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1.  Penetrance Adjustment for the Shared Environment of MZ-Twins 

Conclusions:  1.  

Argument:   We can break down a necessary and sufficient environmental exposure (E), into 

three components . The component (E1) is that part of this exposure shared exclusively 

by twins – i.e. the IU and certain (mostly early) post-natal environments; (E2) is that part shared by the 

population generally; and (E3), that part due to the shared familial micro-environment of siblings. Because 

twins are also siblings and, thus, share the same familial micro-environment, it will be the case that: 

  

Notably, however, the familial micro-environment (E3) seems to have little or no impact on the 

likelihood of developing MS [65-71]. In this circumstance, therefore: 

     

We also define {P(MS│IGMS)} to be the MZ-twin concordance rate, adjusted to exclude the impact of 

their shared IU and post-natal environments (E1). This relationship can be stated (see Main Text) as:   

   

where:   

Because both MZ-twins and DZ-twins share (E1)  – assuming that a sufficient (E1) exposure is 

similar across susceptible individuals  – and because both siblings and DZ-twins share the same genetic 

relationship with each other but don’t share (E1), we expect that: 

       

In this case:  

and:   

so that:   

And therefore:  

      1.1.   Penetrance Adjustments for different Population Partitions  

Conclusions:  1. The penetrance-adjustment for the shared early environment of  

         MZ-twins is similar for both (Male/Female) and (H+/H−) partitions. 

Argument:   Using the above relationship, from the Canadian population data set (Table 3; Fig 3; 

Main Text), we have already estimated the value of {P(MS│IGMS)} as:  

    

P(MS | IGMS) ={P(MS | SMS) / P(MS |DZMS)}*P(MS | MZMS)

(E1,E2,  and E3)

P(E3 | MZMS) = P(E3 |DZMS) = P(E3 | SMS)

P(E) = P(E1,E2,E3) = P(E1,E2)

P(MS | MZMS) = P(MS ,E1,E2 | MZMS) = P(E1 | MZMS)*P(MS ,E2 | E1,MZMS)

P(MS | IGMS) = P(E1)*P(MS ,E2 | E1,MZMS)

P(E1 | MZMS) = P(E1 |DZMS);    P(E1 | SMS) = P(E1);    and:  P(MS ,E2 | E1,DZMS) = P(MS ,E2 | E1,SMS)

P(MS |DZMS) = P(MS ,E1,E2 |DZMS) = P(E1 | MZMS)*P(MS ,E2 | E1,DZMS)

P(MS | SMS) = P(MS ,E1,E2 | SMS) = P(E1)*P(MS ,E2 | E1,DZMS)

P(MS | SMS) / P(MS |DZMS) = P(E1) / P(E1 | MZMS)

P(MS | IGMS) ={P(MS | SMS) / P(MS |DZMS)}*P(MS | MZMS)

P(MS | IGMS) = (2.9 / 5.4)*0.25 = 0.25 /1.86 = 0.134



In the more limited data from the HLA partition (Table 3; Fig 3; Main Text), this estimate becomes:  

 

Although these adjustments provide an estimate for the impact of the IU and early post-natal 

environment considering the population as a whole, the same adjustment may not be appropriate for every 

partition of that population. Using the data in Table 3; Fig 3 (Main Text), however, certain partition-

specific adjusted penetrance values can be estimated and these are quite similar for both partitions (see 

below).   

 

 1.1a.  Penetrance Adjustments for the (H+/ H−) Partition 

 Conclusions:   
    

Argument:  Using the data in Table 3; Fig 3 (Main Text), we can define two parameters  

and  such that: 

   

In this case we can deconstruct the term in two different ways:   

    

and:   

Combining these two equations leads to:    

Similarly:  

and:   

leading to:    

   1.1b.  Penetrance adjustments for the (F/ M) partition 

 Conclusions:  

 

Argument:  Similar to the analysis (above), using the data in Table 3;Fig 3 (Main Text), we can, 

again, define two parameters and  such that: 

  

  

P(MS | IGMS) = (2.9 / 5.4)*0.30 = 0.30 /1.86 = 0.161

P(MS |H+, IGMS) = P(MS |H+,MZMS) / 1.84
P(MS |H−, IGMS) = P(MS |H−,MZMS) /1.87

(e ≥1)

( f ≥1)

P(MS |H+, IGMS) = P(MS |H+,MZMS) / e
P(MS |H−, IGMS) = P(MS |H−,MZMS) / f

{P(MS,H+ | IGMS)}

P(MS ,H+ | IGMS) = P(H+ | IGMS)*P(MS |H+, IGMS) = 0.43*0.31/ e = 0.133/ e

P(MS ,H+ | IGMS) = P(MS | IGMS)*P(H+ | MS , IGMS) = 0.161*0.45 = 0.072

e = 0.133/ 0.072 = 1.84

P(MS ,H− | IGMS) = P(H− | IGMS)*P(MS |H−, IGMS) = 0.57*0.29 / f = 0.165 / f

P(MS ,H− | IGMS) = P(MS | IGMS)*P(H− | MS , IGMS) = 0.161*0.55 = 0.089

f = 0.165 / 0.089 = 1.87

P(MS | F , IGMS) = P(MS | F ,MZMS) /1.82

P(MS |M , IGMS) = P(MS |M ,MZMS) / 2.0

(e ≥1) ( f ≥1)

P(MS | F , IGMS) = P(MS | F ,MZMS) / e
P(MS | M , IGMS) = P(MS | M ,MZMS) / f



Again, we can deconstruct the term in two different ways:  

 

and:   

Combining these two equations leads to:    

Similarly:  

and:   

leading to:     

2.  Enrichment of Genotypes – Partitioning (G) into Subsets (G1) & (G2)  

   2a.  The 1st Enrichment 

 Conclusions:   

 

.  Argument: The subset (G) can be partitioned into two mutually exclusive subsets (G1) and 

(G2), such that:     

For the 1st enrichment stage, we can define two constants, (a) and (b) such that: 

    

where (a) and (b) are related such that: 

     

or:    

and, thus:    

also:    (and vice versa) 

and finally:  

Moreover, for any partition:  

          

And similarly:   

           so that:    

