Chemistry–A European Journal

Supporting Information

Lewis Acidic Boranes, Lewis Bases, and Equilibrium Constants: A Reliable Scaffold for a Quantitative Lewis Acidity/Basicity Scale

Robert J. Mayer, Nathalie Hampel, and Armin R. Ofial*^[a]

- Supporting Information -

Table of Contents

I.	Additional Figures and Tables	S2
II.	General	S6
	. Synthesis	S8
IV	Application of Lewis Acidity Parameters in Borane Catalyzed Reactions	S38
	Nazarov Cyclization (RNH426)	S38
	Diels-Alder Reaction of Methyl Vinyl Ketone with Cyclopentadiene	S38
	Michael Addition of 1-Methylindole to Methyl Vinyl Ketone	S38
V.	Determination of Equilibrium Constants by Isothermal Titration Calorimetry (ITC).	S42
	Summary of ITC experiments in dichloromethane	S42
	Individual ITC measurements	S46
VI	. Determination of Equilibrium Constants by NMR Chemical Shift Changes	S81
	Summary	S81
	Individual NMR titrations	S83
VI	II. Computation Details	S119
	General	S119
	Test of DFT Functionals	S119
	Isodesmic Reactions as Tool to Calculate Equilibrium Constants	S123
	Fluoride Ion Affinities (FIA)	S125
	Fluoride Ion Affinities in Dichloromethane (FIA ^{DCM})	S126
	Orbital Energies	S127
	Borane (BH ₃) Affinities (BA)	S128
VI	II. References	S132

I. Additional Figures and Tables

Table S1. Equilibrium Constants K_B (M⁻¹) for the Reactions of Boranes **1** and Lewis Bases **2**– **11** in dichloromethane and comparison with the Equilibrium Constants $K_B^{eq 1}$ Derived by Applying Equation (1).

Lewis Base	R =		$LB_{\rm B}$		$LA_{\rm B}$	$K_{\rm B}^{\rm exp}$ (M ⁻¹)	Method ^a	$K_{\rm B}^{\rm eq\;1}~({\rm M}^{-1})$	K _B ^{eq 1} / K _B ^{exp}
	4-NMe ₂	2a	8.63	1j	-8.97	(4.54 ± 0.26) × 10 ⁻¹	NMR	4.54 × 10⁻¹	
	4-NMe ₂	2a	8.63	1a	-4.28	$(3.53 \pm 0.16) \times 10^4$	ITC	2.20 × 10 ⁴	0.62
	4-NMe ₂	2a	8.63	10	-1.92	$(3.21 \pm 1.31) \times 10^{\circ}$		$5.15 \times 10^{\circ}$	1.60
	4-Morpholino	20 2h	0.13 8.13	1a 1b	-4.20	$(9.35 \pm 0.22) \times 10^{6}$ (1.25 ± 0.17) × 10 ⁶		1.07×10^{-1}	0.70
	4-OMe	2c	7.16	1a	-4.28	$(1.01 \pm 0.06) \times 10^3$	NMR	7.52×10^2	0.74
	4-OMe	2c	7.16	1b	-1.92	$(1.31 \pm 0.08) \times 10^5$	ITC	1.76 × 10⁵	1.34
	Н	2d	6.13	1a	-4.28	$(7.81 \pm 0.04) \times 10^{1}$	NMR	7.05 × 10 ¹	0.90
	Н	2d	6.13	1b	-1.92	$(2.22 \pm 0.15) \times 10^4$	ITC	1.65×10^4	0.74
	Н	2d	6.13	1c	-0.57	$(3.40 \pm 0.78) \times 10^{5}$	ITC	3.68 × 10 ⁵	1.08
	H L	20 2d	6.13	1d 1o	0.00	$(1.39 \pm 0.04) \times 10^{6}$		$1.36 \times 10^{\circ}$	0.98
		20	5.42	19	-4.28	$(1.30 \pm 0.04) \times 10^{-1}$	NMR	1.03×10^{1} 1.37 x 10 ¹	1.41
	4-COPh	2e	5 42	1b	-1.92	(3.25 ± 0.42)	ITC	3.20×10^3	0.99
	4-COPh	2e	5.42	1b	-1.92	$(3.14 \pm 0.06) \times 10^3$	NMR	0.20 10	0.00
	4-COPh	2e	5.42	1c	-0.57	(7.86 ± 1.22) × 10 ⁴	ITC	7.14 × 10 ⁴	0.91
	4-COPh	2e	5.42	1d	0.00	$(3.86 \pm 0.24) \times 10^{5}$	ITC	2.64 × 10 ⁵	0.68
	4-COPh	<u>2e</u>	5.42	<u>1e</u>	0.13	$(3.01 \pm 0.41) \times 10^{5}$	ITC	3.56 × 10 ⁵	1.18
	3-Cl	2f	4.83	1a	-4.28	1.52 ± 0.29		3.48	2.29
	3-01	21 2f	4.03	10	-1.92	$(7.99 \pm 1.01) \times 10^{4}$ $(3.31 \pm 1.14) \times 10^{4}$		0.14×10^{4}	0.55
	3-Cl	2f	4.83	1d	0.00	$(9.33 \pm 1.05) \times 10^4$	ITC	6.70×10^4	0.72
	3-Cl	2f	4.83	1e	0.13	$(8.30 \pm 0.14) \times 10^4$	ITC	9.05 × 10 ⁴	1.09
	4-CF ₃	2g	4.52	1b	-1.92	$(4.88 \pm 0.43) \times 10^2$	NMR	4.07 × 10 ²	0.83
\land	4-CF ₃	2g	4.52	1c	-0.57	$(1.43 \pm 0.25) \times 10^4$	ITC	9.06 × 10 ³	0.63
R	4-CF ₃	2g	4.52	1d	0.00	$(2.42 \pm 0.34) \times 10^4$	ITC	3.35 × 10 ⁴	1.38
N	4-CF ₃	2g	4.52	10	0.13	$(3.31 \pm 0.22) \times 10^{4}$		4.53×10^{-1}	1.37
	4-CN 4-CN	20 2h	3.92 3.92	10	-1.92	$(1.00 \pm 0.04) \times 10^{-1}$ (3.60 ± 0.23) × 10 ³		9.99×10^{3} 2.23 × 10 ³	0.59
	4-CN	2h	3.92	1d	0.00	$(4.27 \pm 0.23) \times 10^3$	ITC	8.22×10^{3}	1.93
	4-CN	2h	3.92	1e	0.13	$(7.87 \pm 1.06) \times 10^3$	ITC	1.11×10^4	1.41
	3,5-(CF ₃) ₂	2i	1.76	1c	-0.57	$(1.62 \pm 0.07) \times 10^{1}$	NMR	1.57 × 10 ¹	0.97
	3,5-(CF ₃) ₂	2i	1.76	1d	0.00	$(5.04 \pm 0.71) \times 10^{1}$	NMR	5.81 × 10 ¹	1.15
	3,5-(CF ₃) ₂	2i	1.76	1e	0.13	$(6.37 \pm 0.19) \times 10^{1}$	NMR	7.85 × 10 ¹	1.23
	$3,5-(CF_3)_2$	21	1.76	11	1.33	$(1./1 \pm 0./5) \times 10^{3}$	NMR	1.24 × 10 ³	0.73
	3,4,5-(CI) ₃	2j 2i	2.67	1D 1c	-1.92	6.06 ± 0.30 (1.22 ± 0.11) × 10 ²		5.75 1.28 × 10 ²	0.95
	$3,4,5-(CI)_3$ 3 4 5-(CI)_2	2j 2i	2.07	1d	0.07	$(1.22 \pm 0.11) \times 10^{2}$ $(4.33 \pm 0.85) \times 10^{2}$	NMR	4.73×10^2	1.05
	3,4,5-(Cl) ₃	-, 2i	2.67	1e	0.13	$(7.56 \pm 0.56) \times 10^2$	NMR	6.39×10^2	0.85
	3,4,5-(Cl) ₃	2j	2.67	1f	1.33	$(9.29 \pm 0.22) \times 10^3$	NMR	1.01 × 10 ⁴	1.09
	3,5-(F) ₂ -4-CF ₃	2k	1.43	1c	-0.57	7.11 ± 0.61	NMR	7.24	1.02
	3,5-(F) ₂ -4-CF ₃	2k	1.43	1d	0.00	$(5.35 \pm 1.07) \times 10^{1}$	NMR	2.68 × 10 ¹	0.50
	$3,5-(F)_2-4-CF_3$	2K	1.43	1e	0.13	$(2.96 \pm 0.13) \times 10^{-10}$	NMR	3.62 × 10'	1.22
	$3,3-(\Gamma)_2-4-C\Gamma_3$ 3.5-(NO ₂)	21	-0.75	10	0.13	$(3.30 \pm 0.00) \times 10^{-1}$ (2.38 ± 0.51) × 10 ⁻¹		$\frac{5.72 \times 10^{-1}}{2.43 \times 10^{-1}}$	1.01
	$3,5-(NO_2)_2$ 3,5-(NO_2)_2	21	-0.75	1f	1.33	$(2.30 \pm 0.31) \times 10$ 7 91 + 0 28	NMR	3 84	0.49
	$3,5-(NO_2)_2$	21	-0.75	1g	4.08	$(4.50 \pm 1.11) \times 10^3$	NMR	2.18×10^3	0.48
	3,5-(NO ₂) ₂	21	-0.75	1ĥ	3.98	(4.10 ± 0.35) × 10 ²	NMR	1.71 × 10 ³	4.18
	4-CI-3,5-(NO ₂) ₂	2m	-1.07	1f	1.33	4.87 ± 0.12	NMR	1.81	0.37
	4-Cl-3,5-(NO ₂) ₂	2m	-1.07	1g	4.08	$(1.60 \pm 0.22) \times 10^{3}$	NMR	1.03×10^3	0.64
	$\frac{4 - \text{Cl} - 3, 5 - (\text{NO}_2)_2}{2.6 \text{ (Max)}}$	2m	-1.07	1h	3.98	$(1.94 \pm 0.07) \times 10^{2}$		8.10×10^{2}	4.18
	2,0-(ivie) ₂	20	-0.48	11 1f	1.24	$(5.47 \pm 1.02) \times 10^{-1}$		7 15	1 /5
	Me	3a	-0.48	1h	3.98	$(4.63 \pm 0.25) \times 10^3$	NMR	3.19×10^3	0.69
R-CN	4-F-C ₆ H ₄	3b	-0.81	1f	1.33	1.87 ± 0.04	NMR	3.33	1.78
	4-F-C ₆ H ₄	3b	-0.81	1g	4.08	(2.39 ± 0.28) × 10 ³	NMR	1.89 × 10 ³	0.79
	$4-F-C_6H_4$	3b	-0.81	1ĥ	3.98	$(2.10 \pm 0.38) \times 10^3$	NMR	1.49 × 10 ³	0.71
	4-OMe	4a	2.43	1e	0.13	$(3.60 \pm 0.36) \times 10^2$	NMR	3.60×10^2	
	4-OMe	4a	2.43	1f 1~	1.33	too high $(9.61 \pm 0.75) + 40^2$		5.69 × 10 ³	
$P \rightarrow R$		4a 42	∠.43 2⊿3	1g 1b	4.00 3.02	(0.01 ± 0.75) × 10 ²		3.∠3 × 10° 2.54 × 10°	
$()_{3}$		-+a 4h	0.87	1f	1.33	$(1.58 \pm 0.04) \times 10^2$	NMR	$\frac{2.04 \times 10}{1.58 \times 10^2}$	
Ũ	H	4b	0.87	 1h	3.98	too high	NMR	7.06×10^4	
	4-Cl	4c	-0.11	1f	1.33	$(1.67 \pm 0.08) \times 10^{1}$	NMR	1.67 × 10 ¹	
	4-OMe	5a	-1.99	1f	1.33	too low	NMR	2.19 × 10⁻¹	
	4-OMe	5a	-1.99	1g	4.08	$(9.79 \pm 0.32) \times 10^{1}$	NMR	1.24 × 10 ²	1.27

	4-OMe	5a	-1.99	1h	3.98	$(1.24 \pm 0.04) \times 10^2$	NMR	9.78 × 10 ¹	0.79
	4-Me	5b	-2.57	1g	4.08	$(2.97 \pm 0.34) \times 10^{1}$	NMR	3.24 × 10 ¹	1.09
	4-Me	5b	-2.57	1ĥ	3.98	$(2.78 \pm 0.25) \times 10^{1}$	NMR	2.55 × 10 ¹	0.92
0 U	4-Br	5c	-2.99	1g	4.08	6.22 ± 0.92	NMR	1.23 × 10 ¹	1.98
	4-Br	5c	-2.99	1i	7.24	(3.51 ± 1.82) × 10 ⁴	NMR	1.77 × 10 ⁴	0.50
R	4-CF ₃	5d	-3.29	1g	4.08	5.42 ± 0.58	NMR	6.17	1.14
	4-CF ₃	5d	-3.29	1i	7.24	$(1.01 \pm 0.60) \times 10^4$	NMR	8.87 × 10 ³	0.88
	4-NO ₂	5e	-3.90	1g	4.08	5.02 ± 0.82	NMR	1.51	0.30
	4-NO ₂	5e	-3.90	1i	7.24	(6.53 ± 0.92) × 10 ²	NMR	2.17 × 10 ³	3.33
	3,5-(NO ₂) ₂	5f	-6.12	1i	7.24	(1.31 ± 0.37) × 10 ¹	NMR	1.31 × 10 ¹	
0		6	-5.38	1i	7.24	(7.31 ± 2.19) × 10 ¹	NMR	7.31 × 10 ¹	
OMe									
	4-OMe	7a	-0.18	1f	1.33	6.75 ± 0.21	NMR	1.42 × 10 ¹	2.10
	4-OMe	7a	-0.18	1α	4.08	$(4.90 \pm 2.02) \times 10^3$	NMR	8.04×10^{3}	1.64
	4-OMe	7a	-0.18	1h	3.98	$(2.18 \pm 1.10) \times 10^4$	NMR	6.33 × 10 ³	0.29
0	Н	7b	-1.78	1a	4.08	$(1.41 \pm 0.05) \times 10^2$	NMR	2.00 × 10 ²	1.42
U II	Н	7b	-1.78	1ĥ	3.98	$(2.24 \pm 0.06) \times 10^{2}$	NMR	1.58 × 10 ²	0.70
П П П П П П П П П П П П П П П П П П П	4-Br	7c	-2.25	1g	4.08	$(5.34 \pm 0.12) \times 10^{1}$	NMR	6.78 × 10 ¹	1.27
R	4-Br	7c	-2.25	1Ň	3.98	(6.78 ± 0.03) × 10 ¹	NMR	5.34 × 10 ¹	0.79
~	4-Br	7c	-2.25	1i	7.24	too high	NMR	9.75 × 10 ⁴	
	4-NO ₂	7d	-3.76	1g	4.08	2.31 ± 0.28	NMR	2.10	0.91
	4-NO ₂	7d	-3.76	1ĥ	3.98	1.02 ± 0.13	NMR	1.66	1.62
	4-NO ₂	7d	-3.76	1i	7.24	(4.46 ± 1.41) × 10 ³	NMR	3.02 × 10 ³	0.68
Ö		8	-0.73	1g	4.08	(1.38 ± 0.21) × 10 ³	NMR	2.23 × 10 ³	1.62
		8	-0.73	1ĥ	3.98	$(2.84 \pm 0.42) \times 10^3$	NMR	1.76 × 10 ³	0.62
0		9	0.97	1d	0.00	7.60 ± 0.18	NMR	9.43	1.24
l		9	0.97	1f	1.33	$(2.50 \pm 0.19) \times 10^2$	NMR	2.01 × 10 ²	0.81
Me ₂ N CH ₃						· /			
Et_P=0		10	2.51	1c	-0.57	(1.90 ± 0.12) × 10 ¹	NMR	8.68 × 10 ¹	4.57
		10	2.51	1e	0.13	(1.98 ± 0.33) × 10 ³	NMR	4.33 × 10 ²	0.22
		11	-0.90	1f	1.33	[3.54 ± 0.05] ^b	NMR	2.73	0.77 ^b
5		11	-0.90	1h	3.98	[9.36 ± 1.70) × 10 ²] ^b	NMR	1.22 × 10 ³	1.33 ^b

^a ITC measurements were performed at 20 °C, NMR titrations at 22 °C. ^b Equilibrium constants K_{B}^{exp} for reactions of **11** were not used to determine the Lewis acidities LA_{B} of the boranes **1**.

Borane		LA _B	σ ^a	FIA (∆ <i>H</i> , kJ/mol) [♭]	ε _{∟υмο} (Hartree)	GEI (eV)	FIA (∆G, kJ/mol)	ε _{∟υмο} (Hartree)	GEI (eV)
				at the	BP86-D3BJ/de	f2-SVP	at the SMD(DCM)/MN15/de	f2-TZVP
				level in gas-	phase		in dichlorom	ethane	
$B(4-Me_2N-C_6H_4)_3$	1a	-4.28	-0.83	-292.1	-0.06001	1.65	-96.7	-0.02941	1.10
B(4-MeO-C ₆ H ₄) ₃	1b	-1.92	-0.27	-330.0	-0.08069	2.27	-127.1	-0.04147	1.39
$B(4-Me-C_6H_4)_3$	1c	-0.57	-0.17	-347.3	-0.09261	2.63	-141.2	-0.04908	1.57
$B(C_6H_5)_3$	1d	0.00	0	-359.7	-0.10049	2.88	-147.7	-0.05429	1.69
$B(4-F-C_6H_4)_3$	1e	0.13	0.06	-376.7	-0.10466	3.06	-154.1	-0.05390	1.68
$B(4-CI-C_6H_4)_3$	1f	1.33	0.23	-396.1	-0.11260	3.44	-163.7	-0.06249	1.84
$B(2,4,6-(F)_3-C_6H_2)_3$	1g	4.08		-396.5	-0.12108	3.83	-185.1	-0.07655	2.14
B(3,4,5-(F) ₃ -C ₆ H ₂) ₃	1ĥ	3.98	0.74	-440.3	-0.12913	4.14	-197.2	-0.07260	2.07
$B(C_6F_5)_3$	1i	7.24		-458.8	-0.14437	5.31	-231.7	-0.09589	2.61
B(2,4,6-(Me) ₃ -C ₆ H ₂) ₃	1j	(-8.97)		-323.8	-0.09395	2.78	-87.4	-0.04968	1.54
BF ₃	-	(8.4)		-343.9	-0.01084	1.34	-239.7	0.06314	1.09
BCl ₃		(9.3)		-408.7	-0.08770	2.39	-259.6	-0.04009	1.71
BBr ₃		(10.1)		-446.1	-0.10629	2.98	-263.2	-0.05910	1.90
tris(perfluoro-β-	1k	(6.8)		-484.6	-0.14906	6.83	-226.0	-0.10251	2.83
naphthyl)borane									
F ₁₃ -9-phenyl-9- borafluorene	11	(7.35)		-475.7	-0.15295	6.49	-230.5	-0.10311	2.82

Table S2. Lewis Acidity Parameters LA_B and Further Acidity Descriptors for Boranes

^{*a*} Hammett σ values taken from ref S1. ^{*b*} Calculated according to the procedure outlined in ref S2 and anchored to the dissociation of fluorotrimethylsilane calculated at the G3 level in ref S3.

Figure S1. Correlation of LA_B with different quantum-chemically calculated acidity descriptors for boranes in gas phase and solution. (a)-(c): Correlation of LA_B with fluoride ion affinities FIA (a), global electrophilicity indices GEI (b) and LUMO energies ϵ_{LUMO} (c) obtained at the BP86-D3BJ/def2-SVP level of theory in gas phase (all values from Table S2). (d)-(f): Correlation of LA_B with fluoride ion affinities FIA (d), global electrophilicity indices GEI (e) and LUMO energies ϵ_{LUMO} (f) obtained considering dichloromethane solvation at the SMD(DCM)/MN15/ def2-TZVP level of theory (all values from Table S2). The data for BF₃, BCl₃, BBr₃, **1k** and **1l** (gray triangles) were not used for the calculation of the correlation lines.

