Supporting Information for "Generalized reliability based on distances"

Meng Xu^1 , Philip T. Reiss¹, and Ivor Cribben²

¹Department of Statistics, University of Haifa, Haifa 31905, Israel ²Department of Accounting, Operations, and Information Systems, University of Alberta School of Business, Edmonton, AB T6G 2R6, Canada

A A heuristic measure of overall connectivity

For purposes of choosing high- and low-connectivity correlation matrices to be displayed in Fig. 1, we defined $-\log |\mathbf{R}|$ as a global connectivity score for a given correlation matrix \bm{R} . This score equals the LogDet divergence [\(Kulis et al., 2009\)](#page-4-0) between \bm{R} and the identity matrix, and its statistical properties have been investigated by [Jiang](#page-4-1) [\(2019\)](#page-4-1). As can be seen in Fig. 1, the score $-\log |\mathbf{R}|$ distinguishes clearly between fMRI scans evincing high versus low degrees of connectivity.

B The $\sqrt{1-r}$ distance

The $\sqrt{1-r}$ distance introduced in Section 4 follows [Shehzad et al.](#page-4-2) [\(2014\)](#page-4-2), who used $\sqrt{2(1-r)}$ as a distance among fMRI connectivity matrices (the multiplicative con- $\sqrt{2(1-r)}$ as a distance among noticearching matrices (the multiplicative constant $\sqrt{2}$ clearly has no effect on dbICC). To explain the rationale for this, we consider a collection $\mathbf{R}_1, \ldots, \mathbf{R}_N$ of correlation matrices, and let r_{ij} denote the Pearson correlation between the lower-triangular elements of R_i and those of R_j . Since the correlation-of-correlations matrix $\mathbf{C} = (r_{ij})_{1 \leq i,j \leq N}$ is positive semidefinite, a result of [Gower](#page-4-3) [\(1966\)](#page-4-3) (see Theorem 14.2.2 of [Mardia et al., 1979\)](#page-4-4) implies that the distance matrix $\mathbf{D} = [\sqrt{2(1 - r_{ij})}]_{1 \le i,j \le N}$ is Euclidean, that is, there exist N points in a Euclidean space whose inter-point distances are given by D . An alternative correlation-based distance would be $1 - r$ [\(Walther et al., 2016\)](#page-4-5), but we opted for $\sqrt{1-r}$ since this Euclidean property makes it a natural comparator for the Euclidean (ℓ_2) distance between (vectorized) correlation matrices.

C Further results on time series length and SNR

Fig. 6 presented log-log plots relating time series length to the SNR $\frac{\rho}{1-\rho}$, where ρ is based on the ℓ_2 distance. Figure [W1](#page-1-0) presents analogous plots for the ℓ_1 and $\sqrt{1-r}$

Figure W1: Log-log plots as in Fig. [6,](#page-0-0) but for the ℓ_1 and $\sqrt{1-r}$ distances.

distances introduced in Section [4.](#page-0-0) The intercepts and slopes of the best-fit lines in both figures are given in Table [W1.](#page-2-0) In Section [6.2](#page-0-0) we argued, in light of [\(17\)](#page-0-0), that for covariance estimation with independent observations and the ℓ_2 distance, we should observe a slope near 1. In Table [W1](#page-2-0) we observe slopes near 1 with independent data using all three distances, and for correlation as well as covariance matrix estimation.

The fMRI results in Fig. [W1](#page-1-0) are similar to those in Fig. [6.](#page-0-0) While the visual network slopes in Table [W1](#page-2-0) are noticeably higher than for the other two sets of ROIs, this appears to be due primarily to the unstable small- m portion of the plots.

Distance	Setting	Covariance		$\overline{\text{Correlation}}$	
	simulation/data)	Intercept (SE)	Slope (SE)	Intercept (SE)	Slope (SE)
ℓ_2	Independent	$-3.435(0.045)$	0.997(0.010)	$-3.903(0.029)$	1.018(0.007)
	VAR(1), $\phi = 0.6$	$-4.136(0.056)$	0.986(0.013)	$-4.358(0.037)$	0.960(0.008)
	VAR(1), $\phi = 0.9$	$-4.397(0.122)$	0.736(0.028)	$-4.428(0.086)$	0.687(0.020)
	fMRI data (all 333)			$-4.283(0.028)$	0.716(0.006)
	(DMN)			$-3.627(0.037)$	0.676(0.009)
	(visual)			$-4.759(0.072)$	0.872(0.017)
ℓ_1	Independent	$-3.470(0.043)$	0.987(0.010)	$-3.840(0.029)$	1.006(0.007)
	VAR(1), $\phi = 0.6$	$-4.104(0.053)$	0.965(0.012)	$-4.283(0.038)$	0.947(0.009)
	VAR(1), $\phi = 0.9$	$-4.404(0.117)$	0.731(0.027)	$-4.293(0.087)$	0.666(0.020)
	fMRI data (all 333)			$-4.185(0.029)$	0.699(0.007)
	(DMN)			$-3.498(0.038)$	0.654(0.009)
	(visual)			$-4.864(0.081)$	0.897(0.019)
$\sqrt{1-r}$	Independent	$-3.690(0.031)$	1.000(0.007)	$-3.942(0.025)$	1.010(0.006)
	VAR(1), $\phi = 0.6$	$-4.240(0.042)$	0.960(0.010)	$-4.337(0.035)$	0.942(0.008)
	VAR(1), $\phi = 0.9$	$-4.556(0.101)$	0.729(0.023)	$-4.401(0.083)$	0.673(0.019)
	fMRI data (all 333)			$-4.367(0.026)$	0.733(0.006)
	(DMN)			$-4.054(0.041)$	0.757(0.009)
	(visual)			$-4.404(0.046)$	0.803(0.011)