Consequently, when:    

{P(MS ,F | IGMS)}

P(MS ,F | IGMS) = P(F | IGMS)*P(MS | F , IGMS) = 0.66*0.34 / e = 0.224 / e

P(MS ,F | IGMS) = P(MS | IGMS)*P(F | MS , IGMS) = 0.134*0.92 = 0.123

e = 0.224 / 0.123= 1.82

P(MS ,M | IGMS) = P(M | IGMS)*P(MS | M , IGMS) = 0.34*0.07 / f = 0.024 / f

P(MS ,M | IGMS) = P(MS | IGMS)*P(M | MS , IGMS) = 0.134*0.08 = 0.012

f = 0.024 / 0.012 = 2.0

P(MS |G1) = P(MS |G2)   if and only if:   P(G1| MS ,G) = P(G1|G)

P(MS |G1) > P(MS |G2)   if and only if:   P(G1| MS ,G) > P(G1|G)

P(G) = P(G1)+ P(G2)      or:      1= P(G1|G)+ P(G2 |G)

P(MS |G1) = a*P(MS |G)   and:   P(MS |G2) = b*P(MS |G)

P(MS |G) = P(MS,G1|G) + P(MS,G2 |G)

1= a*P(G1|G)+ b*P(G2 |G)

a = 1   if and only if:   b = 1

a >1   if and only if:   b <1

P(MS |G1) / P(MS |G2) = (a / b)

P(G1|MS,G) = P(G1,MS,G) / P(MS,G) = P(G1,G)*P(MS |G,G1) / P(MS,G)
                      = P(G1|G)*a*P(MS |G) / P(MS |G) = a*P(G1|G)

P(G2 |MS,G) = b*P(G2 |G)

P(G1| MS ,G) / P(G2 | MS ,G) = (a / b)*P(G1|G) / P(G2 /G)

a = b = 1   then:   P(G1| MS ,G) = P(G1|G)  and:  P(G2 | MS ,G) = P(G2 |G)



However, if:    ; then there must be at least one partition, for which both (G1) and (G2) are 

 non-empty and (suitably defined), for which: , and therefore:   

  

Thus, any subset of more penetrant genotypes (G1) will be enriched in the  subset 

relative to a less penetrant subset (G2). Also, equally penetrant subsets will not be enriched relative to 

each other.   Clearly, the reciprocal arguments also hold so that:  

    

and:    

   2b.  The 2nd Enrichment  

Conclusions:

   

 

Argument:   Similar to the 1st enrichment stage, we can define two constants, (v) and (w), such 

that:    

 in which case:   

or:    

And, similar to the 1st enrichment stage, for the 2nd enrichment stage: 

     

and. also:   (and vice versa) 

Moreover:   

and:    

so that:    

   2c.  Combining Enrichment Results  

Conclusions: Defining the additional parameters  then: 

1.          
2.       
3.      where:       

Argument: For simplicity of notation, in addition to those parameters already defined, we  

  

σX
2 > 0

(a >1> b)

P(G1| MS ,G) > P(G1|G)   and:   P(G2 | MS ,G) < P(G2 |G)

(MS,G)

P(G1|MS,G) = P(G1|G)   if and only if:   P(MS |G1) = P(MS |G2)

  P(G1| MS ,G) > P(G1| G)   if and only if:   P( MS | G1) > P( MS | G2)

P(MS |G1, IGMS) = P(MS |G2, IGMS)   if and only if:   P(G1| MS , IGMS) = P(G1| MS)

P(MS |G1, IGMS) > P(MS |G2, IGMS)   if and only if:   P(G1| MS , IGMS) > P(G1| MS)

P(MS |G1, IGMS) = v*P(MS | IGMS)   and:   P(MS |G2, IGMS) = w*P(MS | IGMS)

P(MS | IGMS) = P(MS,G1| IGMS) + P(MS,G2 | IGMS)

1= v*P(G1| MS)+ w*P(G2 | MS) = a*v*P(G1|G)+ b*w*P(G2 |G)

v = 1   if and only if:   w = 1

v >1   if and only if:   w <1

P(G1| MS , IGMS) = P(G1,MS , IGMS) / P(MS , IGMS) = v*P(G1| MS ,G) = v*a*P(G1|G)

P(G2 | MS , IGMS) = w*P(G2 | MS ,G) = w*b*P(G2 |G)

P(G1| MS , IGMS) / P(G2 | MS , IGMS) = (v / w)(a / b){P(G1) / P(G2)}

(g, p,r,s,  &  t)

t = (a / b){p / (1− p)}= (x1 / x2){p / (1− p)}
P(MS) / g = x = p(x1)+ (1− p)(x2)
(a / b) = (v / w)(s / r) 0.5 < (s / r) < 2



introduce five additional parameter abbreviations  – see Table 2, Main Text – such that: 

       

From #2a (above):  

or, equivalently:      (Equation #1) 

and also:     (Equation #2) 

If the expected penetrance of the (G1) and (G2) sub-subsets differ significantly from each other, 

then we are assuming that each, considered separately, conforms to the Upper Solution (see Methods, 

Main Text). If so, then from Proposition #1 (Main Text):  

   

Moreover:   

      so that:           where:         (Equation #3) 

3.   Proposition #1: Further Considerations  

   3a.  Quadratic Considerations 

Conclusions: 1.  

  2.  

Argument: Restating Equation #2 (see #2c above):   

   

   so that:        (Equation #4a) 

In addition:   

  therefore:   

     where:   

  similarly:   

     so that:   

             or:        (Equation #4b) 

Consequently, we have two different estimates for  – i.e., Equations #4a and #4b, above.  