Table S3. Lewis Basicity Parameters LB_B and Further Basicity Descriptors for Pyridines, Nitriles, Phosphines, Carbonyl Compounds and Triethylphosphine Oxide

Lewis Base	R =		LB _B	Σσª	<i>LB</i> (vs Ar₂CH⁺) [♭]	$pK_{aH}(H_2O)$	р <i>К</i> _{аН} (MeCN)	$\Delta H_{\rm BF3}^{c}$	BA ^d
	4-NMe ₂	2a	8.63	-0.83	16.42	9.39 (ref <mark>S4</mark>)	17.95 (ref <mark>S5</mark>)	151.55	-155.3
R	4-Morpholino	2b	8.13		15.04	8.53 (ref <mark>S4</mark>)		144.47	-152.2
N N	4-MeO	2c	7.16	-0.27	11.99	6.58 (ref <mark>S6</mark>)	14.23 (ref <mark>S5</mark>)	135.27	-146.5
	H	2d	6.13	0	10.02	5.21 (ref <mark>S6</mark>)	12.53 (ref <mark>S5</mark>)	128.08	-141.7
	4-COPh	2e	5.42	0.43	8.78	3.35 (ref S6)		440 70	-134.9
	3-CI	21	4.83	0.37	7.44	2.81 (ref S6)	9.55 (ref S5)	118.79	-131.1
	4-CF ₃	2g	4.52	0.54	6.71	2.63 (ref 57)	8.03 (ref 55)	115.75	-130.7
	4-UN	20	3.92	0.00	6.08	1.86 (ref 5 6)	8.50 (ref 58)	113.27	-129.3
	$3,3-(CF_3)_2$	21	1.70	0.00					-110.0
	$3,4,3-(01)_3$	2j 2k	2.07	1.22					-117.5
	$3,5-(NO_{2})_{2}$	21	-0.75	1.22					-106.2
	$4-Cl-35-(NO_2)_2$	2m	-1.07	1.42					-102.9
	2.6-(Me) ₂	2n	(-5.50)			6.72 (ref <mark>S9</mark>)	14.41 (ref <mark>S5</mark>)	97.73	-125.5
R-CN	Me	3a	-0.48					60.39	-98.8
	$4-F-C_6H_4$	3b	-0.81						-93.4
	4-MeO	4a	(2.43)	-0.27	17.00	4.57 (ref <mark>S10</mark>)	10.06 (ref <mark>S11</mark>)		-145.3
P-{()-R)	Н	4b	(0.87)	0	14.27	2.73 (ref <mark>S12</mark>)	7.64 (ref <mark>S11</mark>)		-138.4
\\ <u> </u> / / ₃	4-Cl	4c	(-0.11)	0.23	11.65	1.03 (ref <mark>S10</mark>)			-132.7
0	4-MeO	5a	-1.99	-0.27				83.01	-88.5
	4-Me	5b	-2.57	-0.17				77.82	-85.4
R ^{fi}	4-Br	5c	-2.99	0.23				73.09	-79.9
	4-CF ₃	5d	-3.29	0.54					-75.8
	4-NO ₂	5e	-3.90	0.78				67.07	-73.9
	3,5-(NO ₂) ₂	5f	-6.12	1.42					-67.9
O II		6	-5.38					59.4	-49.4
OMe									
	4-MeO	7a	-0.18	-0.27				84 81	-88 7
, Ĭ	H	7b	-1.78	0				74.88	-80.8
_ Г → ⊢	4-Br	7c	-2.25	0.23					-77.7
۳Ţ	4-NO ₂	7d	-3.76	0.78				62.32	-70.6
0	_	8	-0.73						-88.9
\sim									
<u> </u>			0.07					440.44	105 7
0 II		9	0.97					112.14	-105.7
Me ₂ N CH ₃									
Et ₃ P=0		10	2.51					119.28	-121.9
Et ₂ O			-1.0					78.77	-80.2
		11	-0.90					51.62	-97.3
$\langle \rangle$									

^{*a*} Sum of Hammett σ parameters, from ref S1. ^{*b*} Lewis basicities *LB* (in dichloromethane) toward diarylcarbenium ions from ref S13. ^{*c*} Experimental BF₃ affinities (in kJ/mol), from ref S14. ^{*d*} Calculated borane (BH₃) affinities BA in dichloromethane (BA = ΔG_{BH3} in kJ/mol, this work, Supporting Information).

Figure S2. (a) Correlation of LB_B with the sum of Hammett substituent parameters σ^{S1} for the different classes of compounds investigated in this study with data summarized in Table S3. (b) Correlation of LB_B for pyridines with their pK_{aH} in MeCN (with data from Table S3).

II. General

Solvents, Reagents, and Analytics. Triarylboranes were prepared according to the modified literature procedures as outlined below using commercialy available chemicals purchased from Sigma Aldrich, ABCR or TCI. Trimesitylborane (**1j**) was purchased from EGA-Chemie KG and used without further purification. Ph₃B·NaOH was purchased from TCI. All boranes were stored in an argon-filled glove box at -35 °C. Hydrazine monohydrate (purum, > 99%) was purchased from Fluka.

Dichloromethane for isothermal titration calorimetry (ITC) measurements was purchased from Merck (HPLC grade) and stirred over concentrated H_2SO_4 for 2 weeks to remove olefinic stabilizers. Subsequently, distillation over calcium hydride provided anhydrous material which was stored for 24 h over activated molecular sieves (3 Å).

Deuterated dichloromethane (CD_2Cl_2) was purchased from Eurisotop and stored for 24 h over activated molecular sieves (3 Å).

Melting points were acquired on Büchi Melting Point M-560 devices and are not corrected.

Nuclear magnetic resonance (NMR) spectra were acquired on 400 MHz spectrometers. The following abbreviations and their combinations were used in the analysis of NMR spectra: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet, app = apparent. NMR signals were assigned based on information from additional 2D NMR experiments (COSY, gHSQC, gHMBC, NOESY). Chemical shifts are given in ppm. Internal reference was set to the residual solvent signals (for CD₂Cl₂: δ_{H} = 5.32, δ_{C} = 54.00, CDCl₃: δ_{H} = 7.26, δ_{C} = 77.16; for d_6 -DMSO: δ_{H} = 2.50, δ_{C} = 39.52).^{S15} The ¹³C NMR spectra (101 MHz) were recorded under broad-band proton-decoupling.

High resolution (HRMS) mass spectra were recorded on a Finnigan MAT 95 sectorfield mass spectrometer where samples were vaporized on a platinum wire from 20 to 1600 °C at a rate of 120 °C/min. For ionization of the samples, electron-impact ionization (EI) was applied.

Isothermal Titration Calorimetry (ITC). The ITC measurements were performed on a Microcal VP-ITC instrument with solutions maintained under an atmosphere of dry nitrogen. The reference cell was filled with dichloromethane and the sample cell was filled with a solution of the borane in the same solvent. The syringe was filled with a solution of the Lewis base in dichloromethane, which was then gradually injected (6 μ L/injection, 40 steps, 120 s spacing between injections) into the sample cell. The ITC raw data were processed and analyzed with the AFFINImeter ITC software (v.2.1710) assuming a 1:1 interaction model.^{S16}

NMR Spectroscopic Titrations. NMR spectroscopic titration experiments were performed with a series of NMR tubes that were handled in an argon filled glovebox and filled with anhydrous CD_2Cl_2 solutions. In most cases, the borane was used as the minor component. Only in case of tris(pentafluorophenyl)borane (**1i**), the Lewis base was used as minor component and treated with an excess of **1i**. ¹H NMR measurements were performed on a 400 MHz NMR spectrometer at 22 °C. The resulting dependency of the chemical shift difference $\Delta\delta$ (in ppm, referenced to the residual solvent signal in *d*₂-dichloromethane) of the resonance of the Lewis base for reactions with **1i**) vs. the concentration of the excess component was analyzed according to the equation (S1) by non-linear fitting with the Origin software.^{S17} For the detailed derivation of Eq (S1) see ref.^{S18}. The only variable in Eq (S1) is *K*_B, all other quantities are known from the concentrations used in the titrations.

$$\Delta \delta = \frac{\Delta \delta_{\max}}{[LA]} \left(\frac{1}{2} \left\{ \left([LA] + [LB] + \frac{1}{K_B} \right) - \sqrt{\left([LA] + [LB] + \frac{1}{K_B} \right)^2 + 4[LA][LB]} \right\} \right)$$
(S1)

III. Synthesis

Tris(4-dimethylaminophenyl)borane (1a)

Synthesis according to the modified procedure in ref.^{S19}.

To a flame dried 100 mL Schlenk flask under nitrogen was added diethyl ether (27 mL) and 4- (dimethylamino)bromobenzene (3.58 g, 17.9 mmol). The resulting solution was cooled to 0 °C. Under stirring *n*-BuLi (2.3 M, 7.78 mL, 17.9 mmol) was added. Then the mixture was stirred for further 75 min at 0 °C and subsequently allowed to warm to room temperature.

In a separate flame dried 100 mL Schlenk flask under nitrogen was dissolved freshly distilled $BF_3 \cdot OEt_2$ (2.62 mL, 21.3 mmol) in diethyl ether (25 mL). Under stirring, the solution of the above prepared aryl lithium species was added dropwise causing the formation of a cloudy, yellowish precipitate. After stirring overnight, water (20 mL) was added. The organic layer was separated, and the aqueous phase placed on a rotary evaporator (40 °C, 300 mbar) to remove residual diethyl ether. The aqueous phase was filtrated, and a solution of triethylamine (1.80 g, 17.8 mmol) in ethanol (5 mL) was added. The resulting yellow precipitate was separated, washed several times with water and then methanol, and finally dried under reduced pressure (crude yield: 605 mg).

For purification, that crude material was suspended in acetone (10 mL), heated under reflux for 2.5 h and the hot mixture filtrated. The solution was concentrated to dryness and the residue recrystallized from acetone to give the borane (148 mg, 7%) as yellow, fluorescent solid.

Though borane **1a** is not particularly sensitive towards moisture, we stored it in an argon filled glovebox at -35 °C. Under nitrogen, initially colorless diluted solutions of **1a** in dichloromethane turned intense yellow after exposure to light.

Mp.: 199-221 °C (ref.^{S19}: mp 209-212 °C)

¹H NMR (400 MHz, CD₂Cl₂) δ = 7.51–7.49 (m, 6 H), 6.77–6.75 (m, 6 H), 3.04 (s, 18 H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz, CD_2Cl_2) δ = 152.5 (Cq, C-4), 140.8 (CH, C-2), 137.9 (Cq, C-1), 111.2 (CH, C-3), 40.4 (CH_3, C-5).

HRMS (EI⁺) calcd *m*/*z* for C₂₄H₃₀BN₃^{•+} (M^{•+}) 371.2527; found 371.2538.

Tris(4-methoxyphenyl)borane (1b)

Synthesis according to the modified procedure in ref.^{S20}.

A 100 mL Schlenk flask with reflux condenser was charged with magnesium turnings (854 mg, 35.1 mmol), flame dried under vacuum, and filled with dry nitrogen. Diethyl ether (20 mL) and freshly distilled BF₃·OEt₂ (1.26 mL, 10.0 mmol) were added. To the vigourously stirred mixture, a solution of 4-bromoanisole (3.78 mL, 30.2 mmol) in diethyl ether (20 mL) was added. The Grignard reaction was initiated by the addition of 2 drops of iodomethane and careful heating to reflux causing the suspension to turn yellow. The mixture was heated to reflux for 3 h, allowed to cool to room temperature, and then stirred for another 64 h. All volatiles were subsequently removed under reduced pressure. The residue was suspended in *n*-hexane (50 mL) and filtered through a Schlenk-frit. The resulting yellow solution was concentrated under reduced pressure to leave a yellow solid residue, which was recrystallized from *n*-hexane to afford the product (1.22 g, 37%) as yellowish, crystalline solid.

Mp.: 80-95 °C (ref.^{S21}: mp 128 °C)

¹H NMR (400 MHz, CDCl₃) δ = 7.62–7.59 (m, 6 H, 2-H), 7.01–6.97 (m, 6 H, 3-H), 3.90 (s, 9 H, 5-H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃) δ = 162.2 (Cq, C-4), 140.7 (CH, C-2), 135.9 (br, Cq, C-1), 113.0 (CH, C-3), 55.3 (CH₃, C-5).

¹¹B NMR (128 MHz, CDCl₃) δ = 64.8.

HRMS (EI⁺) calcd *m*/*z* for C₂₁H₂₁BO₃⁺⁺ (M⁺⁺) 332.1578; found 332.1571.

Tris(4-methylphenyl)borane (1c)

Synthesis according to the modified procedure in ref.^{S20}.

A 100 mL Schlenk flask with reflux condenser was charged with magnesium turnings (853 mg, 35.1 mmol), flame dried under vaccum, and filled with dry nitrogen. Diethyl ether (20 mL), a crystal of iodine and freshly distilled $BF_3 \cdot OEt_2$ (1.26 mL, 10.0 mmol) were added. To the vigourously stirred mixture, a solution of 4-bromotoluene (3.74 mL, 30.2 mmol) in diethyl ether (20 mL) was added. The Grignard reaction was initiated by careful heating causing the suspension to turn yellow. The mixture was stirred for another 12 h. Volatiles were removed under reduced pressure. The residue was suspended in *n*-hexane (40 mL) and stirred for 30 minutes or until the residue was finely suspended. The suspension was filtered through a Schlenk-frit. The solid was washed with *n*-hexane (10 mL), and the clear filtrate concentrated to dryness. The crude product was recrystallized from *n*-hexane to give the borane (646 mg, 23%) as colorless, crystalline solid. Further concentration of the mother liquor afforded additional material of lower quality, which was not used in our experiments.

Mp.: 150 °C (ref.^{\$19}: mp 142-144 °C)

 ^1H NMR (400 MHz, CD_2Cl_2) δ = 7.51–7.49 (m, 6 H, 2-H), 7.29–7.27 (m, 6 H, 3-H), 2.45 (s, 9 H, 5-H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ = 142.1 (C_q, C-4), 140.8 (br, C_q, C-1), 139.2 (CH, C-2), 128.7 (CH, C-3), 22.0 (CH₃, C-5).

¹¹B NMR (128 MHz, CD_2CI_2) δ = 66.8.

HRMS (EI⁺) calcd *m*/*z* for C₂₁H₂₁B⁺⁺ (M⁺⁺) 284.1731; found 284.1717.

NMR data agree with those reported in ref.^{S22}.

Triphenylborane (1d)

Triphenylborane from various commercial sources was not of sufficient quality for our experiments. Starting from a aqueous solution of the adduct $Ph_3B\cdot NaOH$ and following the procedure described in ref.^{S23} yielded pure **1d**.

In a 100 mL Schlenk flask under nitrogen was placed a commercial solution of 9.1 w% aq Ph₃B·NaOH (25 g, 8.1 mmol). Careful addition of conc. hydrochloric acid (ca. 3 mL in total, pH 1) caused the formation of a colorless precipitate, which was isolated immediately by filtration through a Schlenk-frit under nitrogen (according to the literature, the freshly formed Ph₃B is highly oxgen sensitive and decomposes rapidly in acidic aq solution^{S23b}). The solid material was washed with water and dried under reduced pressure. The crude product was recrystallized from *n*-heptane (7 mL) to give **1d** (1.65 g, 84%) as colorless, crystalline needles which were further purified by sublimation (120 °C, 1×10^{-2} mbar).

 $Ph_{3}B$ was found to be highly air and moisture sensitive. Already during the time needed for NMR characterization small amounts of decomposed material were observed.

Mp.: 128-133 °C (ref.^{S24}: mp 142 °C)

 ^1H NMR (400 MHz, CD_2Cl_2) δ = 7.65–7.63 (m, 2 H, 2-H), 7.60–7.56 (m, 1 H, 4-H), 7.50–7.46 (m, 2 H, 3-H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CD₂Cl₂) δ = 143.7 (br, Cq, C-1), 139.1 (CH, C-2), 131.8 (CH, C-4), 127.9 (CH, C-3).

¹¹B NMR (128 MHz, CD_2CI_2) δ = 67.9.

HRMS (EI⁺) calcd *m*/*z* for C₁₈H₁₅B⁺⁺ (M⁺⁺) 242.1261; found 242.1249.

NMR data agree with those reported in ref.^{S25}.

¹¹B NMR 128 MHz, CD₂Cl₂ (quartz NMR tube, spectrum after baseline correction)

- 67.91

Tris(4-fluorophenyl)borane (1e)

Synthesis according to the modified procedure in ref.^{S20}.

A 100 mL Schlenk flask with reflux condenser was charged with magnesium turnings (854 mg, 35.1 mmol), flame dried under vacuum, and filled with dry nitrogen. Diethyl ether (20 mL) and freshly distilled BF₃·OEt₂ (1.26 mL, 10.0 mmol) were added. To the vigorously stirred mixture, a solution of 4-bromo-1-fluorobenzene (3.30 mL, 30.2 mmol) in diethyl ether (20 mL) was added. The Grignard reaction was initiated by heating causing the suspension to turn brownish. The mixture was stirred for another 12 h to give a mixture of liquid two phases, whereupon all volatiles were removed under reduced pressure to form a solid. The residue was suspended in *n*-hexane (40 mL) and filtered through a Schlenk-frit and washed with *n*-hexane(10 mL) to give a clear filtrate, which was concentrated to dryness to give a solid residue. The crude product was recrystallized from *n*-hexane to give the borane **1e** (955 mg, 32%) as a soft yellow, crystalline solid.

Mp.: 99-113 °C

¹H NMR (400 MHz, CD₂Cl₂) δ = 7.63–7.59 (m, 6 H, 2-H), 7.21–7.15 (m, 6 H, 3-H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ = 165.9 (d, C_q, $J_{C,F}$ = 252.0 Hz, C-4), 141.5 (d, CH, $J_{C,F}$ = 8.4 Hz, C-2), 139.4 (br, C_q, C-1), 115.2 (d, CH, $J_{C,F}$ = 20.0 Hz, C-3).

¹¹B NMR (128 MHz, CD_2CI_2) δ = 63.2.

¹⁹F NMR (377 MHz, CD_2CI_2) δ = -108.75 (tt, J = 9.3, 6.3 Hz)

HRMS (EI⁺) calcd *m*/*z* for C₁₈H₁₂F₃B⁺⁺ (M⁺⁺) 296.0979; found 296.0984.

NMR data agree with those reported in ref.^{S26}.

Tris(4-chlorophenyl)borane (1f)

Synthesis according to the modified procedure in ref.^{S20}.

A 100 mL Schlenk flask with reflux condenser was charged with magnesium turnings (853 mg, 35.1 mmol), flame dried under vacuum, and filled with dry nitrogen. Diethyl ether (20 mL) and freshly distilled BF₃·OEt₂ (1.26 mL, 10.0 mmol) were added. To the vigourously stirred mixture, a solution of 4-bromo-1-chlorobenzene (5.78 g, 30.2 mmol) in diethyl ether (20 mL) was added. After about 10 mL of the bromoarene solution was added, heat was applied to initiate the Grignard reaction. Then the remaining 4-bromo-1-chlorobenzene solution was added. The mixture was stirred for another 12 h. Then volatiles were removed under reduced pressure. The residue was suspended in dichloromethane (40 mL) and filtrated through a Schlenk-frit. The clear solution was concentrated to dryness and the residue purified by sublimation (191 °C, 1.6×10^{-2} mbar) to give **1e** (885 mg, 26%) as colorless to pale yellow crystals.

Mp.: 166 °C (ref.^{S27}: mp 197-202 °C)

¹H NMR (400 MHz, CD₂Cl₂) δ = 7.54–7.52 (m, 6 H), 7.48–7.46 (m, 6 H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz, CD_2Cl_2) δ = 141.2 (br, Cq, C-4), 140.3 (CH), 138.8 (Cq, C-1), 128.4 (CH).

¹¹B NMR (128 MHz, CDCl₃) δ = 66.3.

HRMS (EI⁺) calcd *m*/*z* for C₁₈H₁₂BCl₃⁺⁺ (M⁺⁺) 344.0092; found 344.0093.

110 100 f1 (ppm)

¹¹B NMR 128 MHz, CD₂Cl₂ (quartz NMR tube, spectrum after baseline correction)

— 66.34

Tris(2,4,6-trifluorophenyl)borane (1g)

Synthesis according to the modified procedure in ref.^{S28}.

$$F \xrightarrow{\text{Br}} F \xrightarrow{\text{iPrMgCl}} \frac{BF_3 \cdot OEt_2}{\text{THF, -20 °C to 0 °C}} \xrightarrow{\text{BF}_3 \cdot OEt_2} \xrightarrow{\text{BF}_3 \cdot OEE_2} \xrightarrow$$

In a 100 mL flame dried Schlenk flask under nitrogen was dissolved 1-bromo-2,4,6-trifluorobenzene (3.50 mL, 30 mmol) in THF (100 mL). The solution was cooled to -20 °C and isopropylmagnesium chloride (2.0 M solution in THF, 15 mL, 30 mmol) was added in portions. The solution was allowed to warm to 0 °C over a period of 1 h and subsequently cooled to -50 °C. At -50 °C, freshly distilled BF₃·OEt₂ (1.26 mL, 10.0 mmol) was added. The solution was stirred at -50°C for another 60 min. The solution was subsequently allowed to warm up to room temperature within 2 d. Next, all volatiles were removed. The residue was suspended in *n*-hexane (40 mL) and filtered through a Schlenk-frit. After washing of the solid with *n*-hexane (20 mL) and concentration of the filtrate the crude product was furnished as a colorless solid. Purification by sublimation (120 °C, 1 × 10⁻³ mbar) afforded **1g** (524 mg, 13%) as colorless, crystalline solid.

Mp.: 106-111 °C

¹H NMR (400 MHz, CD_2CI_2) δ = 6.72–6.65 (m, 6 H).

¹³C NMR (101 MHz, CD_2Cl_2) δ = 167.1 (C_q, dt, *J* = 256.0 Hz, 16.6 Hz, C-4), 166.6 (C_q, dt, *J*_{C,F} = 252.2 Hz, *J* = 14.9 Hz, C-2), 101.3–100.5 (m, CH, C-3). The resonance for C-1 was not detected.

¹¹B NMR (128 MHz, CDCl₃) δ = 59.5.

¹⁹F NMR (377 MHz, CD_2Cl_2) δ = -96.4 (app t, *J* = 8.2 Hz, 6 F, 2-F), -100.9 (app pent, *J* = 9.8 Hz, 3 F, 4-F).

HRMS (EI⁺) calcd *m*/z for C₁₈H₆BF₉⁺⁺ (M⁺⁺) 404.0413; found 404.0398.

S27

Tris(3,4,5-trifluorophenyl)borane (1h)

Synthesis according to the modified procedure in ref.^{S28}.

$$F \xrightarrow{F}_{F} F \xrightarrow{R-BuLi} \xrightarrow{BF_3 \cdot OEt_2} \xrightarrow{BF_3 \cdot OEt_2} \xrightarrow{F}_{-78 \text{ °C}, 2 \text{ h, then to r.t}} \xrightarrow{B}_{1} \xrightarrow{5}_{2} \xrightarrow{F}_{3} (RNH415)$$

In a 250 mL flame dried Schlenk flask under nitrogen was added 1-bromo-3,4,5-fluorobenzene (7.02 mL, 58.8 mmol) and diethyl ether (100 mL). The solution was cooled to -78 °C and *n*-BuLi (2.3 M, 25.6 mL, 58.8 mmol) was added slowly to give a milky suspension. Stirring was continued for 2 h at -78 °C whereupon freshly distilled BF₃·OEt₂ (2.39 mL, 19.4 mmol) was added and the mixture stirred for an additional 2 h at -78 °C. The mixture was allowed to warm up to room temperature overnight and all voilatiles were removed under reduced pressure. The residue was suspended in pentane, the solvent again removed and the crude product purified by sublimation (150 °C, 8 × 10⁻³ mbar) to give the borane as yellowish, oily crystals. The sublimated material was suspended in *n*-hexane (5 mL) and the solvent removed with a Pasteur pipett (repeated two more times) to give the borane as colorless solid (2.20 g, 28%).

