent
AR(1),corr.=0.6
AR(1),corr.=0.9
fMRI data

o
e
—A—

50 100 200

Figure W1: Log-log plots as in Fig. 6, but for the ¢; and /1 — r distances.

distances introduced in Section 4. The intercepts and slopes of the best-fit lines in
both figures are given in Table W1. In Section 6.2 we argued, in light of (17), that for
covariance estimation with independent observations and the /5 distance, we should
observe a slope near 1. In Table W1 we observe slopes near 1 with independent data
using all three distances, and for correlation as well as covariance matrix estimation.
The fMRI results in Fig. W1 are similar to those in Fig. 6. While the visual
network slopes in Table W1 are noticeably higher than for the other two sets of ROlISs,
this appears to be due primarily to the unstable small-m portion of the plots.




Distance | Setting Covariance Correlation
(simulation/data) | Intercept (SE) Slope (SE) Intercept (SE) Slope (SE)
2 Independent -3.435 (0.045)  0.997 (0.010) | -3.903 (0.029) 1.018 (0.007
VAR(1), 6 = 0.6 | -4.136 (0.056) 0.986 (0.013) (0.037)  0.960 (0.008
VAR(1), 6 = 0.9 | -4.397 (0.122) 0.736 (0.028) (0.086)  0.687 (0.020
fMRI data (all 333) (0.028)  0.716 (0.006
(DMN) (0.037)  0.676 (0.009
(visual) (0.072)  0.872 (0.017
2 Independent “3.470 (0.043)  0.987 (0.010) (0.029) 1006 (0.007
VAR(1), ¢ = 0.6 -4.104 (0.053)  0.965 (0.012) (0.038)  0.947 (0.009
VAR(1), 6 = 0.9 | -4.404 (0.117) 0.731 (0.027) (0.087)  0.666 (0.020
fMRI data (all 333) (0.029)  0.699 (0.007
(DMN) (0.038)  0.654 (0.009
(visual) (0.081)  0.897 (0.019
V1 —7r | Independent -3.690 (0.031)  1.000 (0.007) (0.025)  1.010 (0.006
VAR(1), » = 0.6 -4.240 (0.042)  0.960 (0.010) . (0.035)  0.942 (0.008
VAR(1), ¢ = 0.9 -4.556 (0.101)  0.729 (0.023) | -4.401 (0.083) 0.673
fMRI data (all 333) ~4.367 (0.026)  0.733
(DMN) 4,054 (0.041)  0.757
(visual) -4.404 (0.046)  0.803

Table W1: Intercepts and slopes of the best fit lines in Figures 6 and W1.

D Spearman-Brown formula for curve estimation

Let T1,...,T; be a random sample of curves drawn from H = L?[0,1], and for ¢ €
{1,...,1}, let X;,..., X, be penalized spline estimates of T; based on m noisy
observations. More specifically, for r = 1,...,m, let u, = % and i, = T;(uy) + Vi,
where the v, are independently sampled from the N(0,0?) distribution for some
0? > 0. Then X;;(-) is an estimate of T;(-) by penalized spline smoothing of the
points (1, Yij1)s - -+ (Um, Yijm). As m — oo, the optimal mean squared L? error in
estimating T; by cubic splines is O(m~%/%), provided the number of knots k = O(m*/?),
although the effect of automatic smoothing parameter selection on this convergence
rate is somewhat complex (Wood et al., 2016, Supplementary Appendices A and
B). This suggests that A.(m) oc m~%/°, and hence a linear model fit to the points
log(m),10g{pm/(1 — pm)}] should have slope approximately &.

We sought to verify this by a simulation study with I = 30 and J; fixed at a
constant J of either 2 or 10. Fori = 1,..., 30, we generated a random function T;(u) =
a - sin(5u) + b - cos(2u), where a and b are drawn independently from the standard
normal distribution. Then, for each ¢, J noisy realizations of T; were generated with
0? = 0.5, and function estimates X, ... , X; j were obtained by penalized splines
based on 31 values of the number m of observations, ranging from 148 to 2981 and
roughly uniformly spaced on the log scale. The fitted line in Fig. W2 for J = 2 has
slope 0.894 with standard error 0.045, while that for J = 10 has slope 0.838 with
standard error 0.043. Both slopes, then, are quite consistent with the theoretical

value %.
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Figure W2: Measurement intensity versus SNR for the curve estimation simulation,
with J = 2 (left) and J = 10 (right). Both axes are on the log scale, resulting in a
linear relationship.

E Signature data

Next we consider part of the data from the First International Signature Verification
Competition, available at http://www.cse.ust.hk/svc2004/. The data consist of
genuine and forged signatures in English and Chinese, and the competitors’ task
was to distinguish the true signatures from the forgeries. Here our goal is different:
focusing only on the genuine signatures, we use dbICC to assess whether the English
and Chinese signatures differ in terms of test-retest reliability. The data consist of 20
replicates for each of 23 English and 17 Chinese signatures. Fig. W3 displays five of
the 20 instances of Chinese and English signatures from two individuals.
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Figure W3: Examples of data from the Signature Verification Competition: five
replicates of an English signature (above) and of a Chinese signature (below).

As in Reiss et al. (2017), we use dynamic time warping (DTW; Sakoe and Chiba,

1978; Giorgino, 2009) to define distance between each pair of signatures, yielding an
800 x 800 matrix of squared distances. In contrast to the setup of Section 5.2, DTW
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distance is not induced by a norm, and is not even a metric; but this does not prevent
us from applying the population version (3) and the estimate (6) of the dbICC. We
find a dbICC of 0.84 for the English signatures, versus 0.71 for the Chinese signatures.
A permutation test, based on 2000 random shuffles of the language labels for the 40
participants, provides only weak evidence (p = 0.069) of a difference in reliability.
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