(g, p,  r,  s &  t)

g = P(G);   p = P(G1|G);   r = (x1') / (x1);    s = (x2 ') / (x2);   and:   t = P(G1| MS) / P(G2 | MS)

t = P(G1| MS) / P(G2 | MS) = (a / b)*P(G1|G) / P(G2 /G)

t = (a / b){p / (1− p)}= (x1 / x2){p / (1− p)}

P(MS |G) = P(MS) / g = x = p(x1)+ (1− p)(x2)

1≤ r < 2  and, also:  1≤ s < 2

(r / s) = (x1') / (x1)
(x2 ') / (x2)

= (x1'/ x2 ')(x2 / x1) = (v / w)(b / a)

(a / b) = (v / w)(s / r) 0.5 < (s / r) < 2

x1 =
x + x2 −{1+ (r / s)(1− p) / p}{(x2 − xx '(1− p) / s}

p + (r / s)(1− p)

x2 =
x − x2 −{1+ (s / r)p / (1− p)}{(x2 − xx ' p / r}

(1− p)+ (s / r)p

x = p(x1)+ (1− p)(x2)

x2 = [x − p(x1)] / (1− p)

x ' = P(MS |G, IGMS) = P(MS ,G1|G, IGMS)+ P(MS ,G2 |G, IGMS)

P(MS ,G1|G, IGMS) = P(G1|G, IGMS)*(x1') = P(G1|G,MS)*(x1')

P(G1|G,MS) = P(G1,MS |G) / P(MS |G) = p(x1) / x

P(G2 |G,MS) = (1− p)(x2) / x

xx ' = p(x1)(x1')+ (1− p)(x2)(x2 ') = pr(x1)2 + (1− p)s(x2)2

(x2)2 = [xx '− pr(x1)2] / (1− p)s

(x2)2



Combining these two estimates yields: 

  

                  or:      

    and, finally:   

Rearrangement, yields a quadratic equation in (x1) such that: 

     

Because of the constraint that:  – see Methods, Main Text – this is solved for (x1) as: 

     (Equation #5a) 

Equation #4a (above) can then be solved for (x2). Alternatively, reframing the above argument, yields: 

     (Equation #5b)    

   3b. The Lower Solution.    

Conclusions:  

   
   

 and:     
Argument: The values for are based upon observation and, 

as such, subject to error. To simplify our notation, we use the parameter abbreviations in Table 2 (Main 

Text); noting, for clarity, that:    

In this case:  

            also:  

Similarly:     and:  

Also:    

Because from Proposition #1 (Main Text), the Lower Solution  (where: ) requires that:    

    or:       

Similarly, the Upper Solution (where: ) requires that:       

Moreover, because these quadratic solutions (Equations #5a & #5b, above) depend upon the 

[{x − p(x1)}/ (1− p)]2 = (x2)2 ={xx '− pr(x1)2}/ (1− p)s

[{x − p(x1)}]2 ={xx '− pr(x1)2}(1− p) / s ={xx '(1− p) / s}−{(r / s)p(1− p)(x1)2}

x2 − 2xp(x1)+ p2 (x1)2 − xx '(1− p) / s+ (r / s)p(1− p)(x1)2 = 0

{p2 + (r / s)p(1− p)}(x1)2 −{2xp}(x1)+{x2 − xx '(1− p) / s}= 0

(x1 > x > x2)

x1 =
x + x2 −{1+ (r / s)(1− p) / p}{(x2 − xx '(1− p) / s}

p + (r / s)(1− p)

x2 =
x − x2 −{1+ (s / r)p / (1− p)}{(x2 − xx ' p / r}

(1− p)+ (s / r)p

∀{x < x '/ 2}:  p > (2− b2s) / (a2r − b2s)

∀{x > x '/ 2}:  p < (2− b2s) / (a2r − b2s)

∀{x < x '/ 2}:   0.025 ≤ P(G) ≤ 0.18
∀{x < x '/ 2}:   0.006 ≤ P(G1) ≤ 0.063

{x ',x1',x2 ',  P(MS) &  P(F | MS)}

p = P(G1|G) ;  a = x1 / x  ;  b = x2 / x ;   r = x1'/ x1 ;  and:  s = x2 '/ x2

P(G1| IGMS) = P(G1| MS) = P(G1)*P(MS |G1) / P(MS) = px1 / x = pa

P(MS |G1, IGMS) = x1' = (x1 / x)(x1'/ x1)(x) = arx

P(G2 | IGMS) = (1− p)b P(MS |G1, IGMS) = x2 ' = bsx

x ' = P(G1| IGMS)*arx + P(G2 | IGMS)*bsx ={pa2r + (1− p)b2s}* x

x '/ x > 2

x '/ x = pa2r + (1− p)b2s > 2 p > (2− b2s) / (a2r − b2s)

x '/ x < 2 p < (2− b2s) / (a2r − b2s)



values of four unknown variables  they cannot be solved uniquely. Nevertheless, a range of 

possible parameter values can be explored iteratively, using parameter combinations that cover (for each 

unknown parameter) their entire plausible ranges, taking into account possible errors in the observations, 

and incorporating certain constraints on possible solutions.   

For example, in this analysis (similar to #4, below), we used the observational data on the gender 

partition (Table 3; Fig 3, Main Text), assigning women to the subset {i.e., }. In 

addition, the parameters , were assigned the plausible ranges of: 

( ) ; ( ), , and 

 respectively. Also, we considered the observed values of , , and 

 acceptible if each was within (±25%) of their observed values (i.e.,  ; 

 ;  and  repectively) – see Table 3; Fig 3, Main Text . And, 

finally, we assumed that sub-subsets  and , considered separately, each has a distribution 

of penetrance values, which conforms to the Upper Solution (see Methods, Main Text). This assumption 

restricts the possible ranges for the (r) and (s) parameters to  and  respectively (see 

Proposition #1; Main Text). 

We then iteratively assigned, to each input parameter , values which 

spaned each of the above ranges, solved Equations #5a & #5b (above) for each parameter combination, 

and determined which combinations satisfied the above constraints. From this analysis we conclude that: 

   

 and:  

Thus, although Lower Solutions exist for which, ,  none of these solutions match the 

constraints (above) placed by the observed the values of  for the partition 

based on gender (see #5, Main Text).  Indeed, this analysis demonstrated that: 

    

which is far removed from the actual observational data (Table 3; Fig 3, Main Text). Thus, the 

circumstance of seems to be excluded, even for Lower Solutions, except for the most extreme 

distributional circmstances. In earlier iterations of this analysis [3,4,51,52], we defined the (G) subset 

differently – i.e.,  .  We note that, for  Lower Solutions in the present 

analysis, our older definition effectively corresponds to defining only members of the (G1)-subset as 

being “genetically susceptible” to MS.  