Mp.: 160-177 °C

¹H NMR (400 MHz, CD₂Cl₂) δ = 7.24–7.16 (m, 6 H, 2-H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ = 151.5 (C_q, ddd, *J* = 252.8 Hz, 9.6 Hz, 2.9 Hz, C-3), 143.2 (C_q, dt, *J* = 259.0 Hz, 15.2 Hz, C-4), 137.0–136.8 (C_q, m, C-1), 122.5 (CH, dd, *J* = 13.7 Hz, 5.0 Hz, C-2).

¹¹B NMR (128 MHz, CD_2CI_2) δ = 64.7.

 ^{19}F NMR (377 MHz, CD_2Cl_2) δ = (-134.6) – (-134.7) (m, 6 F, 3-F and 5-F), (-154.1) – (-154.2) (m, 3 F, 4-F).

HRMS (EI⁺) calcd *m*/*z* for C₁₈H₆BF₉⁺⁺ (M⁺⁺) 404.0413; found 404.0409.

NMR data agree with those reported in ref.^{S28}.

Tris(pentafluorophenyl)borane (1i)

Synthesis according to the modified procedure in ref.^{S29}.

$$F \xrightarrow{F} F \xrightarrow{F} Et_2O, 0 \ ^\circC, 1 \ h \xrightarrow{added to BF_3 \cdot OEt_2} toluene, 0 \ ^\circC then 100 \ ^\circC, 1h} \xrightarrow{F} F \xrightarrow{G} Ii (RNH344)$$

In a flame dried 500 mL three necked round bottom flask with nitrogen inlet and reflux condenser under nitrogen was added magnesium turnings (2.43 g, 0.100 mol) and diethyl ether (167 mL). Bromopentafluorobenzene (12.5 mL, 0.100 mol) was added dropwise under stirring. After the initiation of the Grignard reaction the reaction mixture was cooled with an icebath. After stirring for another 60 min at 0 °C, the Grignard solution was transferred via syringe techniques into a separate flame dried flask containing a solution of BF₃·OEt₂ (4.10 mL, 0.033 mol) in toluene (67 mL) at 0 °C. After the transfer of the Grignard reagent was complete, the reaction mixture was allowed to warm at room temperature while diethyl ether was removed under reduced pressure. The remaining toluene solution was heated to 100 °C for 1 h. Then concentration to dryness yielded a beige solid residue. *n*-Hexane (200 mL) was added and the mixture was heated to 45 °C under vigorous stirring. The suspension was filtrated through a pre-heated Schlenk frit. The clear filtrate was cooled to 5 °C causing the formation of feathery, colorless crystals. Filtration through a Schlenk frit, washing with *n*-hexane (20 mL) and drying gave pure **1i** (8.74 g, 52%).

Mp.: 133-134 °C (ref.^{\$30}: mp 132-134 °C)

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CD_2Cl_2) δ = 150.3–147.6 (m), 147.1–144.1 (m), 139.6–136.7 (m), 113.9–113.3 (m, C_q, C-1).

¹¹B NMR (128 MHz, CD_2CI_2) δ = 58.8.

 ^{19}F NMR (377 MHz, CD_2Cl_2) δ = -128.2 (s, 2 F, 2-F), -143.9 (s, 1 F, 4-F), (-161.0) – (-161.1) (m, 2 F, 3-F).

HRMS (EI⁺) calcd *m*/*z* for C₁₈BF₁₅⁺⁺ (M⁺⁺) 511.9848; found 511.9846.

3,5-Dinitropyridine (2I)

Synthesis according to the modified procedure in ref.^{S31}.

In a 100 mL round-bottom flask was dissolved 2-chloro-3,5-dinitropyridine (2.00 g, 9.83 mmol) in methanol (20 mL). The resulting yellow solution was cooled at 0 $^{\circ}$ C and hydrazine monhydrate (0.77 mL, 15.8 mmol) was added dropwise over a period of 10 min causing the formation of a dark-brown precipitate. Stirring was continued overnight at room tempterature and gave a red suspension. The suspension was filtrated. The collected solid material was washed with MeOH (2 × 10 mL) and dried to give a red-brownish solid (1.61 g), which was used without further purification.

The solid was suspended in water (53 mL), and silver acetate (4.83 g, 28.9 mmol) was added. The brown suspension was heated for 3 h under reflux which led to decolorization. After cooling to room temperature a pH 9 was adjusted with 25% aq NaOH. Then the mixture was extracted with diethyl ether (3 x 100 mL). The combined organic phases were dried over Na_2SO_4 , filtrated and concentrated under reduced pressure. The crude product was recrystallized from ethanol to yield pyridine **2I** (487 mg, 29%) as a yellow-orange crystalline solid.

Mp.: 105-107 °C (ref.^{S31}: 106 °C)

¹H NMR (400 MHz, DMSO-*d*₆) δ = 9.74 (d, *J* = 2.3 Hz, 2 H, 1-H), 9.13 (t, *J* = 2.3 Hz, 1 H, 3-H).

¹³C{¹H} NMR (101 MHz, d₆-DMSO) δ = 149.5 (CH, C-1), 144.1 (C_q, C-2), 127.0 (CH, C-3).

HRMS (EI⁺) calcd *m*/z for C₅H₃N₃O₄⁺⁺ (M⁺⁺) 169.0118; found 169.0120.

NMR data agree with those reported in ref.^{S32}.

4-Chloro-3,5-dinitropyridine (2m)

Caution: This reaction uses highly corrosive chemicals and produces large amounts of nitrous oxides. The reaction has to be carried out in a well ventilated fume hood.

(RM1159,RM1161)

The pyridine **2m** was prepared according to the modified procedure in ref.^{S33}. A 100 mL round bottom flask with reflux condenser and drying tube (CaCl₂) was charged with H₂SO₄ (96%, 25 mL). 4-Pyridone (2.0 g, 21 mmol) was added, followed by HNO₃ (100%, 7 mL). The resulting solution was heated under stirring to 140 °C for 26 h (progress monitored by NMR spectroscopy). The reaction mixture was poured into ice cold water (100 mL) causing the precipitation of the product, which was collected by filtration. The crude product was recrystallized from an 1:1 mixture of acetic acid/water (100 mL) to give the product as colorless needles (2.12 g, 55%).

Synthesis according to the modified procedure in ref.^{S34}. In a 20 × 1.5 cm pressure tube (Ace glassware) was added 3,5-dinitro-4-pyridone (2.12 g, 11.5 mmol), thionyl chloride (1.66 mL, 22.9 mmol) and DMF (2 drops). The pressure tube was sealed under nitrogen and heated at 85 °C overnight. The initially solid mixture slowly converted to a suspension and yielded a clear yellow solution after 21 h. After cooling to room temperature the mixture was transferred into a Schlenk flask, washed with dichloromethane (2 mL), and all volatiles were removed under reduces pressure to give a pale yellow solid. The crude product was recrystallized from cyclohexane to yield **2m** (1.02 g, 44%) as colorless crystalline solid.

Pyridine **2m** is highly moisture sensitive and was stored at -35 °C in an argon filled glovebox.

Mp.: 69-71 °C (ref.^{\$35}: mp 68-70 °C)

¹H NMR (400 MHz, CDCl₃) δ = 9.22 (s, 2 H, 1-H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ =148.4 (CH, C-1), 145.4 (C_q, C-3), 131.4 (C_q, C-2).

HRMS (EI⁺) calcd *m*/*z* for C₅H₂CIN₃O₄⁺⁺ (M⁺⁺) 202.9728; found 202.9725.

NMR data agree with those reported in ref.^{S34}.

IV. Application of Lewis Acidity Parameters in Borane Catalyzed Reactions

Nazarov Cyclizations (RNH426)

Under an atmosphere of dry argon a solution of the Nazarov precursor (6.0 mg, 0.028 mmol) in CD_2CI_2 (0.35 mL) was added to a solution of the borane (0.0028 mmol) in CD_2CI_2 (0.35 mL). The reaction mixture was transferred into an NMR tube which was sealed with a rubber septum. The progress of the Nazarov cyclization was monitored by ¹H NMR (400 MHz) spectroscopy.

Conversion to the cyclopentenone product^{S36,S37} was observed for BBr₃, BCl₃ and the triarylboranes **1i**, **1g** within 1–2 h. After 24 h reaction time partial conversion to the product was observed with **1h** but not when **1f** was used as the catalyst.

Diels-Alder Reactions of Methyl Vinyl Ketone with Cyclopentadiene

Under an atmosphere of dry argon CD_2CI_2 solutions of methyl vinyl ketone (0.028 mmol), cyclopentadiene (freshly prepared by thermal decomposition of its dimer and subsequent distillation, 0.028 mmol), and the borane (0.0028 mmol) in CD_2CI_2 (0.75 mL) were transferred into an NMR tube, which was sealed with a rubber septum. The reaction mixtures were analyzed by ¹H NMR spectroscopy (200 MHz) after 20 min reaction time at room temperature (25 °C).

Quantitative conversion of the educts to the Diels-Alder adduct^{S38} was observed after 20 min for solutions that contained 10 mol% of the boranes **1h**, **1i** and BCl₃. With borane **1f**, traces of the product (15%) were observed after 2 h reaction time.

Michael Additions of 1-Methylindole to Methyl Vinyl Ketone

Under an atmosphere of dry argon CD_2CI_2 solutions of methyl vinyl ketone (0.028 mmol), 1methylindole (0.028 mmol) and the borane (0.0028 mmol) in CD_2CI_2 (0.75 mL) were transferred into an NMR tube which was sealed with a rubber septum. The reaction mixtures were analyzed by ¹H NMR spectroscopy (200 MHz) after 20 min reaction time at room temperature (25 °C).

Quantitative conversion of the educts to the Michael adduct^{S39} was observed after 20 min for solutions that contained 10 mol% of boranes **1h**, **1i**. With borane **1f**, traces of the product (24%) were observed after 24 h reaction time.

Figure S3: ¹H NMR spectra (400 MHz) in CD₂Cl₂ of the borane catalyzed Nazarov reaction.

Figure S4: ¹H NMR spectra (200 MHz) in CD₂Cl₂ of the borane catalyzed Diels-Alder reaction of methyl vinyl ketone with cyclopentadien.

Figure S5: ¹H NMR spectra (200 MHz) in CD₂Cl₂ of the borane catalyzed Michael addition of 1-methylindole at methyl vinyl ketone.

V. Determination of Equilibrium Constants by Isothermal Titration Calorimetry (ITC)

Summary of ITC experiments in dichloromethane

Reported errors are standard deviations from the averaged results of three experiments under identical conditions at 20 °C.

Experiment	Ar₃B	LB	[Ar₃B] (mM)	[LB] (mM)	T(°C)	<i>K</i> (M⁻¹)	∆G (kJ mol⁻¹)	∆ <i>H</i> (kJ mol⁻¹)	<i>T</i> ∆S (kJ mol⁻¹)	n
RM1087e1	1a	2a	0.996	11.7	20.0	3.74 × 10 ⁴	-25.7	-55.2	-29.5	0.928
RM1087e2	1a	2a	0.996	11.7	20.0	3.46 × 10 ⁴	-25.5	-54.8	-29.3	0.656
RM1087e3	1a	2a	0.97	11.7	20.0	3.39 × 10 ⁴	-25.4	-56.8	-31.4	0.775
						(3.53 ± 0.16) × 10 ⁴	-25.5 ± 0.1	-55.6 ± 0.9	-30.1 ± 1.0	
RM1089e1	1a	2b	1.02	11.0	20.0	9.28 × 10 ³	-22.3	-54.8	-32.5	0.821
RM1089e2	1a	2b	0.996	10.1	20.0	9.12 × 10 ³	-22.2	-58.1	-35.9	0.734
RM1089e3	1a	2b	0.996	10.1	20.0	9.64 × 10 ³	-22.4	-57.3	-34.9	0.691
						(9.35 ± 0.22) × 10 ³	-22.3 ± 0.1	-56.7 ± 1.4	-34.4 ± 1.4	
RM1091e1	1b	2a	0.963	11.4	20.0	2.31 × 10 ⁶	-35.7	-64.8	-29.1	0.763
RM1091e2	1b	2a	0.963	11.4	20.0	5.06 × 10 ⁶	-37.6	-66.5	-28.8	0.754
RM1091e3	1b	2a	0.963	11.4	20.0	2.27 × 10 ⁶	-35.7	-66.5	-30.8	0.749
						(3.21 ± 1.31) × 10 ⁶	-36.3 ± 0.9	-65.9 ± 0.8	-29.6 ± 0.9	
RM1081e1	1b	2b	0.993	10.3	20.0	1.18 × 10 ⁶	-34.1	-70.2	-36.1	0.749
RM1081e2	1b	2b	0.993	10.3	20.0	1.47 × 10 ⁶	-34.6	-68.6	-33.9	0.71
RM1081e3	1b	2b	0.993	10.3	20.0	1.09 × 10 ⁶	-33.9	-70.2	-36.3	0.68
						(1.25 ± 0.17) × 10 ⁶	-34.2 ± 0.3	-69.7 ± 0.8	-35.5 ± 1.1	
RM1078e1	1b	2c	1.32	14.0	20.0	1.33 × 10⁵	-28.8	-58.1	-29.3	0.809
RM1078e2	1b	2c	1.32	14.0	20.0	1.39 × 10⁵	-28.9	-58.1	-29.2	0.782
RM1078e3	1b	2c	1.32	14.0	20.0	1.22 × 10 ⁵	-28.5	-59.8	-31.2	0.744
						(1.31 ± 0.08) × 10 ⁵	-28.7 ± 0.1	-58.7 ± 0.8	-29.9 ± 0.9	

Table S4: Summary of ITC titration experiments of boranes 1 with Lewis bases in dichloromethane at 20 °C.

RM1075e3	1b	2d	1.50	13.2	20.0	2.02 × 10 ⁴	-24.2	-51.8	-27.7	0.871
RM1075e4	1b	2d	1.50	13.2	20.0	2.37 × 10 ⁴	-24.6	-51.0	-26.4	0.821
RM1075e5	1b	2d	1.50	13.2	20.0	2.27 × 10 ⁴	-24.4	-53.9	-29.5	0.797
						(2.22 ± 0.15) × 10 ⁴	-24.4 ± 0.2	-52.3 ± 1.2	-27.9 ± 1.2	
RM1077e2	1b	2e	1.50	15.0	20.0	2.89 × 10 ³	-19.4	-57.7	-38.3	0.691
RM1077e3	1b	2e	1.50	15.0	20.0	3.51 × 10 ³	-19.9	-52.3	-32.4	0.674
RM1077e4	1b	2e	1.50	15.0	20.0	3.34 × 10 ³	-19.8	-53.1	-33.3	0.657
						$(3.25 \pm 0.27) \times 10^3$	-19.7 ± 0.2	-54.3 ± 2.4	-34.6 ± 2.6	
RM1079e2	1c	2d	1.06	10.8	20.0	3.18 × 10⁵	-30.9	-69.0	-38.1	0.857
RM1080e1	1c	2d	1.06	10.1	20.0	2.29 × 10 ⁵	-30.1	-74.0	-43.9	0.754
RM1116e1	1c	2d	1.02	9.62	20.0	3.69 × 10 ⁵	-31.2	-67.7	-36.5	0.781
RM1116e2	1c	2d	1.02	9.62	20.0	4.43 × 10 ⁵	-31.7	-69.4	-37.7	0.763
						$(3.40 \pm 0.78) \times 10^5$	-31.0 ± 0.6	-70.0 ± 2.4	-39.0 ± 2.9	
RM1083e1	1c	2e	1.06	9.72	20.0	9.41 × 10 ⁴	-27.9	-76.5	-48.6	0.716
RM1086e1	1c	2e	1.09	9.95	20.0	6.42 × 10 ⁴	-27.0	-64.4	-37.4	0.773
RM1086e2	1c	2e	1.09	9.95	20.0	7.75 × 10 ⁴	-27.4	-69.0	-41.5	0.74
						(7.86 ± 1.22) × 10 ⁴	-27.4 ± 0.4	-69.9 ± 5.0	-42.5 ± 4.6	
	_									
RM1084e1	10	21	1.06	10.7	20.0	2.14 × 10 ⁴	-24.3	-79.8	-55.5	0.772
RM1084e3	10	21	1.06	10.7	20.0	2.94 × 10 ⁴	-25.1	-78.2	-53.1	0.763
RM1084e4	1C	2†	1.09	10.7	20.0	4.86 × 10 ⁴	-26.3	-/6.1	-49.8	0.618
						(3.31 ± 1.14) × 10⁴	-25.2 ± 0.4	-79.0 ± 0.8	-54.3 ± 1.2	
RM1124e1	1c	2g	1.06	10.1	20.0	1.08 × 10 ⁴	-22.6	-71.9	-49.3	0.766
RM1124e2	1c	2g	0.985	10.1	20.0	1.58 × 10 ⁴	-23.6	-70.6	-47.1	0.759
RM1124e3	1c	2g	1.06	9.94	20.0	1.63 × 104	-23.6	-71.9	-48.3	0.812
						$(1.43 \pm 0.25) \times 10^4$	-23.3 ± 0.5	-71.5 ± 0.6	-48.2 ± 0.9	

RM1125e2	1c	2h	1.06	10.8	20.0	3.30 × 10 ³	-19.7	-65.2	-45.5	0.681
RM1125e3	1c	2h	0.985	10.8	20.0	3.66 × 10 ³	-20.0	-63.5	-43.5	0.723
RM1125e4	1c	2h	1.06	10.8	20.0	3.83 × 10 ³	-20.1	-68.6	-48.4	0.657
						$(3.60 \pm 0.23) \times 10^3$	-20.0 ± 0.2	-65.8 ± 2.1	-45.8 ± 2.0	
RM968e1	1d	2d	1.13	10.1	20.0	1.39 × 10 ⁶	-34.5	-70.2	-35.7	1.1
RM968e3	1d	2d	1.13	10.1	20.0	1.43 × 10 ⁶	-34.5	-74.0	-39.4	1.0
RM968e5	1d	2d	1.05	10.1	20.0	1.34 × 10 ⁶	-34.4	-76.1	-41.7	1.07
						$(1.39 \pm 0.04) \times 10^{6}$	-34.5 ± 0.1	-73.4 ± 2.4	-39.0 ± 2.4	
RM1118e1	1d	2e	1.03	10.6	20.0	4.20 × 10 ⁵	-31.6	-74.4	-42.8	0.918
RM1118e2	1d	2e	1.20	10.6	20.0	3.69 × 10⁵	-31.2	-75.7	-44.4	0.936
RM1118e3	1d	2e	1.24	10.6	20.0	3.70 × 10 ⁵	-31.3	-73.2	-41.9	0.861
						$(3.86 \pm 0.24) \times 10^5$	-31.4 ± 0.1	-74.4 ± 1.0	-43.1 ± 1.0	
AB037e2	1d	2f	1.13	10.1	20.0	8.81 × 10 ⁴	-27.8	-71.9	-44.1	1.12
AB037e3	1d	2f	1.05	10.1	20.0	8.39 × 10 ⁴	-27.6	-74.0	-46.4	0.84
RM1121e1	1d	2f	1.12	10.1	20.0	1.08 × 10⁵	-28.2	-66.9	-38.6	1.01
						$(9.33 \pm 1.05) \times 10^4$	-27.9 ± 0.3	-70.9 ± 3.0	-43.0 ± 3.2	
AB035e3	1d	2g	1.13	10.1	20.0	2.82 × 10 ⁴	-25.0	-67.3	-42.3	1.0
AB035e4	1d	2g	1.05	10.1	20.0	2.43 × 10 ⁴	-24.6	-64.0	-39.3	1.22
AB035e5	1d	2g	1.05	10.1	20.0	2.01 × 10 ⁴	-24.2	-63.1	-39.0	0.89
		-				$(2.42 \pm 0.34) \times 10^4$	-24.6 ± 0.3	-64.8 ± 1.8	-40.2 ± 1.5	
RM974e1	1d	2h	1.13	10.1	20.0	3.87 × 10 ³	-20.1	-81.9	-61.8	0.95
RM974e2	1d	2h	1.13	10.1	20.0	4.64 × 10 ³	-20.6	-80.3	-59.7	0.99
RM974e3	1d	2h	1.05	10.1	20.0	4.31 × 10 ³	-20.4	-80.7	-60.3	0.93
						$(4.27 \pm 0.32) \times 10^3$	-20.4 ± 0.2	-81.0 ± 0.7	-60.6 ± 0.9	
RM1094e1	1e	2d	1.01	10.0	20.0	1.34 × 10 ⁶	-34.4	-68.1	-33.7	0.96
RM1094e2	1e	2d	1.08	10.0	20.0	1.31 × 10 ⁶	-34.3	-70.2	-35.9	0.894
RM1094e3	1e	2d	1.01	9.67	20.0	1.25 × 10 ⁶	-34.2	-71.9	-37.7	0.997

						$(1.30 \pm 0.04) \times 10^{6}$	-34.3 ± 0.1	-70.1 ± 1.5	-35.8 ± 1.6	
RM1092e1	1e	2e	1.01	10.4	20.0	2.72 × 10⁵	-30.5	-71.9	-41.4	0.409
RM1092e2	1e	2e	1.01	10.4	20.0	2.73 × 10⁵	-30.5	-73.6	-43.1	0.904
RM1092e3	1e	2e	1.08	10.4	20.0	3.58 × 10⁵	-31.2	-69.8	-38.6	0.857
						(3.01 ± 0.41) × 10 ⁵	-30.7 ± 0.3	-71.8 ± 1.5	-41.0 ± 1.8	
RM1096e1	1e	2f	0.979	10.7	20.0	8.41 × 10 ⁴	-27.6	-68.1	-40.5	0.88
RM1096e2	1e	2f	1.05	10.7	20.0	8.37 × 10 ⁴	-27.6	-68.1	-40.5	0.864
RM1096e3	1e	2f	1.01	10.7	20.0	8.11 × 10 ⁴	-27.6	-68.1	-40.6	0.921
						$(8.30 \pm 0.14) \times 10^4$	-27.6 ± 0.0	-68.1 ± 0.0	-40.5 ± 0.1	
RM1097e1	1e	2g	1.05	9.93	20.0	3.55 × 10 ⁴	-25.5	-61.4	-35.9	0.914
RM1097e2	1e	2g	1.01	10.3	20.0	3.35 × 10 ⁴	-25.4	-64.4	-39.0	0.848
RM1097e3	1e	2g	0.979	10.3	20.0	3.03 × 10 ⁴	-25.2	-66.0	-40.9	1.03
						$(3.31 \pm 0.22) \times 10^4$	-25.4 ± 0.2	-64.0 ± 1.9	-38.6 ± 2.1	
RM1099e1	1e	2h	0.946	11.1	20.0	6.95 × 10 ³	-21.6	-66.5	-44.9	0.948
RM1099e2	1e	2h	0.912	11.1	20.0	7.30 × 10 ³	-21.7	-64.8	-43.1	0.996
RM1099e3	1e	2h	0.979	11.1	20.0	9.36 × 10 ³	-22.3	-61.9	-39.6	0.988
						(7.87 ± 1.06) × 10 ³	-21.8 ± 0.3	-64.4 ± 1.9	-42.5 ± 2.2	

Individual ITC measurements

RM1087e1

RM1087e3

RM1089e1

RM1091e1

RM1091e2

RM1085e3

RM1079e2

RM1084e3

RM1097e1

VI. Determination of Equilibrium Constants by NMR Chemical Shift Changes

Summary

For the determination of equilibrium constants, typically 6 to 9 individual NMR samples with a constant Lewis acid concentration and a variable (excess) concentration of the Lewis base were prepared. Then ¹H NMR spectra were acquired for each individual sample in CD_2Cl_2 at 22°C, and the changes in the chemical shift of one resonance (unequivocally assigned to the Lewis acid) was evaluated.