Table W1: Intercepts and slopes of the best fit lines in Figures [6](#page-0-0) and [W1.](#page-1-0)

D Spearman-Brown formula for curve estimation

Let T_1, \ldots, T_I be a random sample of curves drawn from $\mathcal{H} = L^2[0,1]$, and for $i \in$ $\{1, \ldots, I\}$, let X_{i1}, \ldots, X_{iJ_i} be penalized spline estimates of T_i based on m noisy observations. More specifically, for $r = 1, \ldots, m$, let $u_r = \frac{r-1}{m-1}$ $\frac{r-1}{m-1}$ and $y_{ijr} = T_i(u_r) + \nu_{ijr}$, where the ν_{ijr} are independently sampled from the $N(0, \sigma^2)$ distribution for some $\sigma^2 > 0$. Then $X_{ij}(\cdot)$ is an estimate of $T_i(\cdot)$ by penalized spline smoothing of the points $(u_1, y_{ij1}), \ldots, (u_m, y_{ijm})$. As $m \to \infty$, the optimal mean squared L^2 error in estimating T_i by cubic splines is $O(m^{-8/9})$, provided the number of knots $k = O(m^{1/9})$, although the effect of automatic smoothing parameter selection on this convergence rate is somewhat complex [\(Wood et al., 2016,](#page-4-6) Supplementary Appendices A and B). This suggests that $\Delta_{\varepsilon}(m) \propto m^{-8/9}$, and hence a linear model fit to the points $[\log(m), \log\{\hat{\rho}_m/(1-\hat{\rho}_m)\}]$ should have slope approximately $\frac{8}{9}$.

We sought to verify this by a simulation study with $I = 30$ and J_i fixed at a constant J of either 2 or 10. For $i = 1, \ldots, 30$, we generated a random function $T_i(u) =$ $a \cdot \sin(5u) + b \cdot \cos(2u)$, where a and b are drawn independently from the standard normal distribution. Then, for each i, J noisy realizations of T_i were generated with $\sigma^2 = 0.5$, and function estimates $X_{i1}, \ldots, X_{i,J}$ were obtained by penalized splines based on 31 values of the number m of observations, ranging from 148 to 2981 and roughly uniformly spaced on the log scale. The fitted line in Fig. [W2](#page-3-0) for $J = 2$ has slope 0.894 with standard error 0.045, while that for $J = 10$ has slope 0.838 with standard error 0.043. Both slopes, then, are quite consistent with the theoretical value $\frac{8}{9}$.

Figure W2: Measurement intensity versus SNR for the curve estimation simulation, with $J = 2$ (left) and $J = 10$ (right). Both axes are on the log scale, resulting in a linear relationship.

E Signature data

Next we consider part of the data from the First International Signature Verification Competition, available at <http://www.cse.ust.hk/svc2004/>. The data consist of genuine and forged signatures in English and Chinese, and the competitors' task was to distinguish the true signatures from the forgeries. Here our goal is different: focusing only on the genuine signatures, we use dbICC to assess whether the English and Chinese signatures differ in terms of test-retest reliability. The data consist of 20 replicates for each of 23 English and 17 Chinese signatures. Fig. [W3](#page-3-1) displays five of the 20 instances of Chinese and English signatures from two individuals.

Figure W3: Examples of data from the Signature Verification Competition: five replicates of an English signature (above) and of a Chinese signature (below).

As in [Reiss et al.](#page-4-7) [\(2017\)](#page-4-7), we use dynamic time warping (DTW; [Sakoe and Chiba,](#page-4-8) [1978;](#page-4-8) [Giorgino, 2009\)](#page-4-9) to define distance between each pair of signatures, yielding an 800×800 matrix of squared distances. In contrast to the setup of Section [5.2,](#page-0-0) DTW distance is not induced by a norm, and is not even a metric; but this does not prevent us from applying the population version (3) and the estimate (6) of the dbICC. We find a dbICC of 0.84 for the English signatures, versus 0.71 for the Chinese signatures. A permutation test, based on 2000 random shuffles of the language labels for the 40 participants, provides only weak evidence $(p = 0.069)$ of a difference in reliability.

References

- Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: the dtw package. Journal of Statistical Software 31 (7), 1–24.
- Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. *Biometrika* $53(3-4)$, $325-338$.
- Jiang, T. (2019). Determinant of sample correlation matrix with application. Annals of Applied Probability $29(3)$, 1356–1397.
- Kulis, B., M. A. Sustik, and I. S. Dhillon (2009). Low-rank kernel learning with Bregman matrix divergences. Journal of Machine Learning Research 10, 341–376.
- Mardia, K. V., J. T. Kent, and J. M. Bibby (1979). Multivariate Analysis. New York: Academic Press.
- Reiss, P. T., D. L. Miller, P.-S. Wu, and W.-Y. Hua (2017). Penalized nonparametric scalar-on-function regression via principal coordinates. Journal of Computational and Graphical Statistics 26 (3), 569–578.
- Sakoe, H. and S. Chiba (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing $26(1)$, 43-49.
- Shehzad, Z., C. Kelly, P. T. Reiss, R. C. Craddock, J. W. Emerson, K. McMahon, D. A. Copland, F. X. Castellanos, and M. P. Milham (2014). A multivariate distance-based analytic framework for connectome-wide association studies. NeuroImage 93, 74–94.
- Walther, A., H. Nili, N. Ejaz, A. Alink, N. Kriegeskorte, and J. Diedrichsen (2016). Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage 137, 188–200.
- Wood, S. N., N. Pya, and B. Säfken (2016). Smoothing parameter and model selection for general smooth models (with discussion). Journal of the American Statistical Association 111, 1548–1575.