  

(r,  s, p & g)

(G1) (G1) = P(F ,G)

{g,  p,  P(MS),  &  P(F | MS)}

0.0001≤ g = P(G) ≤1 0.0001≤ p = P(F |G) ≤1 (0.002 ≤ P(MS) ≤ 0.006)

(0.60 ≤ P(F | MS) ≤ 0.80) (x ') (x1')

(x2 ') 0.107 ≤ x ' ≤ 0.161

0.134 ≤ x1' ≤ 0.223 0.028 ≤ x2 ' ≤ 0.042

(F ,G) (M ,G)

(1≤ r < 2) (1≤ s < 2)

{g, p,x ',r,s,  &  P(MS)}

∀{x < x '/ 2}:   0.025 ≤ P(G) ≤ 0.18

∀{x < x '/ 2}:   0.006 ≤ P(G1) ≤ 0.063

{P(G) = 1}

{x ',  x1',  x2 '  &  P(F | MS)}

∀{P(G) = 1}:  x2 ' < 0.009

{P(G) = 1}

∀Gi∈G :  P(MS |Gi) ≥ P(MS)



4.   Genetic Susceptibility in Women and Men – Variance Considerations  

Conclusions: 1.     The set {X} has, at least, a bimodal distribution 
  2.    
  3.   

4.   
  5.  
  6.  

Argument: Following the notation in Table #2 (Main Text) and logic of #2 & #3 (above) and 

of Proposition #1 (Main Text), we can again define a partition of the (G) subset into susceptible women

 and susceptible men .  The set {X} of penetrance values for members of 

the (G) subset (Proposition #1 ; Main Text) is, at least, bimodal. Thus, from the observational data in 

Table 3; Fig 3 (Main Text):  

    

             

 For this analysis, we assume that sub-subsets (G1) and (G2) meet conditions for the Upper 

Solution (see Methods; Main Text).  From  Proposition #1 (Main Text), considering the (M / F) partition, 

using the estimated adjustments for the similar early environment of twins for these gender subgroups 

(see #1.2b above), and incorporating the data provided in Table 3; Fig 3 (Main Text), it follows that:  

    (Equation #6a) 

and:     (Equation #6b) 

    These possible ranges for men and women don't overlap. Therefore, we have correctly defined 

the sub-subsets (G1) and (G2)  see above – because, for this partition:  – see Methods, Main 

Text. The proportion of MS patients who are women from Table 3; Fig 3 (Main Text) is 66%. For the 

WTCCC data this number is 72%. From the study of Orton and colleagues [56] out of Canada, in the 

most recent epoch, the percentage of MS patients who are women is 76%. From a recent prevalence 

estimate for the United States [44], the percentage of women among MS patients is 74%. Using the data 

from Table 3; Fig 3 (Main Text), together with the above ranges for men and women, and from the 

definition of the (G) subset, we can estimate that: 

   

Because:   

Therefore:   

And similarly:   

0.145 ≤ P(MS | F ,G) ≤ 0.187
0.017 ≤ P(MS | M ,G) ≤ 0.034
0.18 ≤ P(F |G) ≤ 0.31
4.3≤ P(MS | F ,G) / P(MS | F ,G) ≤ 8.7
0.041≤ P(G) < 0.073

{(G1) = (F ,G)} {(G2) = (M ,G)}

P(MS | F ,MZMS) = 0.34 >> 0.067 = P(MS | M ,MZMS)
χ 2 = 8.5     ;       p = 0.0035

0.093< x1 ≤ 0.187

0.017 < x2 ≤ 0.034

(x1 > x > x2)

P(MS ,G | F ) = P(MS | F ) ={P(F | MS)*P(MS)}/ P(F ) ≈{0.66*0.003}/ 0.5 = 0.004

P(G | F ) = P(MS ,G | F ) / P(MS | F ,G)

0.021= 0.004 / 0.187 ≤ P(G | F ) < 0.004 / 0.093= 0.043

0.060 = 0.002 / 0.034 ≤ P(G | M ) < 0.002 / 0.017 = 0.118



From this, the upper limit for the quantity can be estimated from Table 3; Fig 3 (Main Text):  

   Such that:    

        where:   

       so that:       

 However, there are four serious concerns about undertaking any calculations that use the limits 

for  set forth by Equations #6a & #6b.  First, in the making above calculation, we are 

positing and an extreme and tri-modal distribution for the set {X} – i.e., not the unimodal or bimodal 

distributions under primary consideration in this manuscript. Thus, this calculation, envisions a 

distribution, in which half of the women have a penetrance of slightly greater than zero and the other half 

have a uniform penetrance of  – i.e. women have the maximum variance possible – and in which 

each of the men has exactly the same penetrance of , which is intermediate between these two 

extremes – i.e. men have a zero variance.  

Second, such an extreme distribution seems very unlikely, especially for circumstances in which 

partitioning the (G) subset by a different MS-associated characteristic – i.e., HLA-status (see #5, below) – 

doesn’t even give a hint of the bimodal nature of {X}. 

Third, it is not possible that the variance of penetrance values for the subset to be at its 

maximum value. Thus, because , the maximum variance for the (G1) subset  –  –  

exceeds the maximum total variance possible for the entire (G) subset – . Consequently, the lower 

limit for the value of (x1) in Equation #6a – i.e., at its maximum possible variance – must be too low. 