To determine equilibrium constants for reactions of the perfluorinated Lewis acid **1i** with Lewis bases, 6 to 8 individual NMR samples with a constant Lewis base concentration and a variable (excess) concentration of **1i** were prepared. ¹H NMR spectra were acquired for each individual sample in CD_2Cl_2 at 22°C, and the change in the chemical shift of one resonance (unequivocally assigned to the Lewis base) was evaluated.

Errors correspond to the standard deviations of variables in the least-squares fitting of Eq (S1).

Table S5: Summary of equilibrium constants obtained from NMR titration experiments of boranes **1** with Lewis bases (CD_2Cl_2 , 22 °C)

1a2cRM1102 $(1.01 \pm 0.06) \times 10^3$ 1a2dRM1110 $(7.81 \pm 0.04) \times 10^1$ 1a2eRM11119.93 \pm 0.421a2fRM1123 1.52 ± 0.29 1b2gRM1463 $(3.14 \pm 0.06) \times 10^3$ 1b2gRM1120 $(7.99 \pm 1.81) \times 10^2$ 1b2gRM1106 $(4.88 \pm 0.43) \times 10^2$ 1b2jRM1122 $(1.68 \pm 0.04) \times 10^2$ 1b2jRM1131 6.06 ± 0.30 1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$	BAr ₃	LB	Experiment	K _B (M ⁻¹)
1a2dRM1110 $(7.81 \pm 0.04) \times 10^1$ 1a2eRM1111 9.93 ± 0.42 1a2fRM1123 1.52 ± 0.29 1b2eRM1463 $(3.14 \pm 0.06) \times 10^3$ 1b2fRM1120 $(7.99 \pm 1.81) \times 10^2$ 1b2gRM1106 $(4.88 \pm 0.43) \times 10^2$ 1b2jRM1122 $(1.68 \pm 0.04) \times 10^2$ 1c2iRM1131 6.06 ± 0.30	1a	2c	RM1102	$(1.01 \pm 0.06) \times 10^3$
1a2eRM1111 9.93 ± 0.42 1a2fRM1123 1.52 ± 0.29 1b2eRM1463 $(3.14 \pm 0.06) \times 10^3$ 1b2fRM1120 $(7.99 \pm 1.81) \times 10^2$ 1b2gRM1106 $(4.88 \pm 0.43) \times 10^2$ 1b2hRM1122 $(1.68 \pm 0.04) \times 10^2$ 1b2jRM1131 6.06 ± 0.30 1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$	1a	2d	RM1110	(7.81 ± 0.04) × 10 ¹
1a2fRM1123 1.52 ± 0.29 1b2eRM1463 $(3.14 \pm 0.06) \times 10^3$ 1b2fRM1120 $(7.99 \pm 1.81) \times 10^2$ 1b2gRM1106 $(4.88 \pm 0.43) \times 10^2$ 1b2hRM1122 $(1.68 \pm 0.04) \times 10^2$ 1b2jRM1131 6.06 ± 0.30 1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$	1a	2e	RM1111	9.93 ± 0.42
1b2eRM1463 $(3.14 \pm 0.06) \times 10^3$ 1b2fRM1120 $(7.99 \pm 1.81) \times 10^2$ 1b2gRM1106 $(4.88 \pm 0.43) \times 10^2$ 1b2hRM1122 $(1.68 \pm 0.04) \times 10^2$ 1b2jRM1131 6.06 ± 0.30 1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$	1a	2f	RM1123	1.52 ± 0.29
1b2eRM1463 $(3.14 \pm 0.06) \times 10^3$ 1b2fRM1120 $(7.99 \pm 1.81) \times 10^2$ 1b2gRM1106 $(4.88 \pm 0.43) \times 10^2$ 1b2hRM1122 $(1.68 \pm 0.04) \times 10^2$ 1b2jRM1131 6.06 ± 0.30 1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$				
1b2fRM1120 $(7.99 \pm 1.81) \times 10^2$ 1b2gRM1106 $(4.88 \pm 0.43) \times 10^2$ 1b2hRM1122 $(1.68 \pm 0.04) \times 10^2$ 1b2jRM1131 6.06 ± 0.30 1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$	1b	2e	RM1463	(3.14 ± 0.06) × 10 ³
1b2gRM1106 $(4.88 \pm 0.43) \times 10^2$ 1b2hRM1122 $(1.68 \pm 0.04) \times 10^2$ 1b2jRM1131 6.06 ± 0.30 1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$	1b	2f	RM1120	(7.99 ± 1.81) × 10 ²
1b2hRM1122 $(1.68 \pm 0.04) \times 10^2$ 1b2jRM1131 6.06 ± 0.30 1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$	1b	2g	RM1106	$(4.88 \pm 0.43) \times 10^2$
1b 2j RM1131 6.06 ± 0.30 1c 2i RM1146 (1.62 ± 0.07) × 10 ¹ 1c 2j RM1129 (1.22 ± 0.11) × 10 ²	1b	2h	RM1122	(1.68 ± 0.04) × 10 ²
1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$	1b	2j	RM1131	6.06 ± 0.30
1c2iRM1146 $(1.62 \pm 0.07) \times 10^1$ 1c2jRM1129 $(1.22 \pm 0.11) \times 10^2$				
1c 2j RM1129 $(1.22 \pm 0.11) \times 10^2$	1c	2i	RM1146	$(1.62 \pm 0.07) \times 10^{1}$
•	1c	2j	RM1129	(1.22 ± 0.11) × 10 ²
1c 2k RM1170 7.11 ± 0.61	1c	2k	RM1170	7.11 ± 0.61
1c 10 RM1262 $(1.90 \pm 0.12) \times 10^{1}$	1c	10	RM1262	(1.90 ± 0.12) × 10 ¹
	4.1	01		
10 21 RM1147 $(5.04 \pm 0.71) \times 10^{10}$	10	21	RM1147	$(5.04 \pm 0.71) \times 10^{-1}$
1d 2j RM1130 $(4.33 \pm 0.85) \times 10^2$	10	2j	RM1130	$(4.33 \pm 0.85) \times 10^{2}$
1d 2k RM1169 $(5.35 \pm 1.07) \times 10^{10}$	10	2K	RM1169	$(5.35 \pm 1.07) \times 10^{-1}$
1d 9 RM1270 7.60 ± 0.18	10	9	RM1270	7.60 ± 0.18
10 2i PM11// (6.37 + 0.10) x 10^{1}	10	21	RM1144	(6 37 + 0 10) x 10 ¹
1 2i $RM1128$ $(7.56 \pm 0.56) \times 10^2$	10	21	RM1128	$(7.56 \pm 0.56) \times 10^{2}$
1e 2k RM1167 $(7.00\pm0.00) \times 10^{-1}$	10	2j 2k	RM1167	$(2.96 \pm 0.13) \times 10^{1}$
1e 2i RM1157 $(2.38 \pm 0.51) \times 10^{-1}$	10	21	RM1157	$(2.38 \pm 0.51) \times 10^{-1}$
1e 4a RM1260 $(3.60 \pm 0.36) \times 10^2$	10	 4a	RM1260	$(2.00 \pm 0.01)^{\times} 10^{2}$
1e 10 $RM1261$ (0.00 \pm 0.00) × 10 ³	1e	10	RM1261	$(1.98 \pm 0.33) \times 10^3$
				(
1f 2i RM1145 (1.71 ± 0.75) × 10 ³	1f	2i	RM1145	(1.71 ± 0.75) × 10 ³
1f 2j RM1133 $(9.29 \pm 0.22) \times 10^3$	1f	2j	RM1133	$(9.29 \pm 0.22) \times 10^3$
1f 2k RM1168 $(3.56 \pm 0.08) \times 10^2$	1f	2k	RM1168	$(3.56 \pm 0.08) \times 10^2$
1f 2l RM1155 7.91 ± 0.28	1f	21	RM1155	7.91 ± 0.28 [′]

1f	2m	RM1166	4.87 ± 0.12
1f	7a	RM1188	6.75 ± 0.21
1f	3a	RM1258	4.93 ± 0.16
1f	3b	RM1195	1.87 ± 0.04
1f	4b	RM1259	(1.58 ± 0.04) × 10 ²
1f	4c	RM1254	(1.67 ± 0.08) × 10 ¹
1e	9	RM1271	$(2.50 \pm 0.19) \times 10^2$
			· · · · · ·
1g	21	RM1239	(4.50 ± 1.11) × 10 ³
1g	2m	RM1165	$(1.60 \pm 0.22) \times 10^3$
1g	3b	RM1238	$(2.39 \pm 0.28) \times 10^3$
1g	4a	RM1237	(8.61 ± 0.75) × 10 ²
1g	5a	RM1148	$(9.79 \pm 0.32) \times 10^{1}$
1g	5b	RM1141	$(2.97 \pm 0.34) \times 10^{1}$
1g	5c	RM1177	6.22 ± 0.92
1g	5d	RM1153	5.42 ± 0.58
1g	5e	RM1158	5.02 ± 0.82
1g	7a	RM1187	(4.90 ± 2.02) × 10 ³
1g	7b	RM1214	$(1.41 \pm 0.05) \times 10^2$
1g	7c	RM1186	$(5.34 \pm 0.12) \times 10^{1}$
1g	7d	RM1185	2.31 ± 0.28
1g	8	RM1184	(1.38 ± 0.21) × 10 ³
1h	21	RM1174	(4.10 ± 0.35) × 10 ²
1h	2m	RM1173	$(1.94 \pm 0.07) \times 10^2$
1h	3a	RM1211	(4.63 ± 0.25) × 10 ³
1h	3b	RM1201	(2.10 ± 0.38) × 10 ³
1h	5a	RM1172	$(1.24 \pm 0.04) \times 10^2$
1h	5b	RM1163	(2.78 ± 0.25) × 10 ¹
1h	7a	RM1198	(2.18 ± 1.10) × 10 ⁴
1h	7b	RM1257	$(2.24 \pm 0.06) \times 10^2$
1h	7c	RM1197	(6.78 ± 0.03) × 10 ¹
1h	7d	RM1196	1.02 ± 0.13
1h	8	RM1199	$(2.84 \pm 0.42) \times 10^3$
1i	2n	RM1240	(5.47 ± 1.02) × 10 ¹
1i	5c	RM1241	(3.51 ± 1.82) × 10 ⁴
1i	5d	RM1251	$(1.01 \pm 0.60) \times 10^4$
1i	5e	RM1143	$(6.53 \pm 0.92) \times 10^2$
1i	5f	RM1150	$(1.31 \pm 0.37) \times 10^{1}$
1i	6	RM1200	(7.31 ± 2.19) × 10 ¹
1i	7d	RM1180	$(4.46 \pm 1.41) \times 10^3$
<u>1j</u>	2a	RM1256	$(4.54 \pm 0.26) \times 10^{-1}$

Individual NMR titrations

0.0

0.00

0.01

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)	
1	5.0 × 10⁻³	0.0	7.498	0.000	
2	5.0 × 10⁻³	5.0 × 10⁻³	7.211	0.287	
3	5.0 × 10⁻³	7.5 × 10⁻³	7.149	0.349	
4	5.0 × 10⁻³	2.0 × 10 ⁻²	7.085	0.413	
5	5.0 × 10⁻³	3.0 × 10⁻²	7.070	0.428	
6	5.0 × 10⁻³	4.0 × 10 ⁻²	7.062	0.436	
$ \begin{array}{c} 0.5 \\ 0.4 \\ 0.4 \\ 0.3 \\ \hline \hline$					
	φ ^{0.2}	Modell	nmr1to1 (User) (d/x1)*0.5*((x1+x+(1/K))-((x1+x+		
		Gleichung	(1/K))^2-(4*x1*x))^(1/2))		
		Zeichnen	B 0.44458 + 0.00237		
	0.1	ĸ	1014.77826 ± 50.79803		
		x1	0.005 ± 0		
		Chi-Quadr Reduziert	8.82763E-6		
		R-Quadrat (COD)	0.99974		

NMR titration of tris(4-dimethylaminophenyl)borane (1a) with 4-methoxypyridine (2c)

(RM1102)

NMR titration of tris(4-dimethylaminophenyl)borane (1a) with pyridine (1d)

Kor. R-Quadrat

0.02

Lewis base (M)

0.99968

0.04

0.03

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	3.0 × 10⁻³	0.0	3.0351	0.0000
2	3.0 × 10⁻³	3.0 × 10⁻³	3.0293	0.0058
3	3.0 × 10⁻³	7.5 × 10⁻³	3.0234	0.0117
4	3.0 × 10⁻³	1.5 × 10 ⁻²	3.0139	0.0212
5	3.0 × 10⁻³	3.0 × 10 ⁻²	2.9981	0.0370
6	3.0 × 10⁻³	6.0 × 10 ⁻²	2.9744	0.0607
7	3.0 × 10⁻³	1.2 × 10⁻¹	2.9455	0.0896

NMR titration of tris(4-dimethylaminophenyl)borane (1a) with 4-benzoylpyridine (2e)

(RM1111)

NMR titration of tris(4-dimethylaminophenyl)borane (1a) with 3-chloropyridine (2f)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10 ⁻³	0.0	3.878	0.000
2	5.0 × 10 ⁻³	2.5 × 10⁻³	3.816	0.062
3	5.0 × 10 ⁻³	5.0 × 10 ⁻³	3.783	0.094
4	5.0 × 10 ⁻³	7.5 × 10⁻³	3.774	0.103
5	5.0 × 10 ⁻³	1.0 × 10 ⁻²	3.772	0.106
6	5.0 × 10 ⁻³	1.5 × 10⁻²	3.769	0.108
7	5.0 × 10⁻³	2.0 × 10⁻²	3.768	0.109

NMR titration of tris(p-anisyl)borane (1b) with 4-benzoylpyridine (2e)

(RM1463)

The value of x1 (that is, the borane concentration) was allowed to vary in the fitting process.

NMR titration of tris(p-anisyl)borane (1b) with 3-chloropyridine (2f)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.560	0.000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.416	0.144
3	5.0 × 10 ⁻³	5.0 × 10 ⁻³	7.313	0.247
4	5.0 × 10⁻³	7.5 × 10⁻³	7.249	0.311
5	5.0 × 10 ⁻³	1.0 × 10 ⁻²	7.194	0.366
6	5.0 × 10 ⁻³	2.0 × 10 ⁻²	7.145	0.415
7	5.0 × 10⁻³	3.0 × 10⁻²	7.127	0.433

NMR titration of tris(p-anisyl)borane (1b) with 4-(trifluoromethyl)pyridine (2g)

(RM1106)

NMR titration of tris(p-anisyl)borane (1b) with 4-cyanopyridine (2h)

Entry	F	Rorane	(M) I	R (M)		<u>δ (nnm)</u>	<u> </u>
1	5	5.0 × 10	⁻³ 0	.0		3.8///	0.0000
2	5	5.0 × 10	⁻³ 2	.5 × 10⁻³		3.8536	0.0241
3	5	5.0 × 10	⁻³ 5	.0 × 10⁻³		3.8365	0.0412
4	5	5.0 × 10	⁻³ 1	.0 × 10 ⁻²		3.8142	0.0635
5	5	5.0 × 10	⁻³ 2	.0 × 10 ⁻²		3.7927	0.0850
6	5	5.0 × 10	⁻³ 3	.0 × 10 ⁻²		3.7830	0.0947
7	5	5.0 × 10	-3 4	.0 × 10 ⁻²		3.7778	0.0999
	-						
	0 10	 Δδ 				_	
	0.10	nm	nr1to1 (User)	Fit of Sheet1 B			
	Ì						
	0.08						
	ł						
Ê	0.06		_				
ud				[(r - r)	
d)	Ē			Modell	nmr1to1 (U	(1/K)) ((v1+	
$\Delta\delta$	0.04		<u>ب</u>	Gleichung	x+(1/K))^2-(4*x1	(1/K))^((X)+ *x))^(1/2))	
	L			Zeichnen	В		
				d	0.1163 ± 6.48	339E-4	
	0.02	·		K	168.31633 ± 3	0	
				X1 Chi Quadr Baduziart	1 70986F	-7	
	ſ			R-Quadrat (COD)	0.9999		
	0.00			Kor. R-Quadrat	0.99988	3	
	_	0.00	0.01	0.02	0.03	0.04	
			Le	wis base (M)			(RM1122)
				. ,			$(1 \times 101 \times 122)$

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	3.0 × 10⁻³	0.0	3.8777	0.0000
2	3.0 × 10⁻³	3.0 × 10⁻³	3.8759	0.0018
3	3.0 × 10⁻³	7.5 × 10⁻³	3.8731	0.0046
4	3.0 × 10⁻³	1.5 × 10⁻²	3.8685	0.0092
5	3.0 × 10⁻³	3.0 × 10⁻²	3.8606	0.0171
6	3.0 × 10⁻³	6.0 × 10 ⁻²	3.8471	0.0306
7	3.0 × 10⁻³	1.2 × 10⁻¹	3.8301	0.0476

NMR titration of tris(p-anisyl)borane (1b) with 3,4,5-trichloropyridine (2j)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	2.4378	0.0000
2	5.0 × 10⁻³	5.0 × 10⁻³	2.4278	0.0100
3	5.0 × 10⁻³	1.0 × 10⁻²	2.4186	0.0192
4	5.0 × 10⁻³	2.0 × 10 ^{−2}	2.4040	0.0338
5	5.0 × 10⁻³	4.0 × 10 ^{−2}	2.3834	0.0544
6	5.0 × 10⁻³	7.5 × 10⁻²	2.3584	0.0794
7	5.0 × 10⁻³	1.26 × 10⁻¹	2.3420	0.0958

NMR titration of tris(p-tolyl)borane (1c) with 3,5-bis(trifluoromethyl)pyridine (2i)

(RM1146)

NMR titration of tris(p-tolyl)borane (1c) with 3,4,5-trichloropyridine (2j)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10 ⁻³	0.0	7,489	0.000
2	5 0 × 10 ⁻³	2 5 × 10⁻³	7 421	0.068
3	5.0×10^{-3}	5.0×10^{-3}	7 350	0.130
4	5.0×10^{-3}	7.5×10^{-3}	7 217	0.100
4	5.0×10^{-2}	1.0×10^{-2}	7.317	0.172
5	5.0 × 10 ⁻³	1.0×10^{-2}	7.285	0.204
6	5.0 × 10⁻³	1.5 × 10⁻²	7.229	0.260
7	5.0 × 10⁻³	2.0 × 10 ⁻²	7.205	0.284
-	Γ			
0	30 - Δδ			
0.	nmr1to1 (U	Iser) Fit of Sheet1 B		
0	25		•	
0.	25 -			
0.	20 -	_		
(m		F		
d 0.	15 -	Modell	nmr1to1 (User)	
$\Delta\delta$	- 🖌	Gleichung	$(d/x1)*0.5*((x1+x+(1/K))-((x1+x+(1/K)))-((x1+x+(1/K)))^{2}-(4*x1*x))^{2}(1/2))$	
0.	10 -	Zeichnen	B	
		d	0.42877 ± 0.01517	
		К	121.70011 ± 10.74199	
0.	05 -	x1	0.005 ± 0	
		Chi-Quadr Reduziert	1.21577E-5	
0		R-Quadrat (COD)	0.99903	
0.	00 ⊢ ■	Noi. N-Quadrat	0.00000	
		5 0.010 (
	0.000 0.00		0.010 0.020	
		Lewis base (M)		(RM1129)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.490	0.000
2	5.0 × 10⁻³	5.10 × 10 ⁻²	7.372	0.118
3	5.0 × 10⁻³	9.75 × 10⁻²	7.294	0.196
4	5.0 × 10⁻³	1.49 × 10⁻¹	7.243	0.247
5	5.0 × 10⁻³	2.02 × 10⁻¹	7.211	0.279
6	5 0 × 10 ⁻³	2 50 × 10 ⁻¹	7 190	0.300

NMR titration of tris(p-tolyl)borane (1c) with 3,5-difluoro-4-(trifluoromethyl)pyridine (2k)

(RM1170)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.4669	0.0000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.4342	0.0327
3	5.0 × 10⁻³	5.0 × 10⁻³	7.4070	0.0599
4	5.0 × 10⁻³	7.5 × 10⁻³	7.3907	0.0762
5	5.0 × 10⁻³	1.0 × 10 ⁻²	7.3707	0.0962
6	5.0 × 10⁻³	1.5 × 10⁻²	7.3354	0.1315
7	5.0 × 10⁻³	2.0 × 10 ⁻²	7.3123	0.1546

