OMTN, Volume 24

Supplemental information

Base editing strategy for insertion

of the A673T mutation in the APP gene

to prevent the development of AD in vitro

Antoine Guyon, Joël Rousseau, Francis-Gabriel Bégin, Tom Bertin, Gabriel Lamothe, and Jacques P. Tremblay

SUPPLEMENTAL RESULTS:

Table S1: List of sgRNA used in the study.

SpCas9 VQR/EQR sgRNAs targeting sequences of 17 to 22 nucleotides tested:				
sgRNA 22bp	ATTCTGCATCCATCTTCACTTC			
sgRNA 21bp	TTCTGCATCCATCTTCACTTC			
sgRNA 20bp	TCTGCATCCATCTTCACTTC			
sgRNA 19bp	CTGCATCCATCTTCACTTC			
sgRNA 18bp	TGCATCCATCTTCACTTC			
sgRNA 17bp	GCATCCATCTTCACTTC			
SaCas9 sgRNA	is tested:			
sgRNA 22bp	ATTCTGCATCCATCTTCACTTC			
sgRNA 21bp	TTCTGCATCCATCTTCACTTC			
sgRNA 20bp	TCTGCATCCATCTTCACTTC			
sgRNA 19bp	CTGCATCCATCTTCACTTC			
sgRNA 18bp	TGCATCCATCTTCACTTC			
sgRNA 17bp	GCATCCATCTTCACTTC			

	Target-AID-SpCas9nVQR 19	BE3_SpCas9nVQR 19
Total reads	100%	100%
Wild-Type	39,3	66,0
C1	4,8	1,0
C2	3,8	0,3
C3	0,1	3,6
C4	0,4	0,0
C5	0,8	0,3
C1+C2	36,3	0,0
C1+C3	0,3	2,1
C1+C4	0,1	0,0
C1+C5	0,2	0,0
C2+C3	0,1	0,2
C2+C4	0,1	0,0
C2+C5	0,3	0,0
C3+C4	0,0	0,2
C3+C5	0,0	0,2
C4+C5	0,4	0,0
C1+C2+C3	2,3	1,0
C1+C2+C4	0,8	0,0
C1+C2+C5	5,5	0,0
C2+C4+C5	1,8	0,0
C2+C3+C5	0,0	0,0
C1+C2+C3+C4	0,6	0,1
C2+C3+C4+C5	0,3	0,2
C1+C3+C4+C5	0,0	0,0
C1+C2+C4+C5	0,5	0,1
C1+C2+C3+C5	0,6	0,0
C1+C2+C3+C4+C5	0,4	0,2
Global C2	53,3	2,5
Global C2 (excluding C3 and C4))	42,6	0,4
Indels	1,4	2,6
Total	75,60%	75,70%
Mis-sequencing	24,40%	

Table S2: Example of Deep-Sequencing analysis. Indels calculated with the script2 of Figure S7.

Table S3: Percentage of reduction of A β 40 and A β 42 peptides secretion induced by the addition of the A673T mutation to wild type APP gene or to an APP gene containing the London mutation. Last column shows the percentage of reduction induced by the addition of E674K and A673T (C1+C2) mutations to wild type APP gene. The addition of the A673T mutation reduced the production of A β 40 and A β 42 peptides in all 3 situations. Experiment performed in SH-SY5Y transfected with plasmids containing an APP695 cDNA. Results from Guyon et al. 2020 (DOI: 10.1371/journal.pone.0237122)

FAD mutation	APPWT	APPV717I	APPC1+C2
Abeta42 Decrease (%)	-46	-65	-53
Abeta40 Decrease (%)	-63	-81	-44

Figure S1.

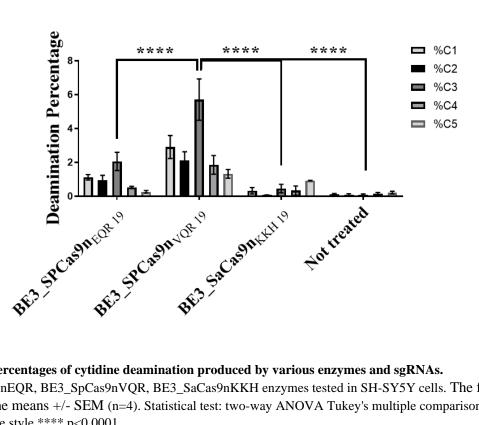


Figure S1: Percentages of cytidine deamination produced by various enzymes and sgRNAs. BE3_SpCas9nEQR, BE3_SpCas9nVQR, BE3_SaCas9nKKH enzymes tested in SH-SY5Y cells. The figure illustrates the means +/- SEM (n=4). Statistical test: two-way ANOVA Tukey's multiple comparisons test (n=4). P value style **** p<0.0001.