And fourth, some of the maximum possible variance in the {X} set  must be accounted for by the 

separation of from . This will also increase the lower limit of (x1). To see this, suppose that the 

{X} set is bimodal.  And further suppose that, of the (m) members of the (G) subset, 

belong to the (G1) subset and  belong the mutually exclusive (G2) subset. In this case, 

 and the variance of {X} – see Proposition #1; Main Text – is:  

  

For the (G1) subset, following a standard development of variance relationships [57], this becomes: 

  

or:  

{P(F |G)}

P(G | F ) / P(G | M ) = P(F |G) / P(M |G) = p / (1− p) < 0.043/ 0.060 = 0.717

1+ P(F |G) / P(M |G) = 1/ P(M |G) = 1/ (1− p) <1+ 0.717 = 1.717

p = P(F |G) < 0.717 /1.717 = 0.42

(x1 and:  x2)

(x1')

(x2 ')

(F ,G)

(x ' < x1') (x1'/ 2)2

(x '/ 2)2

(x1) (x2)

(ii = 1,2,3,...,g1)

( jj = 1,2,3,...,g 2)

( p = g1 / m)

σ X
2 = E(xi − x)2 = (1/ m) (xi − x)2

i=1

m

∑ = (1/ m) (xii − x)2
ii=1

g1

∑ + (1/ m) (xjj − x)2
jj=1

g 2

∑

(1/ m)
ii=1

g1

∑(xii − x)2 = (1/ m)
ii=1

g1

∑[(xii − x1)+ (x1− x)]2 = (1/ m)
ii=1

g1

∑(xii − x1)2 + (1/ m)
ii=1

g1

∑(x1− x)2

(1/ m)
ii=1

g1

∑(xii − x)2 = (g1 / m)σ x1
2 + (g1 / m)(x1− x)2 = pσ x1

2 + p(x1− x)2



Similarly:  

Consequently:     

Thus, part of the set {X} variance is accounted for by the term:   .           

This will also cause the lower limit for the value of (x1) to be higher than expressed in that Equation #6a. 

For example, we can define the residual variance (Rv) as:  

       Equation #6 

where:  ;    ;    ;     

As before, the upper limit for  can be established using the maximum value for 

– i.e., where:  – and the minimum value for  – i.e., where  accounts for all of the 

residual varaince (Rv).  Under these circumstances, together with this definitions and these relationships, 

we have two equations in only two unknown (i.e., unobserved) parameters , which can be 

solved uniquely. Thus, using (for the gender partition) the previously-defined relationship that: 

       

and using the Upper Solution (Proposition #1, Main Text), at the boundry, become: 

    Equation #1;  re-expressed 

            and:     where:     

In turn, these two equations can be solved iteratively by inserting our initial lower-limit estimate 

of   and the estimate of  when  into the 1st equation and then estimating a 

new lower limit for from the 2nd equation and Equation #6 , taking into account the condition that 

. This new lower-limit estimate for can then be re-inserted into the 1st equation and the 

process repeated until the two estimates for converge and are identical. Initially assuming that the 

entire residual variance (Rv) is confined to penetrance values in the (G1)-subset , and using 

Equation #6  to determine the magnitude of (Rv), this process converges on the solution that:  

  

Permitting the variance  to increase to its maximum possible value of: , with  

(1/ m)
jj=1

g 2

∑(xjj − x)2 = (1− p)σ x2
2 + (1− p)(x2 − x)2

σ X
2 ={pσ x1

2 + (1− p)σ x2
2 }+{p(x1− x)2 + (1− p)(x2 − x)2}

{p(x1− x)2 + (1− p)(x 2 − x)2}

Rv =σ X
2 − p(x1− x)2 − (1− p)(x2 − x)2

σ X
2 = x(x '− x) σ x1

2 = x1(x1'− x1) σ x2
2 = x2(x2 '− x2) x = px1+ (1− p)x2

P(G1|G) = P(F |G) (x2)

σ x2
2 = 0 (x1) (σ x1

2 )

( p  and:  x1)

t = P(F | MS) / P(M | MS) = 0.66 / 0.34 = 1.94

(x1 and: p)

p = t /{(x1 / x2)+ t}

x1 =
(x1')+ (x1')2 − 4Rv

2
σ x1
2 ≤ Rv

(x1 = 0.093) (x2 = x2 ') (σ x2
2 = 0)

(x1)

(σ x1
2 ≤ Rv) (x1)

(x1)

(i.e.,   σ x2
2 = 0)

x1 = 0.145 ;      p = 0.31 ;  and:  (a / b) = 4.3

(σ x2
2 ) (x2 '/ 2)2



accounting for all of the remaining RV, only alters these conclusions for   such that: 

 

Consequently:    

And, from this we conclude that: 

   

 and:  

        so that:  

Notably, these limits are derived by including all solutions (both Upper and Lower), in which  

(G1) and (G2) have significantly different penetrances and where each follows an Upper Solution.  

However, if the distribution of {X} follows an Upper Solution, those limits will still apply (see Main 

Text), although the slightly different estimates for P(G) would need to be reconciled.  Two possibilities 

suggest themselves. First, for Lower Solution distributions,  these limiting solutions for  describe 

non-unimodal distributions for both (G1) and G2). If we were to consider only the possibility that the 

distribution of penetrance values in (G1) and G2) each meet the conditions for a unimodal distribution 

(see Proposition #1, Main Text) then the limits provided by these equations would be: 

         

And, in this case, the limits for P(G) would be:       

And second, the estimate from Table 3; Fig 3 (Main Text) for the quantity , is 

based on only two concordant twins, and, thus, this estimate seems likely to be the least reliable of any in 

the Table.  If this estimated penetrance were doubled, there would still be an excess of men in (G)   

such that:  

                          but also:  

5.  Genetic Susceptibility for the (H+) / (H−) Partition 

Conclusion:   

Argument:  From the WTCCC it is apparent that there is considerable enrichment of (H+) 

status during the 1st enrichment stage when moving from the general population to an MS population.  

Thus:     

This relationship can be expressed alternatively as:   

    

(σ x1
2 ) {p  and:  (a / b)}

x1 = 0.146 ;      p = 0.18 ;  and:  (a / b) = 8.7

0.145 ≤ x1 ≤ 0.187 ;  0.017 ≤ x2 ≤ 0.034  ;  0.18 ≤ p ≤ 0.31 ;  and:  4.3≤ (a / b) ≤ 8.7

0.011= 0.002 / 0.187 ≤ P(G,F ) < 0.002 / 0.145 = 0.014

0.030 = 0.001/ 0.034 ≤ P(G,M ) < 0.001/ 0.017 = 0.059

0.041≤ P(G) = P(G,F )+ P(G,M ) < 0.073

P(G)

0.163 ≤ x1 ≤ 0.187 ;  0.029 ≤ x2 ≤ 0.034  ;  0.23≤ p ≤ 0.28 ;  and:  4.8 ≤ (a / b) ≤ 6.4

0.041≤ P(G) < 0.047

{P(MS | M , IGMS)}

0.31≤ P(F |G) ≤ 0.47

0.026 ≤ P(G) ≤ 0.043

P(G |H+) ≈ 3.35*P(G |H−)

P(MS,G |H+) / P(MS,G |H−) = 3.35

{P(G |H+) / P(G |H−)}*{P(MS |G,H+) / P(MS |G,H−)}= 3.35



What this re-expression makes it clear that the enrichment of (H+)-status in MS can occur in one, 

or both, of two possible ways. First, (H+) membership could make membership in the (G) subset more 

likely than it is for the (H−) subset – i.e., it is due to an impact on the ratio of: .  