NMR titration of triphenylborane (1d) with 3,5-bis(trifluoromethyl)pyridine (2i)

(RM1147)

NMR titration of triphenylborane (1d) with 3,4,5-trichloropyridine (2j)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.4671	0.0000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.3958	0.0713
3	5.0 × 10⁻³	5.0 × 10⁻³	7.3258	0.1413
4	5.0 × 10⁻³	7.5 × 10⁻³	7.2833	0.1838
5	5.0 × 10⁻³	1.0 × 10 ⁻²	7.2591	0.2080
6	5.0 × 10⁻³	1.5 × 10⁻²	7.2387	0.2284
7	5.0 × 10⁻³	2.0 × 10 ⁻²	7.2292	0.2379

(RM1130)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.4662	0.0000
2	5.0 × 10 ⁻³	5.0 × 10⁻³	7.4193	0.0469
3	5.0 × 10⁻³	1.25 × 10⁻²	7.3735	0.0927
4	5.0 × 10⁻³	2.50 × 10 ⁻²	7.3459	0.1203
5	5.0 × 10 ⁻³	5.10 × 10 ⁻²	7.3138	0.1524
6	5.0 × 10⁻³	7.35 × 10⁻²	7.2830	0.1832
7	5.0 × 10⁻³	1.00 × 10 ⁻¹	7.2643	0.2019

NMR titration of triphenylborane (1d) with 3,5-difluoro-4-(trifluoromethyl)pyridine (2k)

(RM1169)

NMR titration of triphenylborane (1d) with dimethylacetamide (9)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.4670	0.0000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.4608	0.0062
3	5.0 × 10 ⁻³	5.0 × 10 ⁻³	7.4539	0.0131
4	5.0 × 10⁻³	7.5 × 10⁻³	7.4477	0.0193
5	5.0 × 10⁻³	1.0 × 10 ⁻²	7.4412	0.0258
6	5.0 × 10⁻³	1.5 × 10⁻²	7.4304	0.0366
7	5.0 × 10 ⁻³	2.5 × 10⁻²	7.4089	0.0581
8	5.0 × 10⁻³	5.0 × 10 ⁻²	7.3695	0.0975
9	5.0 × 10⁻³	1.0 × 10⁻¹	7.3117	0.1553
10	5.0 × 10⁻³	1.5 × 10⁻¹	7.2732	0.1938

(RM1270)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10 ⁻³	0.0	7.1794	0.0000
2	5.0 × 10 ⁻³	2.5 × 10⁻³	7.1559	0.0235
3	5.0 × 10⁻³	5.0 × 10⁻³	7.1351	0.0443
4	5.0 × 10 ⁻³	7.5 × 10⁻³	7.1180	0.0614
5	5.0 × 10 ⁻³	1.0 × 10⁻²	7.1046	0.0748
6	5.0 × 10⁻³	1.5 × 10⁻²	7.0813	0.0981
7	$E \cap \times 10^{-3}$	0.0×10^{-2}	7 0054	0 11 1 2

NMR titration of tris(4-fluorophenyl)borane (1e) with 3,5-bis(trifluoromethyl)pyridine (2i)

NMR titration of tris(4-fluorophenyl)borane (1e) with 3,4,5-trichloropyridine (2j)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.1794	0.0000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.1666	0.0128
3	5.0 × 10⁻³	5.0 × 10 ⁻³	7.1540	0.0254
4	5.0 × 10⁻³	7.5 × 10⁻³	7.1434	0.0360
5	5.0 × 10⁻³	1.0 × 10 ⁻²	7.1336	0.0458
6	5.0 × 10⁻³	1.5 × 10 ⁻²	7.1165	0.0629
7	5.0 × 10⁻³	2.0 × 10 ⁻²	7.1030	0.0764

(RM1167)

NMR titration of tris(4-fluorophenyl)borane (1e) with 3,5-dinitropyridine (2l)

		, , , , , , , , , , , , , , , , , , ,			
Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)	
1	2.5 × 10⁻³	0.0	7.1787	0.0000	
2	2.5 × 10⁻³	1.25 × 10 ⁻²	7,1764	0.0023	
2	2.5×10^{-3}	2.50×10^{-2}	7 1733	0.0054	
3	2.3×10^{-3}	2.30×10^{-2}	7.1733	0.0034	
4	2.5 × 10 ^s	5.05 × 10 ²	7.1674	0.0113	
5	2.5 × 10⁻³	1.01 × 10⁻¹	7.1574	0.0213	
6	2.5 × 10⁻³	2.00 × 10 ⁻¹	7.1360	0.0427	
7	2.5 × 10⁻³	3.77 × 10⁻¹	7.1021	0.0766	
(mqq)	0.00	ser) Fit of Sheet1 B	nmr1to1 (User)		
$\Delta\delta$	0.03 -	Gleichung	(d/x1)*0.5*((x1+x+(1/K))-((x1+ x+(1/K))^2-(4*x1*x))^(1/2))		
	0.02	Zeichnen	В		
	0.02	d	0.93114 ± 0.1826 0.23821 + 0.05024		
	0.01 -	x1	0.0025 ± 0		
	-	Chi-Quadr Reduziert	1.60457E-7		
	0.00 -	R-Quadrat (COD)	0.99983		
-0.01 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40					
	(RIVI1157)				

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.605	0.000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.458	0.147
3	5.0 × 10⁻³	5.0 × 10⁻³	7.336	0.269
4	5.0 × 10⁻³	7.5 × 10⁻³	7.266	0.339
5	5.0 × 10⁻³	1.0 × 10 ⁻²	7.219	0.386
6	5.0 × 10 ⁻³	1.5 × 10 ^{−2}	7.167	0.438
	0.5 Γ Δδ			

NMR titration of tris(4-fluorophenyl)borane (1e) with tris(4-methoxyphenyl)phosphine (4a)

(RM1260)

NMR titration of tris(4-fluorophenyl)borane (1e) with triethylphosphine oxide (10)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.529	0.000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.398	0.131
3	5.0 × 10⁻³	5.0 × 10⁻³	7.344	0.185
4	5.0 × 10⁻³	7.5 × 10⁻³	7.313	0.216
5	5.0 × 10⁻³	1.0 × 10⁻²	7.298	0.231
6	5.0 × 10⁻³	1.5 × 10⁻²	7.280	0.249
7	5.0 × 10⁻³	2.0 × 10⁻²	7.272	0.257

NMR titration of tris(4-chlorophenyl)borane (1f) with 3,5-bis(trifluoromethyl)pyridine (2i)

(RM1145)

NMR titration of tris(4-chlorophenyl)borane (1f) with 3,4,5-trichloropyridine (2j)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.465	0
2	5.0 × 10⁻³	2.5 × 10⁻³	7,284	0.181
3	5.0×10^{-3}	50×10^{-3}	7 139	0.326
1	5.0×10^{-3}	7.5×10^{-3}	7.103	0.020
4	5.0×10^{-3}	7.5 ~ 10 *	7.103	0.302
5	5.0 × 10⁻³	1.0 × 10 ⁻²	7.096	0.369
6	5.0 × 10⁻³	1.5 × 10 ⁻²	7.092	0.373
7	5.0 × 10⁻³	2.0 × 10 ⁻²	7.090	0.375
$\begin{array}{c} \Delta\delta \\ nmr1to1 (User) Fit of Sheet1 B \\ 0.35 \\ 0.30 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.16 \\ 0.16 \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.005 \\ 0.00 \\ 0.005 \\ 0.000 \\ 0.005 \\ 0.010 \\ 0.005 \\ 0.000 \\ 0.005 \\ 0.010 \\ 0.005 \\ 0.000 \\ 0.005 \\ 0.010 \\ 0.015 \\ 0.000 \\ 0.005 \\ 0.010 \\ 0.015 \\ 0.000 \\ 0.005 \\ 0.010 \\ 0.015 \\ 0.000 \\ 0.015 \\ 0.000 \\ 0.015 \\ 0.000 \\ 0.015 \\ 0.000 \\ 0.015 \\ 0.000 \\ 0.015 \\ 0.010 \\ 0.015 \\ 0.020 \\ 0.000 \\ 0.005 \\ 0.015 \\ 0.000 \\ 0.015 \\ 0.020 \\ 0.000 \\ 0.005 \\ 0.015 \\ 0.000 \\ 0.000 \\ 0.005 \\ 0.000 \\ 0$				
	Lewis base (M) (RM1133)			

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.500	0.000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.408	0.092
3	5.0 × 10 ⁻³	5.0 × 10⁻³	7.343	0.157
4	5.0 × 10⁻³	7.5 × 10⁻³	7.298	0.202
5	5.0 × 10⁻³	1.0 × 10⁻²	7.272	0.228
6	5.0 × 10⁻³	1.5 × 10⁻²	7.238	0.262
7	5.0 × 10⁻³	2.0 × 10 ⁻²	7.222	0.278

NMR titration of tris(4-chlorophenyl)borane (1f) with 3,5-difluoro-4-(trifluoromethyl)pyridine (2k)

(RM1168)

NMR titration of tris(4-chlorophenyl)borane (1f) with 3,5-dinitropyridine (2l)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10 ⁻³	0.0	7.495	0.000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.488	0.007
3	5.0 × 10⁻³	5.0 × 10 ⁻³	7.482	0.013
4	5.0 × 10⁻³	7.5 × 10⁻³	7.477	0.018
5	5.0 × 10⁻³	1.0 × 10⁻²	7.471	0.024
6	5.0 × 10⁻³	1.5 × 10⁻²	7.461	0.034
7	5.0 × 10⁻³	2.0 × 10 ^{−2}	7.447	0.048
8	5.0 × 10⁻³	2.5 × 10⁻²	7.440	0.055
9	5.0 × 10⁻³	5.0 × 10 ⁻²	7.404	0.091
10	5.0 × 10⁻³	1.0 × 10 ⁻¹	7.347	0.148
11	5.0 × 10 ⁻³	2.0 × 10 ⁻¹	7.289	0.206

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	3.0 × 10⁻³	0.0	7.499	0.000
2	3.0 × 10⁻³	3.0 × 10⁻²	7.451	0.048
3	3.0 × 10⁻³	7.5 × 10⁻²	7.403	0.096
4	3.0 × 10⁻³	1.5 × 10⁻¹	7.345	0.154
5	3.0 × 10⁻³	3.0 × 10 ⁻¹	7.281	0.218
6	3.0 × 10⁻³	4.5 × 10⁻¹	7.249	0.250
7	3.0 × 10⁻³	6.0 × 10⁻¹	7.225	0.274

NMR titration of tris(4-chlorophenyl)borane (1f) with 4-chloro-3,5-dinitropyridine (2m)

(RM1166)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.498	0.000
2	5.0 × 10⁻³	5.0 × 10 ⁻²	7.423	0.075
3	5.0 × 10⁻³	1.0 × 10 ⁻¹	7.379	0.119
4	5.0 × 10⁻³	2.0 × 10 ⁻¹	7.320	0.178
5	5.0 × 10⁻³	3.5 × 10⁻¹	7.269	0.229
6	5.0 × 10⁻³	5.0 × 10 ⁻¹	7.238	0.260
7	5.0 × 10⁻³	7.5 × 10⁻¹	7.210	0.288

NMR titration of tris(4-chlorophenyl)borane (1f) with acetonitrile (3a)

(RM1258)

NMR titration of tris(4-chlorophenyl)borane (1f) with 4-fluorobenzonitrile (3b)

Entrv	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)	
1	5.0 × 10 ⁻³	0.0	7.499	0.000	
2	5.0 × 10 ⁻³	5.0×10^{-2}	7.473	0.026	
3	5.0 × 10 ⁻³	1.0×10^{-1}	7.450	0.049	
4	5.0×10^{-3}	2.0×10^{-1}	7.416	0.083	
5	5.0×10^{-3}	3.0×10^{-1}	7.388	0.111	
6	5.0×10^{-3}	4.0×10^{-1}	7 367	0 132	
7	5.0×10^{-3}	5.0×10^{-1}	7.350	0.149	
	0.0 .0	010 10			
	0.16 - Δδ				
	nmr1to1 (L	Iser) Fit of Sheet1 B	_		
	0.14				
	0.12 -				
	0 10 -				
Ê	-				
(dd	0.08 -				
18 (0.06 -	Modell (d/x'	nmr1to1 (User) 1)*0.5*((x1+x+(1/K))-((x1+x+(
7		Gleichung	1/K))^2-(4*x1*x))^(1/2))		
	0.04 -	Zeichnen	B 0.3097 + 0.00391		
		ĸ	1.86503 ± 0.03903		
	0.02	x1	0.005 ± 0		
	- /	Chi-Quadr Reduziert	2.16918E-7		
	0.00 - •	R-Quadrat (COD)	0.99994		
	-	Kor. R-Quadrat	0.99993		
	-0.02				
	0.0 0.1	0.2 0.3 0	0.4 0.5		
Lewis base (M) (RM1195)					

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.496	0.000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.406	0.090
3	5.0 × 10⁻³	5.0 × 10⁻³	7.340	0.156
4	5.0 × 10⁻³	7.5 × 10⁻³	7.295	0.201
5	5.0 × 10⁻³	1.0 × 10⁻²	7.259	0.237
6	5.0 × 10⁻³	1.5 × 10⁻²	7.206	0.290
7	5.0 × 10⁻³	2.0 × 10 ^{−2}	7.178	0.318
8	5.0 × 10⁻³	5.0 × 10 ^{−2}	7.102	0.394
9	5.0 × 10⁻³	1.0 × 10⁻¹	7.079	0.417

NMR titration of tris(4-chlorophenyl)borane (1f) with triphenylphosphine (4b)

(RM1259)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.3 × 10⁻³	0.0	7.499	0.000
2	5.3 × 10⁻³	2.5 × 10⁻³	7.484	0.015
3	5.3 × 10⁻³	5.0 × 10⁻³	7.471	0.028
4	5.3 × 10 ⁻³	7.5 × 10⁻³	7.457	0.042
5	5.3 × 10⁻³	1.0 × 10⁻²	7.446	0.053
6	5.3 × 10⁻³	1.5 × 10⁻²	7.424	0.075
7	5.3 × 10 ⁻³	2.5 × 10 ^{−2}	7.387	0.112
	$\begin{array}{c} 0.12 \\ 0.10 \\ 0.00 \end{array}$	Jser) Fit of Sheet1 B		

nmr1to1 (User)

(d/x1)*0.5*((x1+x+(1/K))-((x1+x +(1/K))*2-(4*x1*x))*(1/2))

B 0.39748 ± 0.01372 16.67178 ± 0.77644 0.0053 ± 0 1.89046E-7

0.99989 0.99987

0.025

(RM1254)

0.020

(mqq) õ∆

0.04

0.02

0.00

0.000

0.005

0.010

Lewis base (M)

NMR titration of tris(4-chlorophenyl)borane (1f) with tris(4-chlorophenyl)phosphine (4c)

Modell

Gleichung Zeichnen

Chi-Quadr Reduzier R-Quadrat (COD)

or. R-Quadra

0.015

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 3,5-dinitropyridine (2l)

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 4-chloro-3,5-dinitropyridine (2m)

			, , ,	A E ()
Entry	Borane (M)	LB (M)	ბ (ppm)	Δծ (ppm)
1	5.0 × 10⁻³	0.0	6.6766	0.0000
2	5.0 × 10⁻³	2.5 × 10⁻³	6.6168	0.0598
3	5.0 × 10⁻³	5.0 × 10⁻³	6.5771	0.0995
4	5.0 × 10⁻³	7.5 × 10⁻³	6.5618	0.1148
5	5.0 × 10⁻³	1.0 × 10 ⁻²	6.5541	0.1225
6	5.0 × 10⁻³	1.5 × 10⁻²	6.5495	0.1271
7	5.0 × 10⁻³	2.0 × 10 ⁻²	6.5475	0.1291
	0.14 0.12 0.12	er) Fit of Sheet1 B	8	

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 4-fluorobenzonitrile (3b)

(RM1238)

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with tris(4methoxyphenyl)phosphine (4a)

			-		-		
Entry	Bo	orane (M)	LB (M)		δ (ppm)	Δδ (ppm)
1	5.0	0 × 10 ⁻	-3	0.0		6.6759	0.0000
2	5 (0 x 10 ⁻	-3	25 x 1(n -3	6 5364	0 1305
2	5.0		.3		J D-3	0.0004	0.1000
3	5.0	$J \times 10^{-1}$	-5	5.0 × 10	J ^{_3}	6.4241	0.2518
4	5.0	0 × 10 ⁻	-3	7.5 × 10) ⁻³	6.3767	0.2992
5	5.0	0 × 10⁻	-3	1.0 × 10) ⁻²	6.3449	0.3310
6	5 (0 × 10 ⁻	-3	15×10) ⁻²	6 3187	0 3572
7	5.0	0 v 10-	-3	20×10	J−2	6 3065	0.3604
_/	5.0	J ^ 10	-	2.0 ^ 10	J -	0.3005	0.3094
Ê	0.35 - 0.30 - 0.25 - 0.20	nm	r1to1 (User) F	it of Sheet1 B			
Jdc	- 0.20			Modell	nmr1to1 (User)	
1) 81	0.15			Gleichung	(d/x1)*0.5*((x1+ x1+x+(1/K))^2-(·x+(1/K))-((4*x1*x))^(1	
7	ŀ	/	-	Zeichnen	B		
	0.10 -			d	0.39676 ± 0	.00512	
	ŀ			K	860.88103 ±	15.00705	
	0.05 -			Chi-Quadr Reduz	ie 1.43794	E-5	
	1			R-Quadrat (COD)	0.9993	34	
	0.00			Kor. R-Quadrat	0.9992	21	
	-0.05		<u> </u>				
		0.000	0.005	0.010	0.015 0	.020	
Lewis base (M)							

(RM1237)

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 4-methoxyacetophenone (5a)

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 4-methylacetophenone (5b)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	3.0 × 10⁻³	0.0	6.6815	0.0000
2	3.0 × 10⁻³	3.00 × 10 ^{−2}	6.6619	0.0196
3	3.0 × 10⁻³	5.95 × 10 ⁻²	6.6381	0.0434
4	3.0 × 10⁻³	1.12 × 10⁻¹	6.6168	0.0647
5	3.0 × 10⁻³	1.81 × 10⁻¹	6.5958	0.0857
6	3.0 × 10⁻³	2.41 × 10⁻¹	6.5891	0.0924
7	3.0 × 10⁻³	3.00 × 10⁻¹	6.5828	0.0987

(RM1177)

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 4-(trifluoromethyl)acetophenone (5d)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	3.0 × 10 ⁻³	0.0	6.6783	0.0000
2	3.0 × 10⁻³	3.0 × 10⁻³	6.6779	0.0004
3	3.0×10^{-3}	7 5 × 10⁻³	6 6777	0 0006
4	3.0×10^{-3}	1.5×10^{-2}	6 6751	0.0032
5	3.0×10^{-3}	3.0×10^{-2}	6 6730	0.0053
6	3.0×10^{-3}	5.0×10^{-2}	6 6692	0.0000
0	$3.0 \times 10^{\circ}$	0.1×10^{-1}	0.0082	0.0101
1	3.0 × 10 ⁻³	1.2 × 10 ⁻¹	6.6618	0.0165
8	3.0 × 10⁻³	2.8 × 10 ⁻¹	6.6538	0.0245
∆ð (ppm)	$\begin{array}{c} 0.025 \\ 0.020 \\ - \\ 0.010 \\ - \\ 0.005 \\ 0.000 \\ - \\ 0.000 \\ - \\ 0.00 \\ 0.005 \\ - \\ 0.00 \\ 0.05 \\ - \\ 0.00 \\ 0.05 \\ 0 \\ 0.05 \\ 0 \\ 0.00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Modell Gleichung Zeichnen d K x1 Chi-Quadr Reduziert Kor. R-Quadrat L 10 0.15 0.20	nmr1to1 (User) (d/x1)*0.5*((x1+x+(1/K))-(x1 +x+(1/K))*2.(4*x1*x)^{(1/2)} B 0.04105 ± 0.0023 5.41948 ± 0.57641 0.003 ± 0 2.45132E-7 0.99735 0.9969	
			(RM1153)	
		. ,		

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 4-nitroacetophenone (5e)

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 4-methoxybenzaldehyde (7a)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)		
1	4.3 × 10⁻³	0.0	6.6481	0.0000		
2	4.3 × 10⁻³	2.5 × 10⁻³	6.5750	0.0731		
3	4.3 × 10⁻³	5.0 × 10⁻³	6.5432	0.1049		
4	4.3 × 10⁻³	7.5 × 10⁻³	6.5307	0.1174		
5	4.3 × 10⁻³	1.0 × 10⁻²	6.5279	0.1202		
6	4.3 × 10⁻³	1.5 × 10⁻²	6.5257	0.1224		
7	4.3 × 10⁻³	2.5 × 10⁻²	6.5239	0.1242		
0. 0. 0.	14 - nmr1to1 (User) F 12 - 10 10 - 10 08 - 10	it of Sheet1 B				
0.0 V	06 -	Modell nmr1 (d/x1)*0.5*((x1	to1 (User) +x+(1/K))-((x1+x+(
		Sterchung 1/K)/^2-(4*x1*x)/^(1/2)) Zeichnen B				
0.0		d 0.1250	4 ± 0.00267			
0.1	n2 _	x1 0.0	043 ± 0			
0.		Chi-Quadr Reduziert 1.1 R=Quadrat (COD) 0.	9878E-5 99514			
0.0	00 – 🔳	Kor. R-Quadrat 0.	99417			
	0.000 0.005 0.0	010 0.015 0.020	0.025			
	Lewis base (M) (RM1187)					

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with benzaldehyde (7b)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	10.1462	0.0000
2	5.0 × 10 ⁻³	1.65 × 10⁻²	10.1248	0.0214
3	5.0 × 10 ⁻³	3.30 × 10 ⁻²	10.1049	0.0413
4	5.0 × 10 ⁻³	5.05 × 10 ⁻²	10.0826	0.0636
5	5.0 × 10 ⁻³	7.50 × 10 ⁻²	10.0560	0.0902
6	5.0 × 10⁻³	1.175 × 10⁻¹	10.0178	0.1284
0	14 -			