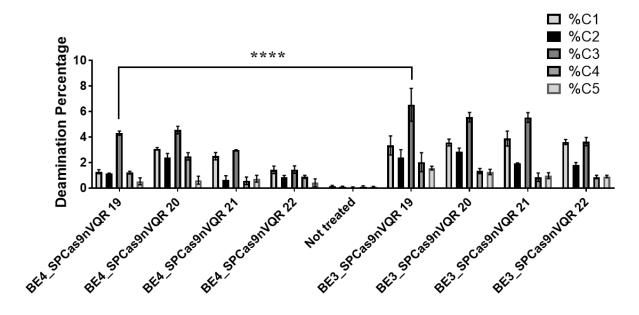


Figure S2: **Percentages of cytidine deamination produced by various enzymes and sgRNAs.** BE4_SpCas9nVQR and BE3_SpCas9nVQR enzymes test in SH-SY5Y cells. The figure illustrates the means +/- SEM (n=3). Statistical test: two-way ANOVA Tukey's multiple comparisons test (n=3). P value style **** p<0.0001.

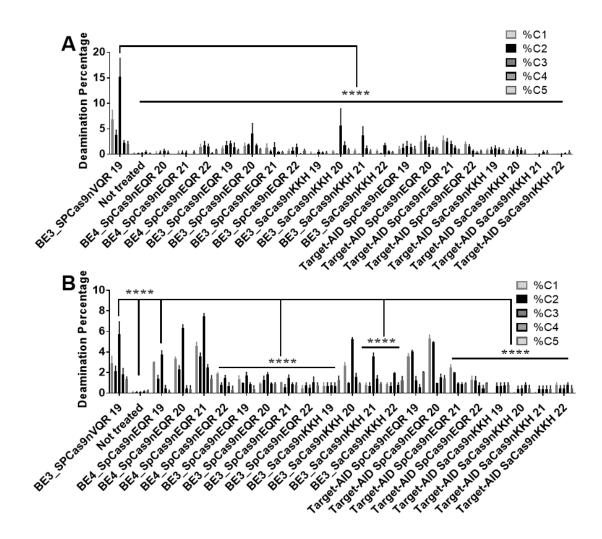


Figure S3: Percentages of cytosine deamination produced by BE3_SpCas9nVQR, BE4_SpCas9nEQR, BE3_SpCas9nEQR, BE3_SaCas9nKKH, Target-AID_SpCas9nEQR, Target-AID_SaCas9nKKH enzymes. In A, test in HEK293T cells. In B, test in SH-SY5Y. The figure illustrates the means +/- SEM (n=3). Statistical test: two-way ANOVA Tukey's multiple comparisons test (n=3). P value style **** p<0.0001.

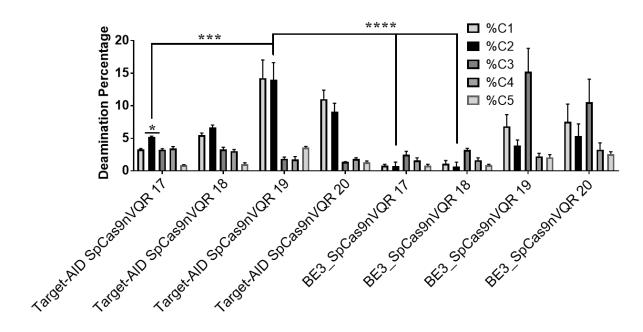


Figure S4: **Deamination efficiencies using various Cas9n-deaminases and sgRNAs targeting various numbers of nucleotides**. The difference of deamination in HEK293T cells of cytidines C1 to C5 produced by the Target-AID-SpCas9nVQR and BE3_SpCas9nVQR enzymes and two copies of a sgRNA targeting 17 to 20 nucleotides. The figure illustrates the means +/- SEM (n=3). Statistical test: two-way ANOVA Tukey's multiple comparisons test (n=3). P value style *** p<0.0002, **** p<0.0001.

