
ON-LINE APPENDIX
On-line Method 1: Multiatlas ROI Segmentation
Multiatlas segmentation has engendered increasing interest in

recent years and has shown clear improvement in accuracy

over single-atlas-based segmentation.1 In this framework,

semi-automatically extracted reference ROI labels from mul-

tiple atlases are warped individually to the target image and are

fused together to assign a label to each voxel of the target im-

ages. The proposed method2 uses a consensus labeling frame-

work, by generating a broad ensemble of labeled atlases via the

use of 2 different nonlinear image registration algorithms, fol-

lowed by a spatially adaptive weighted voting strategy to fuse

the ensemble into a final segmentation. The brain was seg-

mented into a set of 154 anatomic ROIs, which were organized

within a hierarchic structure to allow derivation of volumetric

measurements in various resolution levels. The method in-

cludes nonlinear registration of multiple atlases with ground-

truth labels for every individual scan,3 followed by a local sim-

ilarity-based fusion of labels from different atlases.

In the fusion, a local similarity term is used for ranking

and weighting reference labels from different atlases, and an

image-intensity-based term is used for modulating the seg-

mentations in the boundaries of the ROIs according to the

intensity profile of the subject image. On-line Fig 2 shows sam-

ple segmentation.

On-line Method 2: Pattern Classification
The SPARE-AD index is derived from a support vector machine

classifier (for more mathematical formulation, see Vapnik4 and

Habes et al5) trained for optimal discrimination between healthy

controls and age-matched patients with AD6,7 and summarizes

the high-dimensional image data with a single score that indicates

the distance of the test sample from the classification hyperplane.

As input, we used regional volumetric maps called Regional Anal-

ysis of Volumes Examined in Normalized Space,7-9 which were

obtained by using tissue-preserving image warping, to enable

comparative analysis of tissue volumes in the common template

space. In this study, we used gray matter Regional Analysis of

Volumes Examined in Normalized Space maps that were normal-

ized by intracranial volume to adjust for global differences in head

size.

More positive SPARE-AD implies a more Alzheimer disease-

like brain structure, and more negative SPARE-AD implies more

normal structures.10 The SPARE-AD model was trained on the

external training dataset described in Da et al6 and was validated

earlier.8,9

On the other hand, the SPARE-BA index captures aging-

related brain structural changes and was developed earlier by

using a training model from the SHIP study as described in

Habes et al.10,11 As validation of the SPARE-BA index within

SHIP, we used 2 metrics: 1) the cross-validated classification

accuracy of the model for the training dataset (area under

curve � 0.96), showing that the model can successfully detect

discriminative imaging patterns that separate old and young

subjects; 2) the Spearman rank correlation between the actual

age and the calculated SPARE-BA index of a subject (r �

�0.80), showing that the model has predictive power for de-

termining the brain age of a subject. We used the default

value � 1 in the LIBSVM12 implementation for the penalty

misclassification parameter (denoted usually as C in the liter-

ature4) for both SPARE-AD and SPARE-BA models.

On-line Method 3: APOE Determination in SHIP
From SHIP-0, 4081 individuals were successfully genotyped by

using the Genome-Wide Human SNP Array 6.0 (Affymetrix,

Santa Clara, California). The total number of SNPs after im-

putation and quality control was 2,748,910. Genotyping of

SHIP-TREND (986 individuals) was performed by using the

HumanOmni2.5-Quad (Illumina, San Diego, California). The

total number of SNPs after imputation and quality control was

3,437,411. Genotypes in SHIP-0 were determined by using the

Birdseed2 clustering algorithm. Genotypes in SHIP-TREND

were called with the GenCall algorithm of GenomeStudio

Genotyping Module, Version 1.0 (Illumina). The genetic data

analysis workflow was created by using the Software InforS-

ense (http://inforsense.software.informer.com/download/).

The APOE genotypes were determined on the basis of

rs429358(C;C) and rs7412(T;T) from the resulting imputation

(overall imputation quality, �0.8; Hardy-Weinberg Equilib-

rium, P � .05). Because we used the genomewide association

study dataset and not strand-specific genotyping for determi-

nation of APOE status, 2 ambiguous SNP combinations oc-

curred when APOE �2/�4 and �1/�3 could not be discrimi-

nated (http://www.snpedia.com/index.php/APOE). To deal

with this limitation, we first determined the effect of APOE �4

after leaving out the cases with the unidentifiable combination

�2/�4 and �1/�3. In this study, all cases with �2/�4 or �1/�3

were excluded (n � 35).
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ON-LINE FIG 1. Cognitively impaired subjects (triangles, n � 98) in SHIP-2/SHIP-TREND categorized on the basis of their cognitive score (Verbal
Learning and Memory Test for the subcohort SHIP-2 [n � 744], and the Nuremberg Age Inventory Test for the subcohort SHIP-TREND [n � 728])
depicted by age. Circles represent cognitively healthy individuals.