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with 4-nitrobenzaldehyde (7d)

NMR titration of tris(2,4,6-trifluorophenyl)borane (1g) with trans-crotonaldehyde (8)

Entry	Borane (M)	LB (M)	δ	o (ppm)	Δδ (ppm)
1	5.0 × 10 ⁻³	0.0	6	6572	0.0000
2	5.0×10^{-3}	2.5 × 10	-3 6	5982	0.0590
2	5.0×10^{-3}	E 0 v 10	-3 6	5607	0.0045
3	5.0 × 10 °	5.0 * 10	0	0.0027	0.0945
4	5.0 × 10⁻³	7.5 × 10	⁻³ 6	6.5454	0.1118
5	5.0 × 10⁻³	1.0 × 10	-2 6	6.5377	0.1195
6	5.0×10^{-3}	1.5×10	-2 6	5295	0 1277
7	5.0 ··· 10-3	0.5 - 10	-2 0		0.12/1
/	5.0 × 10 °	2.5 × 10	6 0	0.5231	0.1341
(Wa	0.12				
a)	= 0.06 - -	Modell	nmr1to1 (User)		
$\Delta\delta$		Gleichung	(d/x1)*0.5*((x1+x+(1/K) x+(1/K))^2-(4*x1*x))^(I)-((x1+ (1/2))	
	0.04 -	Zeichnen	В		
	- /	d	0.13728 ± 0.0022	18	
	0.02 -	K x1	0.005 ± 0	699	
	- /	Chi-Quadr Reduziert	4.54238E-6		
	0.00 -	R-Quadrat (COD)	0.99835		
	0.00 –	Kor. R-Quadrat	0.99802		
	-0.02				
	0.000 0.005 0.01	0 0.015	0.020 0.02	25	
	Lewi	is base (M)			
					(RM1187)

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with 3,5-dinitropyridine (2l)

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with 4-chloro-3,5-dinitropyridine (2m)

S108

Entry	Borane (M)	LB (M)	δ (ppr	n) Δδ (ppm)
1	5.0 × 10 ⁻³	0.0	7.192	0 0.0000
2	5.0 × 10⁻³	2.5 × 10⁻	³ 6.974	3 0.2177
3	5.0 × 10⁻³	5.0 × 10⁻	³ 6.813	2 0.3788
4	5.0×10^{-3}	7.5 × 10 ⁻	³ 6 761	7 0 4303
5	5.0×10^{-3}	1.0×10^{-1}	² 6746	5 0.4455
6	5.0×10^{-3}	1.5 × 10 ⁻	2 6 7 3 6	2 0.4558
7	5.0×10^{-3}	1.0×10^{-10}	2 6 7 2 2	2 0.4500 E 0.450E
_/	5.0 × 10 °	2.0 * 10	² 0.732	5 0.4595
	0.5 0.4 0.3	er) Fit of Sheet1 B		
1) 34	0.2 -	Modell Gleichung	nmr1to1 (User) (d/x1)*0.5*((x1+x+(1/K))-((x1 +x+(1/K))^2-(4*x1*x))^(1/2))	
	- /	Zeichnen	В	
	0.1	d	0.46516 ± 0.00136	
	0.1	K	4630.4592 ± 250.31973	
	- /	XI Chi-Quadr Reduziert	2.6391E-6	
		R-Quadrat (COD)	0.99993	
	0.0 - 🖬	Kor. R-Quadrat	0.99991	
	0.000 0.005	0.010 0.0	0.020	
		(RM1211)		

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with acetonitrile (3a)

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with 4-fluorobenzonitrile (3b)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.1869	0.0000
2	5.0 × 10⁻³	5.0 × 10⁻³	7.0956	0.0913
3	5.0 × 10⁻³	1.0 × 10 ^{−2}	7.0429	0.1440
4	5.0 × 10⁻³	1.75 × 10⁻²	6.9944	0.1925
5	5.0 × 10⁻³	2.50 × 10 ⁻²	6.9704	0.2165
6	5.0 × 10⁻³	3.75 × 10⁻²	6.9427	0.2442
7	5.0 × 10⁻³	5.0 × 10 ⁻²	6.9333	0.2536

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with 4-methoxyacetophenone (5a)

(RM1172)

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with 4-methylacetophenone (5b)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10 ⁻³	0.0	7.193	0.000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.176	0.017
3	5.0 × 10⁻³	5.0 × 10 ⁻³	7.164	0.029
4	5.0 × 10⁻³	7.5 × 10⁻³	7.150	0.043
5	5.0 × 10⁻³	1.0 × 10 ⁻²	7.139	0.054
6	5.0 × 10⁻³	2.0 × 10 ⁻²	7.088	0.105
7	5.0 × 10⁻³	3.0 × 10 ^{−2}	7.047	0.146
8	5.0 × 10⁻³	7.41 × 10 ⁻²	6.985	0.208
9	5.0 × 10⁻³	1.59 × 10 ⁻¹	6.944	0.249
0.: 〔 E	20 - 15 -	er) Fit of Sheet1 B	_	
d)		Modell	nmr1to1 (User)	
∛ 0 .	10 -	Gleichung	(d/x1)*0.5*((x1+x+(1/K))-((x1+x +(1/K))^2-(4*x1*x))^(1/2))	
0.	05 -	Zeichnen d K x1	B 0.31062 ± 0.01054 27.84828 ± 2.47291 0.005 ± 0	
0.0		Chi-Quadr Reduziert R-Quadrat (COD) Kor. R-Quadrat	3.52721E-5 0.99608 0.99552	
	-0.02 0.00 0.02 0.04	0.06 0.08 0.10	0.12 0.14 0.16 0.18	
		Lewis base (M)		(RM1163)

S110

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	6.6584	0.0000
2	5.0 × 10⁻³	2.5 × 10⁻³	6.5893	0.0691
3	5.0 × 10⁻³	5.0 × 10⁻³	6.5609	0.0975
4	5.0 × 10 ⁻³	7.5 × 10⁻³	6.5529	0.1055
5	5.0 × 10⁻³	1.0 × 10 ⁻²	6.5493	0.1091
6	5.0 × 10⁻³	1.5 × 10⁻²	6.5465	0.1119
7	5.0 × 10 ⁻³	2.0 × 10 ⁻²	6.5466	0.1118

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with *p*-anisaldehyde (7a)

(RM1198)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.1720	0.0000
2	5.0 × 10 ⁻³	5.0 × 10 ⁻²	7.0955	0.0765
3	5.0 × 10⁻³	1.5 × 10⁻¹	7.0154	0.1566
4	5.0 × 10⁻³	2.5 × 10⁻¹	6.9667	0.2053
5	5.0 × 10 ⁻³	4.0 × 10 ⁻¹	6.9269	0.2451
6	5.0 × 10⁻³	5.5 × 10⁻¹	6.9053	0.2667
7	5.0 × 10⁻³	7.5 × 10⁻¹	6.8869	0.2851

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with 4-bromobenzaldehyde (7c)

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with 4-nitrobenzaldehyde (7d)

(RM1197)

Entry	Borane (M)	LB (M)	δ (ppr	n) Δδ (ppm)	
1	5.0 × 10⁻³	0.0	7.181	0.0000	
2	5.0 × 10⁻³	2.5 × 10) ⁻³ 6.995	3 0.1863	
3	5.0 × 10⁻³	5.0 × 10) ⁻³ 6.8664	4 0.3152	
4	5.0 × 10 ^{−3}	7.5 × 10) ⁻³ 6.825	6 0.3560	
5	5.0×10^{-3}	1.0×10^{-1}) ⁻² 6.801	5 0.3801	
6	5.0×10^{-3}	1.5 × 10	6788	0.3927	
7	5.0×10^{-3}	2.5 × 10	6.780	3 0 4013	
	0.3 -	Modell	nmr1to1 (User) (d/x1)*0.5*((x1+x+(1/K))-((x1		
	ă .	Zeichnen	+x+(1/K))^2-(4*x1*x))^(1/2)) B		
	0.1	d	0.40611 ± 0.00429		
	0.1	К	2842.25028 ± 414.2239		
		x1	0.005 ± 0		
		Chi-Quadr Reduziert	2.2835E-5		
	0.0 -	R-Quadrat (COD)	0.99913		
		KUI. K-Quaulai	0.00000		
		0.040 0.045			
	0.000 0.005	0.010 0.015	0.020 0.025		
	Lewis base (M) (RM1199)				

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with trans-crotonaldehyde (8)

Entry	LB (M)	Borane	(M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0		7.722	0.000
2	5.0 × 10⁻³	2.0 × 10) -3	7.791	0.069
3	5.0 × 10⁻³	3.75 × 1	0-3	7.854	0.132
4	5.0 × 10⁻³	5.0 × 10) ⁻³	7.906	0.184
5	5.0 × 10⁻³	6.25 × 1	10 ⁻³	7.929	0.207
6	5.0 × 10⁻³	7.50 × 1	0-3	7.935	0.213
7	5.0 × 10 ^{−3}	1.0 × 10)-2	7.941	0.219
8	5.0 × 10 ⁻³	1.5 × 10) ⁻²	7.941	0.219
0.25	Δδ nmr1to1 (User) F	Fit of Sheet1 B			
udd)	_	Modell	nmr1to1 (User)	1	
v 0.10 −		Gleichung	(d/x1)*0.5*((x1+x+(1/K))-((x1+ x+(1/K))^2-(4*x1*x))^(1/2))		
ŀ	,	Zeichnen	В	-	
0.05		q	0.219 ± 0 35105.44452 + 18216.90839	-	
5.00		x1	0.00598 ± 1.21453E-4	-	
ŀ		Chi-Quadr Reduziert	1.11508E-5		
		R-Quadrat (COD)	0.99858	1	
0.00		Kor. R-Quadrat	0.99834]	

(RM1176/RM1241)

The value of x1 (that is, the LB concentration) was allowed to vary in the fitting process.

Entry	LB (M)	Borane (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10 ⁻³	0.00	2.6261	0.0000
2	5.0 × 10⁻³	1.65 × 10⁻³	2.6860	0.0599
3	5.0 × 10⁻³	3.30 × 10⁻³	2.7559	0.1298
4	5.0 × 10⁻³	5.00 × 10 ⁻³	2.8257	0.1996
5	5.0 × 10 ⁻³	6.65 × 10⁻³	2.8625	0.2364
6	5.0 × 10⁻³	1.00 × 10⁻²	2.8844	0.2583
7	5.0 × 10⁻³	1.50 × 10⁻²	2.8912	0.2651

(RM1251)

NMR titration of 4-nitroacetophenone (5e) with tris(pentafluorophenyl)borane (1i)

S115

Entry	LB (M)	Borane (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	9.2197	0.0000
2	5.0 × 10⁻³	2.5 × 10⁻³	9.2282	0.0085
3	5.0 × 10⁻³	5.0 × 10⁻³	9.2411	0.0214
4	5.0 × 10 ⁻³	7.5 × 10⁻³	9.2500	0.0303
5	5.0 × 10⁻³	1.0 × 10⁻²	9.2573	0.0376
6	5.0 × 10⁻³	1.5 × 10⁻²	9.2738	0.0541
7	5.0 × 10⁻³	2.0 × 10 ⁻²	9.2891	0.0694

NMR titration of methyl benzoate (6) with tris(pentafluorophenyl)borane (1i)

Entry			Borana	(N/I)	δ (nnm)	<u> </u>
			Durane			
1	ļ	5.0 × 10⁻³	0.0		8.018	0.000
2	Ę	5.0 × 10⁻³	2.5 × 10	-3	7.983	0.035
3	Ę	5.0 × 10⁻³	5.0 × 10	-3	7.973	0.045
4	Į	5.0 × 10⁻³	7.5 × 10	-3	7.954	0.064
5	Į	5.0 × 10⁻³	1.0 × 10	-2	7.923	0.095
6	Į	5.0×10^{-3}	1.5 × 10	-2	7 907	0 111
7	ļ	5.0 × 10 ⁻³	2.5 × 10	-2	7.876	0.142
<u> </u>						••••=
	0.16 г	-				
	ŀ	- Δδ				
	0.14	 nmr1to1 (User) I 	it of Sheet1 B			
	0 12	-				
	0.12					
	0.10	-				
Ē	.					
pu	0.08	- /				
d		·	Modell	nmr1to1 (Us	ser)	
$\Delta\delta$	0.06		Gleichung	(d/x1)^0.5^((x1+x+ +x+(1/K))^2-(4*x13	(1/K))-((x1 *x))^(1/2))	
	0.04	_ /=	Zeichnen	В		
	0.04	•/	d	0.23186 ± 0.0	3273	
	0.02	. /	К	73.14835 ± 21.	85643	
	0.02	- /	X1 Chi Quadr Baduriart	0.005 ± 0	5	
			R-Quadrat (COD)	0.98578	.0	
	0.00	- 🖬	Kor. R-Quadrat	0.98294		
	0.00		· · · ·	1 .		
	-0.02 -	0.000 0.005 0.0	0.015	0.020 0	.025	
		ام	wis acid (M)			
	(RM1200)					

Entry	LB (M)	Borane (M)	δ (ppm)	Δδ (ppm)		
1	5.0 × 10 ⁻³	0.0	10.1462	0.0000		
2	5.0 × 10⁻³	2.5 × 10⁻³	9.8925	0.2537		
3	5.0 × 10⁻³	5.0 × 10⁻³	9.6528	0.4934		
4	5.0 × 10⁻³	7.5 × 10⁻³	9.5759	0.5703		
5	5.0 × 10⁻³	1.0 × 10⁻²	9.5604	0.5858		
6	5.0 × 10 ⁻³	1.5 × 10⁻²	9.5534	0.5928		
7	5.0 × 10 ⁻³	2.0 × 10 ⁻²	9.5510	0.5952		
0.6						

NMR titration of 4-nitrobenzaldehyde (7d) with tris(pentafluorophenyl)borane (1i)

(RM1180)

NMR titration of 4-(dimethylamino)pyridine (2a) with tris(2,4,6-trimethylphenyl)borane (1j)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10⁻³	0.0	7.193	0.000
2	5.0 × 10⁻³	2.5 × 10⁻³	7.091	0.102
3	5.0 × 10⁻³	5.0 × 10 ⁻³	6.990	0.203
4	5.0 × 10 ⁻³	1.0 × 10 ⁻²	6.941	0.252
5	5.0 × 10⁻³	2.0 × 10 ⁻²	6.910	0.283
6	5.0 × 10⁻³	3.0 × 10 ⁻²	6.900	0.293
7	5.0 × 10⁻³	4.0 × 10 ⁻²	6.895	0.298

NMR titration of tris(3,4,5-trifluorophenyl)borane (1h) with tetrahydrothiophene (11)

(RM1465)

NMR titration of tris(4-chlorophenyl)borane (1f) with tetrahydrothiophene (11)

Entry	Borane (M)	LB (M)	δ (ppm)	Δδ (ppm)
1	5.0 × 10 ⁻³	0.00	7.498	0.000
2	5.0 × 10⁻³	1.25 × 10⁻¹	7.395	0.103
3	5.0 × 10⁻³	2.50 × 10⁻¹	7.341	0.157
4	5.0 × 10⁻³	3.75 × 10⁻¹	7.305	0.193
5	5.0 × 10⁻³	5.00 × 10 ⁻¹	7.281	0.217
6	5.0 × 10⁻³	7.50 × 10⁻¹	7.252	0.246
7	5.0 × 10⁻³	1.00	7.235	0.263

(RM1464)

VII.Computation Details

General

Initially, all structures were subjected to a conformational search using the OPLS3^{S40} force field as implemented in Macromodel.^{S41} All conformers were then optimized at the corresponding level of theory (see respective sections below) with the Gaussian 16 software package.^{S42} Frequency analyses were performed to confirm that all structures correspond to minima.

Test of DFT Functionals

We tested the overall quality of different commonly employed DFT functionals for the prediction of equilibrium constants for Lewis adduct formation in comparison to a set of experimental equilibrium constants determined in this work. To avoid a bias for a certain type of Lewis base, the set of Lewis adducts **1d/2d**, **1f/3a**, **1h/7b**, and **1f/4b** was selected under the aspect of diversity to reflect the formation of B-N, B-O, and B-P adducts. At the same time, the experimentally determined equilibrium constants for these four Lewis adducts cover the experimentally relevant range from 1.4×10^6 to 4.9 M^{-1} .

Within the test set, conformers of the Lewis adducts depicted below were first optimized at $SMD(DCM)^{S43}/B3LYP^{S44}-D3BJ^{S45}/def2-SVP^{S46}$ level of theory. The minimum conformer of each species was subsequently optimized with further DFT methods. Thermochemical corrections were obtained at the same level using the rigid rotor harmonic oscillator (RRHO) model as implemented in Gaussian. Alternatively, we tested the Grimme's quasi-harmonic RRHO approximation.^{S47} A free energy change of +7.91 kJ/mol (= R · 298 K · In(22.46 L mol⁻¹/L mol⁻¹)) was applied to all free energies for their conversion from gas phase (1 atm) to liquid phase (1 M).

Table S6: Gibbs reaction energies $\Delta_r G$ calculated at different DFT levels with thermochemical analysis based on the RRHO model.

	1d/2d	1f/3a	1h/7b	1f/4b	1d/2d	1f/3a	1h/7b	1f/4b	MUE	Error
_	$\Delta_{r}G$ (kJ/mol)					deviation from experiment (kJ/mol)				/mol)
Experimental	-34.5	-3.9	-13.2	-12.3	0.0	0.0	0.0	0.0		
B3LYP-D3BJ/def2-SVP	-42.5	-19.6	-23.1	-39.8	8.0	15.7	9.9	27.5	15.3	15.3 ± 7.6
B3LYP-D3BJ/def2-TZVP	-21.7	-1.3	-4.8	-23.4	-12.7	-2.5	-8.4	11.0	8.7	-3.2 ± 9.0
M06-2X/def2-TZVP	-31.3	-11.5	-17.9	10.6	-3.2	7.6	4.7	-22.9	9.6	-3.4 ± 11.9
wb97xd/def2-TZVP	-24.4	-2.7	-10.1	-18.1	-10.0	-1.2	-3.1	5.8	5.0	-2.1 ± 5.6
PBE-D3BJ/def2-TZVP	-35.3	-17.5	-14.5	-29.3	0.8	13.6	1.3	16.9	8.2	8.2 ± 7.2
PBE0-D3BJ/def2-TZVP	-38.0	-15.3	-14.7	-33.0	3.5	11.4	1.5	20.7	9.3	9.3 ± 7.5
M06/def2-TZVP	-13.4	-1.1	3.3	9.4	-21.1	-2.8	-16.5	-21.7	15.5	-15.5 ± 7.6
M06-L/def2-TZVP	-12.4	1.5	5.4	9.0	-22.0	-5.4	-18.6	-21.3	16.8	-16.8 ± 6.7
MN15/def2-TZVP	-33.2	-12.5	-20.8	-7.7	-1.3	8.6	7.6	-4.7	5.5	2.6 ± 5.7
BP86-D3BJ/def2-TZVP	-42.5	-11.9	-13.7	-57.1	8.1	8.0	0.5	44.7	15.3	15.3 ± 17.2
B97D3/def2-TZVP	-20.7	-1.7	1.7	-28.4	-13.8	-2.1	-14.9	16.1	11.7	-3.7 ± 12.5

MUE = mean unassigned error

	1d/2d	1f/3a	1h/7b	1f/4b	1d/2d	1f/3a	1h/7b	1f/4b	MUE	Error
	∆G (kJ/mol)				deviation from experiment (kJ/mol)					
Experimental	-34.5	-3.9	-13.2	-12.3	0.0	0.0	0.0	0.0		
B3LYP-D3BJ/def2-SVP	-38.1	-10.6	-13.8	-34.3	3.7	6.7	0.6	21.9	8.2	8.2 ± 8.2
B3LYP-D3BJ/def2-TZVP	-17.3	9.4	5.0	-18.5	-17.1	-13.2	-18.2	6.2	13.7	-10.6 ± 9.9
M06-2X/def2-TZVP	-26.5	-0.5	-5.6	10.8	-7.9	-3.4	-7.6	-23.1	10.5	-10.5 ± 7.5
wb97xd/def2-TZVP	-21.1	6.4	2.0	-13.6	-13.3	-10.3	-15.2	1.2	10.0	-9.4 ± 6.4
PBE-D3BJ/def2-TZVP	-30.8	-6.8	-2.8	-24.4	-3.7	2.9	-10.4	12.1	7.3	0.2 ± 8.3
PBE0-D3BJ/def2-TZVP	-33.6	-5.9	-4.8	-29.2	-0.9	2.0	-8.4	16.9	7.0	2.4 ± 9.2
M06/def2-TZVP	-9.6	8.4	12.9	15.5	-24.9	-12.3	-26.1	-27.9	22.8	-22.8 ± 6.1
M06-L/def2-TZVP	-6.6	12.0	16.9	13.0	-27.8	-15.9	-30.1	-25.4	24.8	-24.8 ± 5.4
MN15/def2-TZVP	-28.4	-1.9	-8.2	-3.9	-6.0	-2.0	-5.0	-8.4	5.4	-5.4 ± 2.4
BP86-D3BJ/def2-TZVP	-38.1	-3.5	-4.0	-53.4	3.6	-0.4	-9.2	41.1	13.6	8.8 ± 19.2
B97D3/def2-TZVP	-16.0	11.0	12.3	-24.0	-18.5	-14.9	-25.5	11.7	17.6	-11.8 ± 14.1

Table S7 Gibbs reaction energies ΔG calculated at different DFT levels with thermochemical analysis based on Grimme's quasi-harmonic RRHO approximation.

MUE = mean unassigned error

The accuracy of the different DFTmethods in predicting the experimental Gibbs energies of reaction for the Lewis adduct formations **1d/2d**, **1f/3a**, **1h/7b**, and **1d/4b** is illustrated in Fig. S6. The best agreement of computed and experimental $\Delta_r G$ with the lowest scattering was obtained for the MN15 functional using the quasi-harmonic approximation by Grimme. By using the MN15 functional ΔG values are on average by -5.4 ± 2.4 kJ/mol lower than those determined by experiment. All other methods show a significantly stronger scattering and/or enhanced errors.