Figure S5

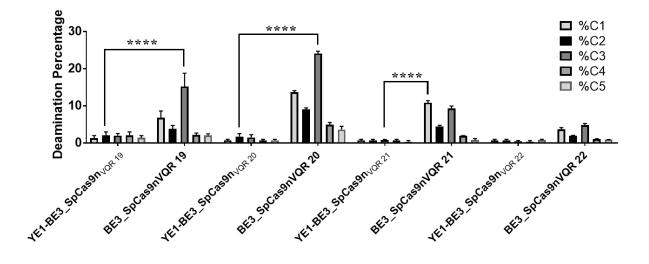


Figure S5: Deamination efficiencies using various Cas9n-deaminases and sgRNAs targeting various numbers of nucleotides. Difference between YE1-BE3_SpCas9nVQR and BE3_SpCas9nVQR in HEK293T cells. The figure illustrates the means +/- SEM (n=4). Statistical test: two-way ANOVA Tukey's multiple comparisons test (n=4). P value style **** p<0.0001.

Figure S6:

Sequence	PAM	Score 🗸	Gene	Locus
CTGCATCCATCTTCACTTC	AGAG	100.0	APP (ENSG00000142192)	chr21:+25897633
CTGAAGCCATCTTCACTTC	GGAG	1.4		chr5:-74133250
CTGCCTCCATCTTCACATG	TGAG	0.5		chr11:+70758797
CTGCTTCCAACTTCACTT	GGAG	0.5	SPOCK2 (ENSG00000107742)	chr10:-72059638
CAGGATCCATCTTAACTTC	TGAG	0.4		chr12:-47654519
CTGCTTCCATCTTCTGTTC	AGAG	0.4		chr3:-36729648
CTGCATCCTTCTCCACTTG	GGAG	0.4		chr8:-67603274
CTGAATCAATCTCCACTTC	AGAG	0.4		chr12:-56572869
ATCCATGCATCTTCACTTC	AGAG	0.3		chr11:-20359838
CTGCCCCACCTTCACTTC	TGAG	0.3		chr9:+85398673
CTGCATCCATCTCCTTC	AGAG	0.3		chr3:+176747607
CTATTTCCATCTTCACTTC	AGAG	0.3		chr9:-21442550
ATGTATCCATCTTCACTGT	TGAG	0.1		chr14:-35505959
	AGAG	0.1		chr5:-44542656
	AGAG	0.1		chr10:-120808163
ATCCATCCACCTTCACTTG	TGAG	0.1		chr4:+10179124

Figure S6: Off target analysis performed with Crispr.mit.edu algorithm (Hsu et al. 2014)

Figure S7:

Script1.sh:

(echo -n "Sample#n#"; for i in \$(cat list);do echo -n "\$i#" ;done; echo; for j in \$(ls *.bam);do echo -n "\$j#"; samtools view \$j |wc -l| awk '{printf \$1 "\t"}' ;for i in \$(cat list);do samtools view \$j | grep -c \$i | awk '{printf \$1 "\t"}'; done; echo; done)|sed s/#/\\t/g

List associated with Script1.sh:

ATTCTGCATCCATCT	ATTCTGCATCTATTT
ATTTTGCATCCATCT	ATTCTGCATCCATTT
ATTCTGTATCCATCT	ATTTTGTATTCATCT
ATTCTGCATTCATCT	ATTTTGTATCTATCT
ATTCTGCATCTATCT	ATTTTGTATCCATTT
ATTCTGCATCCATTT	ATTCTGTATTTATCT
ATTTTGTATCCATCT	ATTCTGTATCTATTT
ATTTTGCATTCATCT	ATTCTGTATTCATTT
ATTTTGCATCTATCT	ATTTTGTATTTATCT
ATTTTGCATCCATTT	ATTCTGTATTTATTT
ATTCTGTATTCATCT	ATTTTGCATTTATTT
ATTCTGTATCTATCT	ATTTTGTATCTATTT
ATTCTGTATCCATTT	ATTTTGTATTCATTT
ATTCTGCATTTATCT	ATTTTGTATTTATCT
ATTCTGCATTCATTT	ATTTTGTATTTATTT
ATTCTGCATCTATCT	

Script2.sh:

Part1:

```
for i in $(ls *.bam);do samtools view $i |grep -o TGAGTCAT.*CGTCTTGA|sort|uniq -c| awk '{print $2 "\t" $1}' > $i.count;done
```

Part2:

ls *.count|perl Parse2Table.pl 1 > 20170629_Counts.tsv

Figure S7: **Deep sequencing file analysis script.** Script1 allows you to find a specific sequence in a NGS file. The sequences are inserted into an attached "list" file. Script 2 allows to see all sequences between two specific areas of the genome by modifying the highlighted bases. Commonly used to calculate indels. The same results can be achieved with CRISPResso2 but with less details and research versatility.