ON-LINE FIG 2. Segmentation into anatomic ROIs.
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On-line Table 1: Description of the SHIP participants with MRI data excluded in this studya because of missing datab

Characteristic
SHIP-2

Excluded
SHIP-TREND

Excluded
SHIP-2+TREND

Excluded
Age (median) (SD) (yr) 57.53 (13.83) 52.56 (14.40) 53.77 (14.47)
Education (No.) (%)

�8 yr 96 (28.15) 224 (17.77) 320 (19.98)
8–10 yr 168 (49.26) 671 (53.25) 839 (52.40)
�10 yr 77 (22.58) 365 (28.96) 442 (27.60)

Female sex (No.) (%) 165 (48.38) 610 (48.41) 775 (48.40)c

Verbal Learning and Memory Test (mean) (SD) 8.70 (2.49)
Nuremberg Age Inventory (mean) (SD) 11.24 (2.56)

a Values are for the corresponding available demographic data.
b No significant difference was detected between the sample excluded compared with the sample included in this study except for sex.
c Significant difference compared with the sample included in this study.

On-line Table 2: Linear regression models between age and ROI volumes (normalized by total intracranial volume) and SPARE-AD and
SPARE-BA for subjects in the age range of 22– 40 years (n � 248)a

Outcome Age Sex APOE �4 Carriers
Lateral frontal volume �0.0004465 (�.001)b 0.0018230 (.004)b �0.0006391 (.356)
Lateral temporal volume �0.0000946 (.027)b 0.0008911 (.019)b 0.0004538 (.283)
Medial frontal volume �0.0001090 (�.001)b 0.0008957 (�.001)b 0.0001964 (.428)
Hippocampal volume 0.0000048 (.370) 0.0001269 (.008)b 0.0000479 (.371)
SPARE-AD 0.0132300 (.230) �0.2535700 (.010)b �0.0605400 (.580)
SPARE-BA �0.1033300 (�.001)b 0.5936500 (�.001)b �0.1082300 (.439)

a Data are coefficient (P value).
b Significant at P � .05. Models are adjusted for education and study cohort effects.

On-line Table 3: Linear regression models between age and ROI volumes (normalized by total intracranial volume) and SPARE-AD and
SPARE-BA for subjects older than 60 years of age (n � 487)a

Outcome Age Sex APOE �4 Carriers
Lateral frontal volume �0.0004076 (�.001)b 0.0028070 (�.001)b 0.0001572 (.772)
Lateral temporal volume �0.0002414 (�.001)b 0.0006251 (.063) 0.0002931 (.461)
Medial frontal volume �0.0001480 (�.001)b 0.0013340 (�.001)b 0.0000497 (.825)
Hippocampal volume �0.0000341 (�.001)b 0.0001983 (�.001)b �0.0000075 (.872)
SPARE-AD 0.0689980 (�.001)b �0.2136610 (.009)b 0.0227590 (.814)
SPARE-BA �0.1094700 (�.001)b 0.7808200 (�.001)b 0.0446400 (.728)

a Date are coefficient (P value).
b Significant at P �.05. Models are adjusted for education and study cohort effects.

On-line Table 4: Linear regression model with age, sex, education
level, and APOE status as independent variables and VLMT as a
dependent variable

Factor

VLMT SHIP-2 Participants (n = 744)

Estimate SE P Value (Factor)
Age (yr) �0.086 0.009 �.001a

Female sex 1.114 0.199 �.001a

Education
8–10 yr �0.087 0.292 .766
�10 yr 1.075 0.323 .001a

APOE status, at
least 1 �4 allele

0.254 0.250 .311

R2 � 0.187

Note:—SE indicates standard error; VLMT, Verbal Learning and Memory Test.
a Significant at P �.05.

On-line Table 5: Linear regression model with age, sex, education
level, and APOE status as independent variables and NAI as a
dependent variable

Factor

NAI SHIP-TREND Participants (n = 728)

Estimate SE P Value (Factor)
Age (yr) �0.046 0.007 �.001a
Female sex 1.064 0.174 �.001a

Education
8–10 Years 1.064 0.301 �.001a

�10 Years 1.745 0.315 �.001a

APOE status, at
least 1 �4 allele

0.020 0.200 .919

R2 � 0.156

Note:—NAI indicates Nuremberg Age Inventory; SE, standard error.
a Significant at P � .05.
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