Second, members of the  subset may have a greater penetrance for MS than members of the 

 subset – i.e., it is due to an impact on the ratio of: .    

As discussed in #4 (above), the set {X}, based on the partition of the (G) subset by gender, is at 

least bimodal. Therefore, there is a continuing enrichment of women during both the 1st and the 2nd stage 

of enrichment as demonstrated (see Table 3; Fig 3; Main Text) by the following relationships: 

 

By contrast, the enrichment of (H+)-status disappears during the (observable) 2nd stage such that: 

  

        However, if either:         

then the group with the greater proportion of women will be enriched (due to the considerably greater 

penetrance  in women – see #4, above) during the 2nd enrichment stage. This should be true even if (H+) 

has little impact by itself. The enrichment should be even greater if (H+) has an additional impact 

although there is little observational evidence for this. Thus, based on the data of Table 3; Fig 3 (Main 

Text): 

    

and:  

Taken together, these two observations suggest that there is little, or no, enrichment of (H+) status during  

the 2nd stage in women. Consequently, gender-status must be approximately balanced within the two 

HLA-subgroups such that: 

    

In which case:   

Using the WTCCC control data, this relationship translates to:   

 

 or:   

Similarly, in WTCCC controls: , so that for men also: 

   

      Therefore:  

P(G |H+) / P(G |H−)

(G,H+)

  (G, H−) P(MS |G,H+) / P(MS |G,H−)

P(F | MS) / P(F ) = 1.32 ≈1.39 = P(F | MS , IGMS) / P(F | MS)

P(H+ | MS) / P(H+) = 1.79 >>1.05 = P(H+ | MS , IGMS) / P(H+ | MS)

P(F ,H+ |G) > P(F ,H− |G)    or:    P(F ,H− |G) > P(F ,H+ |G) 

P(F ,H+ | MS) = 0.34 ≈ 0.35 = P(F ,H− | MS)

P(MS | F ,H+, IGMS) = 0.21≈ 0.24 = P(MS | F ,H−, IGMS)

P(F ,H+,G) ≈ P(F ,H−,G)

P(G | F ,H+)*P(F ,H+) ≈ P(G | F ,H−)*P(F ,H−)

P(G | F ,H+)*0.23≈ P(G | F ,H−)*0.77

P(G | F ,H+) ≈ 3.35*P(G | F ,H−)

P(H+ | F ) ≈ P(H+ | M )

P(G | M ,H+) ≈ 3.35*P(G | M ,H−)

P(G |H+) ≈ 3.35*P(G |H−)



Consequently, the large majority of the enrichment of (H+) status in MS seems to be due to the 

fact that (H+)-membership makes membership in the (G) subset more likely than it is for (H−) 

membership. By contrast, (H+)-status seems to have very little impact on penetrance. 

6.   Environmental Considerations in MS-Pathogenesis for Men and Women 

   6a.   Re-expressing Penetrance at Time-period #1 in terms of Time-period #2  

Conclusions: 1.   

  2.  

Argument: From the definitions (Main Text) of (Zw1), (Zw2) and of the subsets (G) and (E): 

    

and, thus:   

Because, by the definition of (C) – see Main Text:   

Therefore:   

And, thus:    

Similarly:   

6b.   Determining the Limiting Values for Penetrance   

Conclusions:  1.  

2.    

Argument:   From the Main Text, using the scale (aapp = R*a) for women: 

   

These two equations can be re-arranged to yield: 

    

Dividing these two equations yields:   

and with re-arrangement, this equation yields:   

 

Substituting into this last equation for (Zw1) from (#6a; above) yields: 

  Zw1 = P( MS , E | G, F )1 ={P(F | MS)1 / P(F | MS)2}*C *(Zw2)
Zm1 = P(MS,E |G,M )1 ={P(M |MS)1 / P(M |MS)2}*C *(Zm2)

P(MS ,E,G,F ) = P(MS ,F )

Zw2 = P(MS ,E |G,F )2 = P(MS ,F )2 / P(G,F ) = P(MS)2 *P(F | MS)2 / P(G,F )

P(MS)1 =C *P(MS)2

Zw1 = P(MS ,E |G,F )1 = C *P(MS)2 *P(F | MS)1 / P(G,F )

Zw1 = (Zw2)*C *{P(F | MS)1 / P(F | MS)2)}

Zm1 = (Zm2)*C *{P(M | MS)1 / P(M | MS)2)}

d = (Zw2)*{1− [P(F |MS)1 / P(F |MS)2]*C *e−1} / (1− e−1)

  c = (Zm2)*{1− [P( M | MS)1 / P( M | MS)2]*C *e−1}/ (1− e−1)

Zw2 = P(MS ,E |G,F )2 = d *{1− e−(a1
app+1−λw)}

Zw1 = P(MS ,E |G,F )1 = d *{1− e−(a1
app−λw)}

(Zw2 − d) / d = −{e−(a1
app−λw)}*e−1

(Zw1− d) / d = −{e−(a1
app−λw)}

  (Zw2 − d) / (Zw1− d) = e−1

d = P(MS |G,E,F ) ={Zw2 − Zw1*e−1} / (1− e−1)



 

Analogously:   

  and: 

6c.   Assessing the Environmental Threshold for MS in Men and Women 

Conclusions: 1.  

2. 