Fig. S6. Comparison of the predictive power of the tested DFT methods.

Species	Filename	E _{tot} (hartree)	G _{298, RRHO} (hartree)	G _{298, qHRRHO} (hartree)
	SMD(DCM)/B3LYP-D3BJ/	/def2-SVP		
1d-2d	1d_2d_b3lyp_svp.log	-967.580904	-967.261964	-967.257686
1d	1d_b3lyp_svp.log	-719.411898	-719.178108	-719.175492
1f-3a	1f_3a_b3lyp_svp.log	-2230.516442	-2230.280204	-2230.272777
1f-4b	1f_4b_b3lyp_svp.log	-3133.687340	-3133.234860	-3133.224625
1f	1f_b3lyp_svp.log	-2097.826879	-2097.628483	-2097.624492
1h-7b	1h_7b_b3lyp_svp.log	-1957.187909	-1956.937739	-1956.929423
1h	1h_b3lyp_svp.log	-1611.800125	-1611.650875	-1611.646157
10	2d_b3lyp_svp.log	-248.132100	-248.070679	-248.070681
3a	3a_b3lyp_svp.log	-132.008240	-132.047270	-132.647277
4D 75	4b_b3lyp_svp.log	-1035.821657	-1035.594213	-1035.590088
70	/b_b3lyp_svp.log	-345.300043	-345.281089	-345.281040
	SMD(DCM)/B3LYP-D3BJ/	def2-TZVP		
1d-2d	1d_2d_b3lyp.log	-968.619918	-968.302046	-968.297641
1d	1d_b3lyp.log	-720.184081	-719.951320	-719.948593
1f-3a	1f_3a_b3lyp.log	-2231.916474	-2231.682054	-2231.673940
1f-4b	1f_4b_b3lyp.log	-3135.801163	-3135.349237	-3135.339261
1f	1f_b3lyp.log	-2099.078392	-2098.880774	-2098.876735
1h-7b	1h_7b_b3lyp.log	-1959.441112	-1959.193556	-1959.184953
1h	1h_b3lyp.log	-1613.676211	-1613.528486	-1613.523710
1d	2d_b3lyp.log	-248.406839	-248.345462	-248.345465
3a	3a_b3lyp.log	-132.824924	-132.803781	-132.803783
4b	4b_b3lyp.log	-1036.689409	-1036.462575	-1036.458481
7b	/b_b3lyp.log	-345.745387	-345.666256	-345.666178
	SMD(DCM)/M06-2X/def2-	TZVP		
1d-2d	1d_2d_m062x.log	-968.100562	-967.779940	-967.775479
1d	1d_m062x.log	-719.791317	-719.556428	-719.553786
1f-3a	1f_3a_m062x.log	-2231.382375	-2231.145307	-2231.137190
1f-4b	1f_4b_m062x.log	-3134.901979	-3134.443477	-3134.434943
1f	1f_m062x.log	-2098.608465	-2098.408712	-2098.404788
1h-7b	1h_7b_m062x.log	-1958.616550	-1958.366699	-1958.357276
1h	1h_m062x.log	-1613.026267	-1612.875443	-1612.870786
1d	2d_m062x.log	-248.276759	-248.214604	-248.214606
3a	3a_m062x.log	-132.756869	-132.735240	-132.735243
40 75	4b_m062x.log	-1030.209873	-1036.041797	-1030.037205
70	7b_11062X.10g	-343.30/3/0	-343.407449	-343.407300
	SMD(DCM)/wb97xd/def2-	TZVP		
1d-2d	1d_2d_wb97xd.log	-968.168956	-967.847063	-967.842849
1d	1d_wb97xd.log	-719.843274	-719.608527	-719.605569
1f-3a	1f_3a_wb97xd.log	-2231.464208	-2231.225314	-2231.217923
1f-4b	1f_4b_wb97xd.log	-3135.048309	-3134.590520	-3134.580953
11	1f_wb97xd.log	-2098.682607	-2098.482187	-2098.478264
1n-/b	1h_/b_wb9/xd.log	-1958.709887	-1958.460350	-1958.450821
10 4 d	In_wb97xd.log	-1013.097827	-1012.947450	-1012.942042
10	2a_wb97xd.log	-248.294408	-248.232249	-248.232231
Ja Ab	Ja_wb97xd.log	1026 22/2/0	1026 104/51	1036 100536
40 7b	7b_wb97xd.log	-345.592189	-345.512061	-345.511966
	_ 3			
1d-2d	SMD(DCM)/PBE-D3BJ/de	12-TZVP	-966 986715	-066 082117
1d	1d_za_pbe.log	-301.233230	-300.300713	-300.302117
1f-3a	15 3a nhe log	-713.101403	-710.337143	-710.304214
1f-4h	1f 4b phe log	-3133 095328	-3132 660591	-3132 650168
1f	1f pbe log	-2097 498537	-2097 308682	-2097 304458
 1h-7b	1h 7b pbe.log	-1957.244910	-1957.009102	-1956.999658
1h	1h pbe.log	-1611.923522	-1611.782716	-1611.777824
1d	2d pbe.loa	-248.077896	-248.019138	-248.019141
3a	3a pbe.log	-132.647717	-132.627882	-132.627884
4b	4b pbe.log	-1035.561851	-1035.343774	-1035.339435
7b	7b_pbe.log	-345.299640	-345.223866	-345.223777

Table S8: Raw computational data at different levels of theory in dichloromethane.

	SMD(DCM)/PBE0-D3BJ/d	ef2-TZVP		
1d-2d 1d 1f-3a 1f-4b 1f 1h-7b 1h 1d 3a 4b 7b	1d_2d_pbe0.log 1d_pbe0.log 1f_3a_pbe0.log 1f_4b_pbe0.log 1f_pbe0.log 1h_7b_pbe0.log 1h_pbe0.log 2d_pbe0.log 3a_pbe0.log 4b_pbe0.log 7b_pbe0.log	-967.387272 -719.256980 -2230.344786 -3133.366539 -2097.671216 -1957.292343 -1611.949681 -248.095085 -132.653753 -1035.657668 -345.319088	-967.067805 -719.023109 -2230.108025 -3132.912014 -2097.472801 -1957.042154 -1611.800098 -248.033246 -132.632424 -1035.429656 -345.239458	-967.063415 -719.020394 -2230.100235 -3132.902272 -2097.468589 -1957.033463 -1611.795266 -248.033249 -132.632426 -1035.425561 -345.239378
	SMD(DCM)/M06/def2-TZV	'P		
1d-2d 1d 1f-3a 1f-4b 1f 1h-7b 1h 1d 3a 4b 7b	1d_2d_m06.log 1d_m06.log 1f_3a_m06.log 1f_4b_m06.log 1f_m06.log 1h_7b_m06.log 1h_m06.log 2d_m06.log 3a_m06.log 4b_m06.log 7b_m06.log	-967.733609 -719.516036 -2231.046586 -3134.336287 -2098.313635 -1958.250996 -1612.770727 -248.191668 -132.719081 -1036.003773 -345.463559	-967.417800 -719.284990 -2230.812920 -3133.885260 -2098.117557 -1958.001934 -1612.621481 -248.130716 -132.697950 -1035.778522 -345.384724	-967.413369 -719.282007 -2230.805035 -3133.876500 -2098.113308 -1957.993539 -1612.616817 -248.130719 -132.697951 -1035.774321 -345.384645
	SMD(DCM)/M06L/def2-TZ	VP		
1d-2d 1d 1f-3a 1f-4b 1f 1h-7b 1h 1d 3a 4b 7b	1d_2d_m06l.log 1d_m06l.log 1f_3a_m06l.log 1f_4b_m06l.log 1f_m06l.log 1h_7b_m06l.log 1h_m06l.log 2d_m06l.log 3a_m06l.log 4b_m06l.log 7b_m06l.log	-968.357473 -719.988165 -2231.628541 -3135.308322 -2098.818832 -1959.037087 -1613.359921 -248.345402 -132.798126 -1036.468976 -345.663250	-968.039917 -719.754203 -2231.393246 -3134.855736 -2098.620140 -1958.790129 -1613.211214 -248.283996 -132.776694 -1036.242020 -345.583981	-968.035239 -719.751730 -2231.385488 -3134.846200 -2098.616394 -1958.781018 -1613.206559 -248.283998 -132.776695 -1036.237784 -345.583913
	SMD(DCM)/MN15/def2-TZ	ZVP		
1d-2d 1d 1f-3a 1f-4b 1f 1h-7b 1h 1d 3a 4b 7b	1d_2d.log 1d.log 1f_3a.log 1f_4b.log 1f_log 1h_7b.log 1h_log 2d.log 3a.log 4b.log 7b.log	-967.288983 -719.183183 -2230.425035 -3133.375826 -2097.759858 -1957.359664 -1612.040717 -248.073066 -132.647673 -1035.588730 -345.295354	-966.970440 -718.949547 -2230.189357 -3132.922388 -2097.561415 -1957.112128 -1611.891398 -248.011268 -132.626196 -1035.361063 -345.215818	-966.966127 -718.947039 -2230.181409 -3132.913002 -2097.557514 -1957.102630 -1611.886781 -248.011271 -132.626199 -1035.357020 -345.215736
1d-2d	SMD(DCM)/BP86-D3BJ/de	et2-TZVP	068 260541	068 26/027
1d 1f-3a 1f-4b 1f 1h-7b 1h 1d 3a 4b 7b	1d_bp86.log 1f_3a_bp86.log 1f_4b_bp86.log 1f_bp86.log 1h_7b_bp86.log 1h_bp86.log 2d_bp86.log 3a_bp86.log 4b_bp86.log 7b_bp86.log	-300.373732 -720.140941 -2231.976088 -3135.864960 -2099.138799 -1959.411206 -1613.654461 -248.397924 -132.818123 -1036.679163 -345.733688	-308.209341 -719.917037 -2231.749547 -3135.429199 -2098.949652 -1959.174476 -1613.514177 -248.339318 -132.798366 -1036.460823 -345.658084	-306.204937 -719.914119 -2231.742032 -3135.419395 -2098.945347 -1959.165771 -1613.509268 -248.339321 -132.798368 -1036.456723 -345.657994
	SMD(DCM)/B97D3/def2-T	ZVP		
1d-2d 1d	1d_2d.log 1d.log	-967.863511 -719.614698	-967.554716 -719.388593	-967.549973 -719.385636

1f-3a 1f-4b	1f_3a.log 1f_4b.log	-2231.291166 -3134.713161	-2231.065370 -3134.273861	-2231.056388 -3134.263638
1f	1f.log	-2098.549749	-2098.358103	-2098.353959
1h-7b	1h_7b.log	-1958.191922	-1957.953159	-1957.944221
1h	1h.log	-1612.682208	-1612.539965	-1612.535138
1d	2d.log	-248.220603	-248.161254	-248.161257
3a	3a.log	-132.729784	-132.709617	-132.709618
4b	4b.log	-1036.128072	-1035.907940	-1035.903554
7b	7b.log	-345.493445	-345.416856	-345.416770

Isodesmic Reactions as Tool to Calculate Equilibrium Constants

Isodesmic reactions are appropriate tools to reduce the errors of computational methods. The MN15 DFT level was identified to reproduce experimental equilibrium constants of Lewis adduct formation in this work with acceptable accuracy, and we used the following Scheme for the computation of Gibbs energies of association of boranes and Lewis bases. By combining the experimental $\Delta_r G$ values from Eq (II) with the computationally accessible $\Delta_r G$ for the isodesmic reaction in Eq (I), we arrive at ΔG_{iso} which is founded on the experimental equilibrium constants for a certain Lewis base.

Next, we set out to assess the Lewis acidity LA_B of BBr₃, BCl₃, and BF₃. Pyridine (**2d**), acetonitrile (**3a**), and benzaldehyde (**7b**) were chosen as reference Lewis bases which were optimized at the SMD(DCM)^{S43}/MN15^{S48}/def2-TZVP^{S46} level of theory. Thermochemical corrections were calculated using Grimme's quasi-harmonic approximation.^{S47}

Table	S9 :	Energies	of	the	reaction	of	boron	halides	with	pyridine	(1d)	at	the
SMD(DCM)	/MN15/def2	-TZ	VP le	vel of theo	ry a	nd calcu	ulation of	LA _B vi	a an isode	smic r	eac	tion.

Species		E _{tot} (hartree)	G ₂₉₈ (hartree)	∆r G(I) (kJ/mol)	∆r G(II) ª (kJ/mol)	∆G _{iso} (kJ/mol)	К _В (М ^{−1}) ^b	LAB ^b
1d-Pyridine 1d	1d_2d.log 1d.log	-967.288983 -719.183183	-966.966127 -718.947039					
BBr₃	bbr3.log	-7748.408212	-7748.434048					
BBr ₃ -Pyridine	bbr3_2d.log	-7996.538426	-7996.478099	-65.5	-34.5	-100.0	6.85 × 10 ¹⁷	11.7
BCl₃	bcl3.log	-1405.317291	-1405.338254					
BCl₃-Pyridine	bcl3_2d.log	-1653.446263	-1653.381447	-63.3	-34.5	-97.8	2.72 × 10 ¹⁷	11.3
BF₃	bf3.log	-324.456841	-324.470180					
BF3-Pyridine	bf3_2d.log	-572.582190	-572.511173	-57.5	-34.5	-92.0	2.54 × 10 ¹⁶	10.3
a Evnorimo	ntal K for the	reaction of 1	huith 2d (aca	Table C1		tod to A		пт

^{*a*} Experimental K_B for the reaction of **1d** with **2d** (see Table S1) converted to $\Delta_r G$ with $\Delta_r G = -RT$ In K_B . ^{*b*} At 20 °C. **Table S10**: Energies of the reaction of boron halides with benzaldehyde (**7b**) at the SMD(DCM)/MN15/def2-TZVP level of theory and calculation of LA_B via an isodesmic reaction.

LAB
³ 10.1
07
9.7
′ 9.7
3

^{*a*}: Experimental K_B for the reaction of **1h** with **7b** (see Table 1) converted to $\Delta_r G$ with $\Delta_r G = -RT \ln K_B$. ^{*b*} At 20 °C.

Table S11: Energies of the reaction of boron halides with acetonitrile (**3a**) at the SMD(DCM)/MN15/def2-TZVP level of theory and calculation of LA_B via an isodesmic reaction.

Species		E _{tot} (hartree)	G ₂₉₈ (hartree)	∆r G(I) (kJ/mol)	∆r G(II) ª (kJ/mol)	∆G _{iso} (kJ/mol)	К _В (М⁻¹) ^b	LA _B b
1f-MeCN 1f	1f_3a.log 1f.log	-2230.425035 -2097.759858	-2230.181409 -2097.557514					
BBr ₃	bbr3.log	-7748.408212	-7748.434048					
BBr₃-MeCN	bbr3_3a.log	-7881.089538	-7881.073402	-40.6	-3.9	-44.5	8.53 × 10 ⁷	8.4
BCl₃	bcl3.log	-1405.317291	-1405.338254					
BCl ₃ -MeCN	bcl3_3a.log	-1537.995002	-1537.974251	-31.8	-3.9	-35.7	2.29 × 10 ⁶	6.8
5-		004 450044	004 470400					
BF3	bf3.log	-324.456841	-324.470180					
BF3-MeCN	bf3_3a.log	-457.130481	-457.103044	-23.5	-3.9	-27.4	7.82 × 10 ⁴	5.4

^{*a*}: Experimental K_B for the reaction of **1f** with **3a** (see Table 1) converted to $\Delta_r G$ with $\Delta_r G = -RT \ln K_B$. ^{*b*} At 20 °C.

Table S12: LAB from the three reference reactions and averaged LAB

Lewis Acid	LA _B from Pyridine	LA _B from Benzaldehyde	LA _B from MeCN	LA _B Average
BBr₃	11.7	10.1	8.4	10.1 ± 1.3
BCl₃	11.3	9.7	6.8	9.3 ± 1.8
BF₃	10.3	9.7	5.4	8.4 ± 2.0

Fluoride Ion Affinities (FIA)

First, we calculated gas-phase FIA (as Δ H) following the procedure outlined in ref.^{S2} at the BP86-D3BJ/def2-SVP level of theory. As suggested, we used the isodesmic reaction of Me₃Si⁺ + F⁻ \rightarrow Me₃SiF (with Δ H at the G3 level as suggested in ref.^{S3}) as anchor point. Therefore, all geometries were optimized in gas phase at the BP86^{S49}-D3BJ^{S45}/def2-SVP^{S46} level of theory and confirmed to be energetic minima by frequency analyses.

Table S13: Gas-phase FIA at the BP86-D3BJ/def2-SVP level of theory anchored to the Me₃SiF/Me₃Si⁺+F⁻ reaction (with Δ H at the G3 level from ref.^{S3}).

Compound	Name	E _{tot} (hartree)	∆H (hartree)	∆H(I) (kJ/mol)	$FIA = \Delta H - \Delta H$ (II) (kJ/mol)
Me₃SiF Me₃Si⁺	tms_cation.log tms_f.log	-408.832819 -508.947655	-408.718535 -508.828343		
1a 1a-F⁻	1a.log 1a_f.log	-1121.022940 -1220.879285	-1120.512056 -1220.368078	666.3	-292.1
1b 1b-F⁻	1b.log 1b f.log	-1062.706045 -1162.577430	-1062.317768 -1162.188214	628.4	-330.0
1c	1c.log	-837.236925	-836.866150	611.1	247.2
1c-⊢ 1d	1c_1.log	-719.359926	-936.743194	011.1	-347.3
1d-F ⁻	1d_f.log	-819.242997	-818.955556	598.7	-359.7
1e 1e-F⁻	1e.log 1e_f.log	-1016.851796 -1116.741597	-1016.586953 -1116.475206	581.7	-376.7
1f 1f-F⁻	1f.log 1f_f.log	-2097.875931 -2197.773400	-2097.614239 -2197.509855	562.4	-396.1
1g 1g-F⁻	1g.log 1g_f.log	-1611.827482 -1711.725270	-1611.605375 -1711.501146	562.0	-396.5
1h 1h-F⁻	1h.log 1h f.log	-1611.783601 -1711.698201	-1611.560989 -1711.473463	518.1	-440.3
1i 1i₋E-	1i.log	-2206.709158	-2206.528720	100 7	-158.8
1j	1j.log	-1072.981077	-1072.440991	433.1	-450.0
1j-F ⁻	1j_f.log	-1172.850930	-1172.309088	634.6	-323.8
BF₃ BF₃-F ⁻	bf3_f.log	-324.301595 -424.180170	-324.284934 -424.160668	614.6	-343.9
BCl₃ BCl₃-F⁻	bcl3.log bcl3_f.log	-1405.258983 -1505.162885	-1405.246111 -1505.146538	549.7	-408.7
BBr₃ BBr₃-F⁻	bbr3.log bbr3_f.log	-7747.298444 -7847.216865	-7747.286611 -7847.201283	512.3	-446.1
1k 1k-F⁻	1k.log 1k f.log	-3262.302170 -3362.231906	-3262.144122 -3362.073460	473.8	-484.6
1I 1I-F⁻	 1I.log 1I_f.log	-2007.206280 -2107.130738	-2007.118481 -2107.044422	482.7	-475.7

Fluoride Ion Affinities in Dichloromethane (FIA^{DCM})

Fluoride ion affinities (as ΔG_{298}) in dichloromethane solution were calculated at the SMD(DCM)^{S43}/MN15^{S48}/def2-TZVP^{S46} level of theory with thermochemical corrections calculated using Grimme's quasi-harmonic approximation.^{S47} A free energy change of +7.91 kJ/mol (= R · 298 K · ln(22.46 L mol⁻¹/L mol⁻¹)) was applied to all free energies for their conversion from gas phase (1 atm) to liquid phase (1 M).

$$\mathsf{BAr}_3 \ \ \textbf{+} \ \ \mathsf{F} \ \ \overset{\bigcirc}{\longrightarrow} \ \ \overset{\Delta G \text{ at SMD}(\mathsf{DCM})/\mathsf{MN15}/\mathsf{def2tzvp}}_{} \ \ \overset{\ominus}{\longrightarrow} \ \ \mathsf{F}\text{-}\mathsf{BAr}_3$$

In contrast to gas-phase FIA, there is no reliable anchor reaction for fluoride association with a borane in dichloromethane solution, and due to ion pairing in organic solution it is also unlikely to exist. Therefore, the absolute FIA^{DCM} values reported herein should not be overinterpreted.

Table S14:	FIA in	dichloromethane	solutions	(FIA ^{DCM})	at the	SMD(DCM)/MN15/def2-TZVP
level of theorem	ry.					

