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Supplementary Note 1: Comparison between Recurrent-MZ and interpolation

algorithms
In general, the forward imaging model of wide-field microscopy can be expressed as':
9z =:P{H2Hf}+:r

where P, T stand for a Poisson random process and noise terms caused by e.g., thermal noise
and various sources of imperfections in the imaging system, respectively; 7 is often modelled
as an additive Gaussian white noise. H is a circulant matrix representing 3D convolution with
the system’s PSF, H, is a down-sampling matrix resulting in the sparse input image scans at
axial planes z;,i = 1,2,:--, M, and g,, f are the vectorized output image and the object,
respectively. Recurrent-MZ solves the volumetric image propagation problem to reconstruct
images g, Z € Z within a sample volume using an input sequence g,,i = 1,2,---, M. In
contrast, standard interpolation algorithms simply model g, as a specific continuous function,
e.g., Hermite polynomial, linear function, etc. within each interval between given data nodes.
Existing interpolation algorithms?* are therefore incapable of physically-correct volumetric
propagation of fluorescence images. As shown in Fig. S1, Recurrent-MZ matches the
corresponding ground truth images very well, while various forms of interpolation methods
fail and start to hallucinate features that are not real. Figure S1(b) further illustrates that
Recurrent-MZ (red line) outperforms these interpolation algorithms in terms of both RMSE

and PSNR metrics.
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Fig. S1 Comparison of Recurrent-MZ and various interpolation methods.
Four different 3D interpolation algorithms, including linear, modified Akima
(makima)®#, spline (cubic) and nearest interpolation, were applied to the
same input images used by Recurrent-MZ. Recurrent-MZ outperforms these
interpolation algorithms in terms of both RMSE and PSNR metrics.
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Fig. S2 Comparison of the use of different M in Recurrent-MZ. (a) The two

networks were trained on the same dataset. For the testing sequence with 3



Input sequence

input images, the network with M = 2 takes in the 2 nearest input images to
each output plane, while the network with M = 3 always takes in all 3 input
images. (b) The PSNR values of the output images are calculated with respect
to the corresponding ground truth image. Blue: Outputs of the Recurrent-MZ

(M=2); Red: Outputs of the Recurrent-MZ (M=3).
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Fig. S3 Volumetric image reconstruction using Deep-Z on a C. elegans
sample. Deep-Z takes in a single input image to infer an output image at the
designated plane, as indicated by the color of each output box. See Fig. 2 for

a comparison against Recurrent-MZ.
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Fig. S4 Generalization of Recurrent-MZ to non-uniformly spaced input
images. (a) Recurrent-MZ was trained on C. elegans samples with
equidistant inputs (M=3, Az = 6 um), and blindly tested on both uniformly
sampled and non-uniformly sampled input images of new samples. (b) The
PSNR values of the output images of Recurrent-MZ with uniformly spaced,
and non-uniformly spaced input images are calculated with respect to the
ground truth, corresponding image. Blue: Outputs of Recurrent-MZ (M=3)
for uniformly spaced inputs, Red: Outputs of Recurrent-MZ (M=3) for non-
uniformly spaced inputs. Dashed lines indicate the axial positions of the input

2D images.
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Fig. S5 Input image permutation invariance of Recurrent-MZ compared
against the failure of 3D U-Net due to input image permutations. Recurrent-
MZ (M=3) and 3D U-Net were trained with inputs sorted by z and blindly
tested on new samples with 6 random permutations of the input images. (a)
The input scans sorted by z, (b) the mean output and standard variance
generated by Recurrent-MZ over 6 input image permutations, (c) the mean
output and pixel-wise standard variance generated by 3D U-Net over 6 input
image permutations, (d) the ground truth images obtained by mechanical
scanning, (¢) RMSE vs. z plot. Red solid line: average RMSE of the output

images generated by Recurrent-MZ over 6 random permutation of the inputs;



Pink shadow: standard variance of the RMSE of the output images generated
by Recurrent-MZ over 6 random permutation of the inputs; Blue solid line:
RMSE of the output images generated by Recurrent-MZ with inputs sorted
by z; Black solid line: average RMSE of the output images generated by 3D

U-Net over 6 random permutation of the inputs.
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Fig. S6 Recurrent-MZ inference performance

14 16 18

with different training

schemes. (a) The input sequence and ground truth image of the test FOV.



Recurrent-MZ (M=3) was trained, separately, with input sequences sorted by
z, sorted by dz, as well as randomly sorted images. The corresponding
Recurrent-MZ networks were then tested with (b) the same image sorting
used in training, and (c) 6 random permutations of the original input
sequence. (d) The RMSE values of the output images of Recurrent-MZ

trained using these three different schemes.
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Fig. S7 Repetition invariance of Recurrent-MZ. Recurrent-MZ (M=3) was
trained with input sequences with 3 input images (I, I, and I5), but tested by
repeatedly feeding the input image (I3). (2) The input images/scans and the

corresponding mechanical scan (ground truth) image. (b) Output images of



Recurrent-MZ (M=3) with the repetition of the nearest input (I5), 2 nearest
inputs (I,,13) and all three input images. (c) The outputs of Deep-Z with
single input (I, I, or I3), and the pixel-wise average of three Deep-Z outputs,
i.e., Deep-Z(l1), Deep-Z(l,) and Deep-Z(ls). The range of grayscale images

is 255 while that of standard variance images is 31.
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Fig. S8 Detailed network structure of Recurrent-MZ. (a) The GAN structure
and the data flow of Recurrent-MZ. (b) The generator structure of Recurrent-

MZ. (c) The discriminator structure used for training Recurrent-MZ.

Video S1. Volumetric imaging of C. elegans using Recurrent-MZ. Recurrent-MZ takes in the

2 nearest input scans (M=2) to each output plane using input images acquired at z =

10



3,9,and 15 pm. The reconstructed volume ranges from z = 0 um to z = 18 um. Scale bar:

10 pm.

Video S2. Volumetric imaging of fluorescence nanobeads using Recurrent-MZ. Recurrent-MZ
takes in 3 input images (M=3) of the 50nm fluorescence nanobead-sample imaged at z =
3,6,and 9 um. The reconstructed volume ranges from z = 0 um to z = 10 um. Scale bar:

10 pm.

Video S3. Cross-modality volumetric imaging of C. elegans using Recurrent-MZ+. Recurrent-
MZz+ (M=3) propagates 3 wide-field input images into a 3D image stack, matching confocal

microscopy images of the same sample. Scale bar: 10 pm.
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