Argument:    Because the scales for the response-curves for women and men are initially 

assumed to be proportional they can be plotted on the same graph (see Fig. 4; Main Text; see also #7 

below) and, when this is done on the (a) scale, the threshold (x-intercept) for men occurs at

 and for women at . By the definitions of (E) and (a), one of these 

thresholds must occur at  – provided this exposure level is possible (see Fig 4 & #7; Main

Text). However, these thresholds need not be the same and, therefore, we define the difference in 

threshold between women and men as:  such that, if women have a higher threshold than 

men: . However, as noted (above), the  scale (for men) may be different than the scale 

for women so that in order to plot them on the same graph requires the conversion of  units into 

 units. Because the y-axis is identical for both men and women, this conversion, depending upon the 

value of R,  will cause the response curve for women to be stretched or compressed along the x-axis  

when converted into (a) units (without affecting the y-axis values), compared to their response curve 

when: . For women, on the scale, the exponential curve passes through the points , 

, , and . Because the units on the y-axis are unchanged, this transformation 

into (a) units is defined by: 

Thus, after conversion, the curve for women will pass through the points , , 

, and . Because any two points define an exponential curve uniquely, there is only one 

curve that matches these conditions. {NB: values of (Zw) are taken from the scale so that, when 

plotted together with men on the (a) scale, depending upon the value of R, the curve will lie above 

or below that found when the scales are the same (i.e., R=1) – see Fig 4, Main Text }. Moreover, by the 

d = (Zw2)*{1− [P(F | MS)1 / P(F | MS)2]*C *e−1}/ (1− e−1)

c = P(MS |G,E,M ) ={Zm2 − Zm1*e−1}/ (1− e−1)

c = (Zm2)*{1− [P(M | MS)1 / P(M | MS)2]*C *e−1}/ (1− e−1)

λ = ln{[1− Zw2 / d)] / [(1− Zm2 / c)]}

∀C > 0.50 :  0.37 < λ < 4.67 ;  and, in fact:   ∀C > 0 :λ > 0

{(a,Zm) = (λm,0)}   {(a,Zw) = (λw,0)}

  {(a,Z ) = (0,0)}

(λ = λw− λm)

(λ > 0) (a) (aapp )

(aapp )

(a)

R =1 (aapp ) (0,0)

(a1app ,Zw1) (a2app ,Zw2) (∞,d)

 ∀aapp > 0 &  R > 0 :  (aapp ,Zw)→ ([aapp / R],Zw) = (a,Zw)
        ∀aapp = 0 &  R > 0 :  (aapp ,Zw) = (0,0)→ (λw,0)

and:      ∀aapp < 0 :  (aapp ,Zw)→ (a,0)

(λw,0) (a1,Zw1)

(a2,Zw2) (∞,d)

(aapp )



above transformation,  is independent of R so that the condition  can be used to estimate 

 and, thus, responses at the second time-point can be expressed as: 

With re-arrangement, these equations become:  

Dividing these two equations yields: 

 

       So that:  

For notational simplicity, we can define two expressions – (KM) and KF) – such that: 

 

           and:   

Substituting these into the using equations for (c) and (d) in #6b (above) and restating yields: 

     and:  

         so that:  

Based on observational data [56]:          so that:       

       and, thus:  

The value of  depends only upon the value of (C) and the sex-ratio change over time so that, 

using the above equations for  and applying #6d (below), we conclude that both: 

6d.   Assessing the increase in MS-prevalence for Canada (1945 – 1980) 

Conclusions: 1. 
2.  

Argument:   From #6a and #6b (above): 

 

          and:  

Substituting the 1st equation into the 2nd, and noting that , yields: 

(λw) (R = 1)

(λw)

Zw2 = P(MS ,E |G,F )2 = d *{1− e−(a1+1−λw)}= d *{1− e−(a1+1−λ−λm)}  (women)
Zm2 = P(MS ,E |G,M )2 = c*{1− e−(a1+1−λm)}  (men)

(Zw2 − d) / d = −e−(a1+1−λm)}*eλ

(Zm2 − c) / c = −e−(a1+1−λm)}

(c / d)*[Zw2 − d) / (Zm2 − c)] = eλ

λ = ln{(c / d)*[Zw2 − d) / (Zm2 − c)]}= ln{[1− Zw2 / d)] / [(1− Zm2 / c)]}

KM = [P(M | MS)1 / P(M | MS)2]*C *e−1

KF = [P(F | MS)1 / P(F | MS)2]*C *e−1

c = Zm2 *(1− KM ) / (1− e−1)

d = Zw2 *(1− KF) / (1− e−1)

(1− Zw2 / d) / (1− Zm2 / c) = [1−{(1− e−1) / (1− KF)}] / [1−{(1− e−1) / (1− KM )}]

KM > KF 1/ (1− KM ) >1/ (1− KF)

[1−{(1− e−1) / (1− KF)}] > [1−{(1− e−1) / (1− KM )}]

(λ)

(λ)

∀C > 0.50 :  0.37 < λ < 4.67 ;  and:   ∀C > 0 :λ > 0

C = P(MS)1 / P(MS)2 < 0.76
P(MS)2 > (1/C)*P(MS)1 >1.32*P(MS)1

Zm1 = (Zm2)*C *P(M | MS)1 / P(M | MS)2}

c = P(MS |G,E,M ) ={Zm2 − Zm1*e−1}/ (1− e−1)

{Zm2 < c}



 

Dividing through by (Zm2) and with re-arrangement this yields: 

   

Therefore:    

6e.   Proportional vs. Non-proportional Hazard-rates for Men and Women 

Conclusions: 1. The limiting-values of (c) and (d) are the same in either case 

2. Non-proportional hazards require separate graphs for men and women

3. Non-proportional hazards imply different environmental factors

4. Proportional hazards imply similar environmental factors

Argument:   From the separate definitions for the response curves in woman and men (described 

above in #6b), it follows directly that the limiting-values (c) and (d) depend only upon the independent 

variables (a) and (aapp) respectively. However, non-proportionality suggests that there is no known 

relationship between these two variables and, therefore, that no further comparative information can be 

gleaned. The response curves can be graphed separately but, because the relationship between the scales 

of the two is not known, they can’t be placed on the same graph. Nevertheless, if the relationship between 

these two scales could be defined in some other manner, it might be possible to develop comparative 

information. In addition, non-proportionality would suggest that the environmental factors, which 

contribute to P(E), are different for men and women.  