Compound	Name	E _{tot}	∆G (hartroo)	
F-	fluoride.log	-99.922600	-99.936759	(KJ/IIIOI)
10	10 00	1100 757010	1100 017061	
1a 1a-F⁻	1a f.log	-1220.727944	-1220.288428	-96.7
	_ 0			
1b 1b_E [_]	1b.log	-1062.545388	-1062.218981	_1 27 1
10-1	1b_1.log	-1102.323313	-1102.201140	-127.1
1c _	1c.log	-837.018675	-836.707329	444.0
1 c -⊢⁻	1c_1.log	-937.004045	-936.694851	-141.2
1d	1d.log	-719.183183	-718.947039	
1 d- F⁻	1d_f.log	-819.172812	-818.937033	-147.7
1e	1e.log	-1016.820334	-1016.611786	
1e -F⁻	1e_f.log	-1116.811692	-1116.604241	-154.1
1f	1f log	-2007 750859	-2007 557514	
'' 1f-F⁻	1f f.log	-2197.755352	-2197.553620	-163.7
		4040 070500	1011 005110	
1g 1a-F⁻	1g.log 1g.flog	-1612.079522 -1712.084355	-1611.925116 -1711.929353	-185 1
'9-'	1 <u>g_</u> 1.10g	-1712.004000	-1711.020000	-100.1
1h	1h.log	-1612.040717	-1611.886781	407.0
1 n- ⊢	1n_1.log	-1712.048259	-1/11.895637	-197.2
1i	1i.log	-2207.247423	-2207.146808	
1i- F⁻	1i_f.log	-2307.270349	-2307.168786	-231.7
1i	1i.logª	-1072.672657	-1072.205711	
1j-F⁻	1j_f.log	-1172.642414	-1172.172727	-87.4
BE.	bf3 log	-324 456841	-324 470180	
BF ₃ -F ⁻	bf3_f.log	-424.481810	-424.495205	-239.7
DOI		4405 047004	1105 000051	
BCI ₃ BCI ₂ -E ⁻	bcl3.log bcl3 flog	-1405.317291 -1505.350042	-1405.338254 -1505.370892	-259.6
2013 1	bolo_1.10g	1000.000042	1000.07 0002	200.0
BBr₃ BBr ⊑	bbr3.log	-7748.408212	-7748.434048	062.0
DD[3-F	poi.i_ciaa	-1040.442421	-1848.408054	-203.2
1k	1k.log	-3262.995914	-3262.817370	
1k-F⁻	1k_f.log	-3363.016997	-3362.8	-226.0
11	1I.log	-2007.649645	-2007.551438	
1I- F⁻	1l_f.log ^a	-2107.672320	-2107.572987	-230.5

^a Structures have small imaginary frequencies (**1j**: -13.2 cm⁻¹, **1I-F**: -3.44 cm⁻¹) as convergence showed to be problematic.

Orbital Energies

Both LUMO energies as well as global electrophilicity indices (GEI) were proposed to be a suitable descriptor for Lewis acidity.^{S2,S50} Parr global electrophilicity indices can be calculated from the electronic chemical potential (μ), chemical hardness (η) and the global electrophilicity index (ω) as follows:^{S51}

$$\mu \approx \frac{E_{HOMO} + E_{LUMO}}{2}$$
$$\eta \approx E_{LUMO} - E_{HOMO}$$
$$\omega = \frac{\mu^2}{2\eta}$$

The following two tables list HOMO and LUMO energies, chemical potential (μ), chemical hardness (η) and the global electrophilicity index (ω) for both gas-phase optimized boranes (BP86-D3BJ/def2-SVP, Table S15) as well as the ones in dichloromethane solution (SMD(DCM)/MN15/def2-TZVP, Table S16. The corresponding correlation with experimental Lewis acidities is shown in Fig. S1.

Table S15: Orbital energies and GEI analysis for boranes optimized in the gas-phase at the BP86-D3BJ/def2-SVP level of theory.

Compound	Name	ε _{номо}	ε _{LUMO}	Chemical	Chemical	Global
		(hartree)	(hartree)	Potential (hartree)	Hardness (hartree)	Electrophilicity (eV)
1a	1a.log	-0.15683	-0.06001	-0.10842	0.09682	1.65
1b	1b.log	-0.19166	-0.08069	-0.13618	0.11097	2.27
1c	1c.log	-0.21392	-0.09261	-0.15327	0.12131	2.63
1d	1d.log	-0.22686	-0.10049	-0.16368	0.12637	2.88
1e	1e.log	-0.22650	-0.10466	-0.16558	0.12184	3.06
1f	1f.log	-0.22634	-0.11260	-0.16947	0.11374	3.44
1g	1g.log	-0.23176	-0.12108	-0.17642	0.11068	3.83
1h	1h.log	-0.24254	-0.12913	-0.18584	0.11341	4.14
1i	1i.log	-0.23790	-0.14437	-0.19114	0.09353	5.31
1j	1j.log	-0.19839	-0.09395	-0.14617	0.10444	2.78
BF ₃	bf3.log	-0.35988	-0.01084	-0.18536	0.34904	1.34
BCl ₃	bcl3.log	-0.27814	-0.08770	-0.18292	0.19044	2.39
BBr ₃	bbr3.log	-0.25686	-0.10629	-0.18158	0.15057	2.98
1k	1k.log	-0.21513	-0.14906	-0.18210	0.06607	6.83
11	1l.log	-0.22974	-0.15295	-0.19135	0.07679	6.49

Table S16: Orbital energies and GEI analysis for boranes optimized in dichloromethane solution at the SMD(DCM)/MN15/def2-TZVP level of theory.

Compound	Name	ε _{номо} (hartree)	ε _{LUMO} (hartree)	Chemical Potential (hartree)	Chemical Hardness (hartree)	Global Electrophilicity (eV)
1a	1a.log	-0.21710	-0.02941	-0.12326	0.18769	1.10
1b	1b.log	-0.25312	-0.04147	-0.14730	0.21165	1.39
1c	1c.log	-0.27054	-0.04908	-0.15981	0.22146	1.57
1d	1d.log	-0.28319	-0.05429	-0.16874	0.22890	1.69
1e	1e.log	-0.28154	-0.05390	-0.16772	0.22764	1.68
1f	1f.log	-0.28062	-0.06249	-0.17156	0.21813	1.84
1g	1g.log	-0.29157	-0.07655	-0.18406	0.21502	2.14
1ĥ	1h.log	-0.29536	-0.07260	-0.18398	0.22276	2.07
1i	1i.log	-0.29833	-0.09589	-0.19711	0.20244	2.61
1j	1j.log	-0.25626	-0.04968	-0.15297	0.20658	1.54
BF ₃	bf3.log	-0.48092	0.06314	-0.20889	0.54406	1.09
BCl ₃	bcl3.log	-0.36253	-0.04009	-0.20131	0.32244	1.71
BBr ₃	bbr3.log	-0.33101	-0.05910	-0.19506	0.27191	1.90
1k	1k.log	-0.26549	-0.10251	-0.18400	0.16298	2.83
11	1I.log	-0.28042	-0.10311	-0.19177	0.17731	2.82

Borane (BH₃) Affinities (BA)

For the calculation of borane affinities BA (= ΔG_{BH3} , in kJ/mol), all structures were optimized at the SMD(DCM)^{S43}/MN15^{S48}/def2-TZVP^{S46} level of theory. Frequency calculations including Grimme's quasi-harmonic RRHO approximation^{S47} were obtained at the same level and converted from gas phase (1 atm) to liquid phase (1 M) by adding a free energy change of +7.91 kJ/mol (= R · 298 K · ln(22.46 L mol⁻¹/L mol⁻¹)) to all free energies.To reference borane affinities to experimental values, we used two isodesmic reactions as basis: the reaction of BH₃ with pyridine (**2d**), which can be connected with an isodesmic reaction to the experimental value for the reaction of pyridine (**2d**) with triphenylborane (**1d**) (see above), was taken as anchor point as described in equations (I)–(IV):

	Compound Name			E tot			
	BH ₃ BH ₃ -2d 1d 2d 1d-2d	bh3.log bh3_2d.log 1d.log 2d.log 1d_2d.log	9	(hartree) -26.571987 -274.716247 -719.183183 -248.073066 -967.288983	(hartree -26.564 -274.62 -718.94 -248.01 -966.96	e) 324 4257 7039 1271 6127	
				ΔG_{I} (kJ/mol): $\Delta G_{II, exp}$ (kJ/mol): ΔG_{BH3Py} (kJ/mol):	-107.2 -34.5 -141.7		
Compound	R =		Name			E _{tot} (hartree)	∆G (hartree)
	4-NMe ₂	2a	2a.log bh3_2a.log			-381.934671 -408.583729 ∆G _{внз} (kJ/mol):	-381.805184 -408.423337 : -155.3
	4-Morpholino	2b	2b.log bh3_2b.log			-534.464827 -561.112566 ∆G _{внз} (kJ/mol):	-534.295128 -560.912079 : -152.2
	4-MeO	2c	2c.log bh3_2c.log			-362.528691 -389.173948 ∆G _{внз} (kJ/mol):	-362.437424 -389.052228 : -146.5
	Н	2d	2d.log bh3_2d.log			-248.073066 -274.716247 ΔG _{внз} (kJ/mol):	-248.011271 -274.624257 : -141.7
	4-COPh	2e	2e.log bh3_2e.log			-592.183945 -618.825044 ∆G _{внз} (kJ/mol):	-592.040244 -618.650624 : -134.9
	3-Cl	2f	2f.log bh3_2f.log			-707.596035 -734.235338 ∆G _{внз} (kJ/mol):	-707.546045 -734.154962 : -131.1
	4-CF ₃	2g	2g.log bh3_2g.log			-584.999106 -611.638527 ∆G _{внз} (kJ/mol):	-584.938099 -611.546893 : -130.7
	4-CN	2h	2h.log bh3_2h.log			-340.246417 -366.884992 ∆G _{внз} (kJ/mol):	-340.188790 -366.797051 : -129.3
	3,5-(CF ₃) ₂	2i	2i.log bh3_2i.log			-921.923968 -948.558534 ΔG _{внз} (kJ/mol):	-921.863313 -948.467577 : -118.8
	3,4,5-(Cl)₃	2j	2j.log bh3_2j.log			-1626.635341 -1653.269439 ∆G _{внз} (kJ/mol):	-1626.608150 -1653.211890 -117.5
	3,5-(F) ₂ -4-CF ₃	2k	2k.log bh3_2k.log			-783.403845 -810.036760 ∆G _{внз} (kJ/mol):	-783.361163 -809.963770 : -114.5
	3,5-(NO ₂) ₂	21	2I.log bh3_2I.log			-656.846806 -683.476479 ЛСвыз (kJ/mol):	-656.787791 -683.387257 -106.2
	4-Cl-3,5-(NO ₂) ₂	2m	2m.log bh3_2m.log)		-1116.348325 -1142.976501 ∆G _{внз} (kJ/mol):	-1116.300644 -1142.898845 -102.9
	2,6-Me	2n	2n.log bh3_2n.log			-326.635224 -353.275512	-326.523532 -353.130321 -125.5
	Ме	3a	3a.log			-132.647673	-132.626199
N R			bh3_3a.log			-159.272603 ∆G _{BH3} (kJ/mol):	-159.222836 : -98.8
	4-F-C ₆ H ₄	3b	3b.log bh3_3b.log	6129		-423.427299 -450.051296	-423.367386 -449.961957

Table S17: Borane affinities in dichloromethane at the SMD(DCM)/MN15/def2-TZVP level of theory.

				∆G _{BH3} (kJ/mol): -93.4
	4-MeO	4a	4a.log	-1378.946594	-1378.625288
			bh3_4a.log	-1405.591504	-1405.239627
				∆G _{BH3} (kJ/mol): -145.3
	Н	4b	4b.log	-1035.588730	-1035.357020
			bh3_4b.log	-1062.230358	-1061.968738
(/3				∆G _{BH3} (kJ/mol): -138.4
	4-CI	4C	4c.log	-2414.163212	-2413.965711
			bh3_4c.log	-2440.803224	-2440.575235
	4.14-0	5-	<u>Falar</u>	ΔG _{BH3} (KJ/MOI): -132.7
	4-MeO	5a	ballog	-499.035065	-498.899400
			bris_ballog	-525.057975	-525.492090
					00.5
	4-Me	5b	5b log	-423 859519	-423 728844
		•••	bh3 5b.log	-450.481111	-450.320387
				∆G _{BH3} (kJ/mol): -85.4
				510 (
	4-Br	5c	5c.log	-2958.474380	-2958.381682
0			bh3_5c.log	-2985.093870	-2984.971115
. 1				∆G _{BH3} (kJ/mol): -79.9
R T	4-CF ₃	5d	5d.log	-721.508489	-721.403174
\sim			bh3_5d.log	-748.126799	-747.991046
				∆G _{BH3} (kJ/mol): -75.8
	4 NO	5.	F alar	500 070745	F00 007004
	4-NO ₂	56	bellog	-588.972745	-588.80/934
			blib_bellog	-013.309804	-013.433002
					j10.9
	3.5-NO2	5f	5f log	-793 360191	-793 255962
	0,0 1102	•••	bh3 5f.log	-819.974823	-819.840805
			·_· 5	ΔG_{BH3} (kJ/mol): -67.9
	0		6.log	-459.778391	-459.668022
~			bh3_6.log	-486.385602	-486.245820
	OMe	6		∆G _{BH3} (kJ/mol): -49.4
· · · · · ·	4-MeO	7a	7a.log	-459.750289	-459.640878
			bh3 7a.log	-486.373253	-486.233653
			_ 0	ΔG_{BH3} (kJ/mol): -88.7
	Н	7b	7b.log	-345.295354	-345.215736
0			bh3_7b.log	-371.915384	-371.805519
				∆G _{внз} (kJ/mol): -80.8
<u>в (т</u> 📈) н	4.0.	-	7.1	0040 400050	0040 400004
`` `	4-BI	/C	10.10g	-2919.188659	-2919.122201
			blib_rc.log	-2945.607705	-2945.710760
					j. <u>-</u> //./
	4-NO ₂	7d	7d.log	-549 686430	-549,607758
			bh3 7d.log	-576.302788	-576.193642
			_ 5	ΔG_{BH3} (kJ/mol): -70.6
	0		8.log	-231.051410	-230.990400
~		8	bh3_8.log	-257.674619	-257.583270
	∼`н			∆G _{BH3} (kJ/mol): -88.9
	0		9.log	-287.605958	-287.506926
N.8 N		9	bh3_9.log	-314.235888	-314.106202
Me ₂ N	v ∪⊓ ₃			∆G _{BH3} (kJ/mol): -105.7
_			10.log	-653.944244	-653.776810
E	τ ₃ Ρ=Ο	10	pn3_10.log	-680.580453	-680.382227
	0		44 1	∆G _{BH3} (kJ/mol): -121.9
ſ	~ ⁵	4.4	11.log	-555.195297	-555.109/91
N N	\square	11	i i_pri3.log	-581.820771	
					-4/3

Table	S18 : Borane	affinities in	n dichloromethane	at the	SMD(DCM)/MI	N15/def2-TZVF	level of
theory	/ for additional	l compound	ds.				

Compound	Name	E _{tot} (hartree)	∆G (hartree)
Et ₂ O	et2o.log bh3_et2o.log	-233.465310 -260.086473 ∆G (kJ/mol):	-233.358767 -259.948304 -80.2
	nazarov_starting.log bh3_nazarov_starting.log	-691.778042 -718.397500	-691.571430 -718.160161
L L Ph		ΔG_{BH3} (kJ/mol):	-78.1
	methylvinylketon.log bh3_methylvinylketon.log	-231.053607 -257.673518	-230.992865 -257.582480
		ΔG_{BH3} (kJ/mol):	-80.4
\sim	nazarov_prod.log bh3_nazarov_prod.log	-691.807860 -718.432079	-691.597841 -718.192298
Ph		ΔG_{BH3} (kJ/mol):	-93.1
	dielsalder_prod.log bh3_dielsalder_prod.log	-425.023820 -451.645604	-424.866890 -451.458589
		ΔG_{BH3} (kJ/mol):	-85.9
N-	michael_addition.log bh3_michael_addition.log	-633.877139 -660.498830	-633.667021 -660.257689
Ŭ 🖉		ΔG_{BH3} (kJ/mol):	-83.1

VIII. References

- S1 C. Hansch, A. Leo, D. Hoekman, *Exploring QSAR Hydrophobic, Electronic, and Steric Constants (ACS Professional Reference Book)*; American Chemical Society, Washington, DC, 1995.
- S2 L. Greb, Chem. Eur. J. 2018, 24, 17881-17896.
- S3 H. Böhrer, N. Trapp, D. Himmel, M. Schleep, I. Krossing, *Dalton Trans.* 2015, 44, 7489-7499.
- S4 G. W. Jameson, J. M. Lawlor, *J. Chem. Soc. B* **1970**, 53-57.
- S5 I. Kaljurand, A. Kütt, K. Sooväli, T. Rodima, V. Mäemets, I. Leito, I. A. Koppel, *J. Org. Chem.* 2005, 70, 1019-1028.
- S6 A. Fischer, W. J. Galloway, J. Vaughan, J. Chem. Soc. 1964, 3591-3596.
- S7 M. Taagepera, W. G. Henderson, R. T. C. Brownlee, J. L. Beauchamp, D. Holtz, R. W. Taft, *J. Am. Chem. Soc.* **1972**, *94*, 1369-1370.
- S8 D. Augustin-Nowacka, L. Chmurzynski, Anal. Chim. Acta 1999, 381, 215-220.
- S9 R. L. Andon, J. D. Cox, E. F. G. Herington, *Trans. Faraday Soc.* **1954**, *50*, 918-927.
- S10 T. Allman, R. G. Goel, *Can. J. Chem.*, **1982**, *60*, 716-722.
- S11 K. Haav, J. Saame, A. Kütt, I. Leito, *Eur. J. Org. Chem.* 2012, 2167-2172.
- S12 W. A. Henderson Jr., C. A. Streuli, J. Am. Chem. Soc. **1960**, **82**, 5791-5794.
- S13 H. Mayr, J. Ammer, M. Baidya, B. Maji, T. A. Nigst, A. R. Ofial, T. Singer, *J. Am. Chem. Soc.* **2015**, 137, 2580-2599.
- S14 C. Laurence, J.-F. Gal, *Lewis Basicity and Affinity Scales: Data and Measurement*; Wiley: Chichester, UK, 2010.
- S15 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, *29*, 2176-2179.
- S16 A. Piñeiro, E. Muñoz, J. Sabín, M. Costas, M. Bastos, A. Velázquez-Campoy, P. F. Garrido, P. Dumas, E. Ennifar, L. García-Río, J. Rial, D. Pérez, P. Fraga, A. Rodríguez, C. Cotelo, *Anal. Biochem.* 2019, 577, 117-134.
- S17 Origin(Pro), Version 2018b. OriginLab Corporation, Northampton, MA, USA.
- S18 a) P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305-1323. b) P. Thordarson, In Supramolecular Chemistry: From Molecules to Nanomaterials (Eds.: J. W. Steed, P. A. Gale), Wiley: Chichester, UK, 2012, Vol. 2, pp 239-274.
- S19 G. Wittig, W. Herwig, *Chem. Ber.* **1955**, *88*, 962-976.
- S20 H. C. Brown, U. S. Racherla, J. Org. Chem. 1986, 51, 427-432.
- S21 N. Krause, P. Nobbe, *Chem. Ber.* **1931**, *64*, 2112-2116.
- S22 H. Osseili, D. Mukherjee, K. Beckerle, T. P. Spaniol, J. Okuda, Organometallics 2017, 36, 3029-3034.
- S23 a) N. M. Yoon, K. W. Kim, *J. Org. Chem.* **1987**, *52*, 5564-5570; b) N. Nazarenko, W. C. Seidel,
 Process for the preparation of triarylborane. US Patent 4076756, 1975.
- S24 N. Krause, Chem. Ber. 1924, 57, 216-217.

- S25 J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, *Angew. Chem. Int. Ed.* **2016**, 55, 613-617.
- S26 M. Santi, D. M. C. Ould, J. Wenz, Y. Soltani, R. L. Melen, T. Wirth, Angew. Chem. Int. Ed. 2019, 58, 7861-7865.
- S27 J. E. Leffler, G. B. Watts, T. Tanigaki, E. Dolan, D. S. Miller, J. Am. Chem. Soc., 1970, 92, 6825-6830.
- S28 Q. Yin, Y. Soltani, R. L. Melen, M. Oestreich, Organometallics 2017, 36, 2381-2384.
- S29 S. Lancaster, *ChemSpider*, Synthetic Page 215, doi: 10.1039/SP215.
- S30 J. L. W. Pohlmann, F. E. Brinckmann, Z. Naturforsch. B. 1965, 20, 5-11.
- S31 E. Plažek, *Recl. Trav. Chim. Pays-Bas* **1953**, *72*, 569-575.
- S32 M. Winkler, B. Cakir, W. Sander, J. Am. Chem. Soc. 2004, 126, 6135-6149.
- S33 P. J. Brignell, A. R. Katritzky, H. O. Tarhan, J. Chem. Soc. B 1968, 1477-1484.
- S34 N. De Rycke, G. Berionni, F. Couty, H. Mayr, R. Goumont, O. R. P. David, Org. Lett. 2011, 13, 530-533.
- S35 A. S. Bailey, M. W. Heaton, J. Murphy, *J. Chem. Soc.* C **1971**, 1211-1213.
- S36 G. Liang, S. N. Gradl, D. Trauner, *Org. Lett.* **2003**, *5*, 4931-4934.
- S37 J. J. Koenig, T. Arndt, N. Gildemeister, J.-M. Neudörfl, M. Breugst, J. Org. Chem. 2019, 84, 7587-7605.
- S38 R. K. Schmidt, K. Müther, C. Mück-Lichtenfeld, S. Grimme, M. Oestreich, *J. Am. Chem. Soc.* **2012**, *134*, 4421-4428.
- S39 W. Li, T. Werner, Org. Lett. 2017, 19, 2568-2571.
- S40 E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D. S. Cerutti, G. Krilov, W. L. Jorgensen, R. Abel, R. A. Friesner, *J. Chem. Theory Comput.* 2016, *12*, 281–296.
- S41 Schrödinger Release 2019-4: MacroModel, Schrödinger, LLC, New York, NY (2019).
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- S43 A. V. Marenich, C. J. Cramer, D. G. Truhlar, *J. Phys. Chem. B* **2009**, *113*, 6378–6396.
- S44 A. D. Becke, J. Chem. Phys. **1993**, 98, 5648–5652.
- S45 S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.

- S46 F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.
- S47 S. Grimme, *Chem. Eur. J.*, **2012**, *18*, 9955-9964.
- S48 H. S. Yu, X. He, S. L. Li, D. G. Truhlar, *Chem. Sci.* **2016**, *7*, 5032-5051.
- S49 a) A. D. Becke, *Phys. Rev. A* 1988, *38*, 3098-3100; b) J. P. Perdew, *Phys. Rev. B* 1986, *33*, 8822-8824; c) J. P. Perdew, *Phys. Rev. B* 1986, *34*, 7406-7406.
- S50 A. R. Jupp, T. C. Johnstone, D. W. Stephan, *Dalton Trans.* 2018, 47, 7029-7035.
- S51 R. G. Parr, L. v. Szentpály, S. Liu, J. Am. Chem. Soc. 1999, 121, 1922-1924.