By contrast, the assumption of proportional hazard rates directly implies that women have a 

higher environmental threshold than men (Fig. 4; Main Text & see #6c above) and such a circumstance 

suggests that men and women are responding to the same environmental events. Otherwise, if the 

necessary environmental factors were different for men and women, there must be some specific 

environmental conditions that favor MS-development in women over men and, in such a case, there could 

be no consistent difference in threshold. Rather, the existence of a threshold difference between men and 

women suggests that any gender-specific differences in MS-development depend only upon the degree 

(not the kind) of exposure. For example, perhaps, susceptible men develop MS with a lesser degree of 

vitamin D deficiency or with EBV infection occurring over a broader age-range compared to susceptible 

women.  

Alternatively, there may be an environment-gender interaction such that susceptible men, in any 

given environment , are more likely to experience a sufficient exposure than susceptible women. 

For example, perhaps men are more likely to engage in “risky” behaviors compared to women, or that 

they are more likely to be “sun-averse” than women. Having said this, however, it is not clear how 

(or whether) “individual” differences in behavior (even if they are biologically driven) could lead to a 

Zm2 <{Zm2 − [P(M | MS)1 / P(M | MS)2]*C *(Zm2)*e−1}/ (1− e−1)

C < P(M | MS)2 / P(M | MS)1 = 0.238 / 0.313= 0.76

P(MS)2 = (1/C)*P(MS)1 = 1.32*P(MS)1

(i.e., ET )



“population-level” difference in threshold (Fig 4; Main Text). More likely, any such interactions would 

have to be related to physiological differences between the genders.  

Another possibility is that a small proportion of both  susceptible men and women have “purely 

genetic” MS and that “environmental” MS begins for both genders at (0,0) – see Main Text & Fig 4. 

7. Uniqueness of Susceptible Genotypes in the Population

An early GWAS of the WTCCC data identified a set of 102 non-MHC SNPs, for which one of 

the two SNP-variants at each location was significantly (and reliably) associated with MS [13]. Thus, 

including the “risk” haplotype (H+) in the HLA Class II region of the MHC, 103 “risk” locations were 

identified [13]. Among control subjects, there were, on average, 31 of these locations at which subjects 

were homozygous for the “non-risk” SNP variant, 32 locations at which subjects were homozygous for 

the “risk” SNP-variant, and 40 locations at which control subjects were heterozygous. By contrast, among 

cases, these numbers were 29, 34, and 40 (respectively).  Even if one considers individuals who are either 

homozygous or heterozygous for the “risk” SNP-variant at all locations to have the same genotype, there 

are still a huge number of possible combinations. Thus, in this circumstance there are:   

  

possible combinations.  Nevertheless, it is clear, first, that heterozygotes and homozygotes carry different 

“risks” for some locations (e.g.,  H+), second, that many of the associated loci have multiple alleles (e.g.,  

the MHC), and finally, that more than 200 genetic loci are now known to be MS-associated [5-14,24]. 

Each of these facts will hugely increase the number of possible genetic combinations of the MS-

associated loci.  

With fewer than {1010} people in the entire world, it seems almost certain that everyone (except 

monozygotic twins) will have a unique genotype when considering this entire collection of susceptibility 

locations.  Indeed, we used the 30,248 individuals in the WTCCC dataset to test this hypothesis [13]. The 

first 102 WTCCC-identified non-MHC SNPs [13] were ordered by the strength of their MS-association 

(i.e., by the magnitude of their respective ORs). Considering heterozygotes and homozygotes to be 

separate genotypes and considering only 20 of the strongest MS-associated haplotypes – together with the 

(H+) genotype in the Class II region – no genotype (including both cases or controls) had more than 2 

representations in the WTCCC and considering just 85 of the 103 regions (including H+), everyone had a 

unique genotype. Similarly, considering heterozygotes and homozygotes to be the same genotype and 

considering only 40 of the 103 regions, no genotype had more than two representations in the WTCCC 

and considering just 86 regions, everyone had a unique genotype. Clearly, neither including in the 

analysis the more than 200 loci now-identified MS-associated SNPs [14], nor analyzing, at these 

103
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susceptibility loci, specific MS-associated SNP-haplotypes rather than single SNPs [23,24], will alter this 

conclusion. Everyone in the WTCCC has a unique genotype considering all of their MS-associated loci. 

We also analyzed the WTCCC data for every possible combination of three “risk” haplotypes at 

these 102 locations, together with the state of the (H+)-genotype, with regard to their MS-association. 

There were 960 3-locus combinations (either homozygous or heterozygous), together with a heterozygous 

state at the (H+) locus, that had an OR, which significantly exceeded that found by considering the (H+) 

locus by itself. By contrast, there were 7009 such combinations, together with a homozygous state at the 

(H+) locus, that had an OR, which significantly exceeded that when considering the (H+) locus by itself. 

Nevertheless, in both circumstances, there was little consistency. Counting the number of cases having 

each 4-locus combination for heterozygous (H+) individuals, yielded: (mean = 51; range: 14 – 582) and, 

for homozygous (H+) individuals, it yielded: (mean = 112; range: 22 – 338). Also, these estimates 

steadily decreased with each additional locus included in the combination. These observations become 

more striking when one considers just the 100 most significant MS-associated combinations for 

individuals heterozygous or homozygous for (H+) separately. In the heterozygous group, the number of 

cases having each combination is: (mean = 34; range: 16 – 92), whereas the number of cases not having 

each combination is far greater: (mean = 4,272; range: 4,684 – 4,760). Similarly, in the homozygous 

group, the number of cases having each combination is: (mean = 54; range: 31 – 130), whereas the 

number of cases not having each combination is, again, far greater: (mean = 753; range: 677 – 776).  

Thus, it seems clear that, although certain combinations increase the likelihood of (G) subset membership, 

the actual combinations that do this are quite heterogeneous, and only a small proportion of genetically 

susceptible individuals (who actually develop MS) share even the same 4-locus genetic combination. This 

finding seems to indicate that genetic susceptibility to MS is largely idiosyncratic.   




