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EXPERIMENTAL METHODS 

All reagents were of analytic grade and were purchased from Sigma-Aldrich (Dorset, UK). The 

Rieske-type, [2Fe-2S]2+ cluster and catalytic, mononuclear non-heme iron containing acinetobacter 

baumannii (Ab), AbCntA oxygenase and AbCntA NADH reductase domains were independently 

expressed and purified using previously published protocols.1 All EPR samples were prepared in a 

10 mM HPEPS buffer with 250 mM NaCl, 0.5mM TCEP and 10 % glycerol (v/v) (pH 7.6) in an 

aerobic condition. Samples containing approx. 200 µM AbCntA, 75 mM nicotinamide adenine 

dinucleotide (NADH) were transferred into 4 mm Suprasil quartz EPR tubes (Wilmad LabGlass) and 

frozen in liquid N2.  The photoactivation of NADH was carried out at 240 K by placing the AbCntA-

WT sample (in the presence/absence of carnitine) in a 1-propanol and liquid nitrogen solvent mixture. 

The direct illumination of the sample (for the specified duration described in the text) was performed 

using Thorlabs M365L2 mounted LED2, which has a nominal wavelength of 365 nm. The output 

power of the LED was 360 mW. All EPR samples were measured on a Bruker ELEXSYS-E580 X-

band EPR spectrometer with the microwave power set to 30 dB (0.2 mW), the modulation amplitude 

set to 5 G, a time constant of 41 ms, a conversion time of 41 ms, a sweep time of 84 s, the receiver 

gain set to 60 dB and an average microwave frequency of 9.384 GHz. All annealing measurements 

were performed using a 1-propanol and liquid nitrogen solvent mixture, and all samples were 

annealed for the specified times (see main text) at the temperature stated. All EPR spectra were 

measured as a frozen solution at 20 K. The analysis of the continuous wave EPR spectra and 

simulations were performed using EasySpin toolbox (5.2.28) for the Matlab program package.3 The 

extracted spin-Hamiltonian parameters for the one-electron reduced, Rieske [2Fe-2S]1+ are similar to 

the previously reported values.4 It is noteworthy, like the majority of other cryotrapping-EPR 

approaches,5 NADH photoactivation at 240 K is semiquantitative, and no firm thermodynamic 

parameters were derived from these measurements. Similar to the reported 60Co-g-irradiation 

studies on the metalloenzymes,6,7 this approach is used to identify the electron transfer process and 

active intermediate states produced during the catalytic cycle of these enzymes. 
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Figure S1. cw-EPR spectra of the ‘AbCntA+carnitine’ in the presence (top) and absence (bottom) of 

NADH, following photoactivation using blue-light, 365 nm for various time scale. The spectra were 

measured as a frozen solution at 20 K. Conditions – as described in the experimental section.  
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Figure S2. Comparisons of cw-EPR spectra of the ‘AbCntA’ in the presence (red and blue traces) 

and absence (black trace) of substrate, carnitine, following photoactivation using blue-light, 365 nm 

for 30 min. The EPR spectra are expanded between 3250-3400 G (bottom) to show the overlapping 

signals arising from two different EPR active species and the EPR line broadening. Conditions – as 

described in the experimental section. 
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Figure S3. Experimental (black trace) and simulated (red dotted line) EPR spectra of the 

photoactivated ‘AbCntA+carnitine+NADH’ measured as a frozen solution at 20 K. The spectrum was 

successfully simulated by considering two contributing, S = ½ spin species with the following spin-

Hamiltonian parameters (also provided in Table S1): species(1); g = [1.793 1.906 2.016], line widths 

= [0.12 0.1] mT; HStrain = [273 120 61] MHz; weight = 0.7;  species(2); g = [1.741 1.914 2.008], 

line widths = [0.12 0.1] mT; HStrain = [273 54 42] MHz; weight = 0.3;   

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

Figure S4. Experimental (black trace) and simulated (red dotted line) EPR spectra of the 

photoactivated ‘AbCntA+NADH’ measured as a frozen solution at 20 K. The spectrum was 

successfully with the following spin-Hamiltonian parameters (also provided in Table S1); g = [1.747 

1.919 2.010], line widths = [0.12 0.1] mT; HStrain = [253 56 43] MHz; 
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Table	S1.	Spin-Hamiltonian	Parameters	used	for	the	simulations	of	the	EPR	spectra	of	the	one-

electron	reduced,	Rieske-type,	[2Fe-2S]1+	in	AbCntA-WT.		

 
 

a The lineshape of the spectra was reproduced by considering an isotropic Voigtian lineshape and an   
   anisotropic broadening(H-Strain) respectively. 
 
b weight = 70 %; c weight = 30 %  
 
  

Samples EPR active  
signal 

g-tensor giso Line widthsa 
(mT) 

H-straina 
(MHz) 

AbCntA-WT+NADH [2Fe-2S]1+ [2.010 1.919 1.747] 1.892 [0.12 0.1] [253 56 43] 
AbCntA-

WT+carnitine+NADH 
[2Fe-2S]1+;b [2.016 1.906 1.793] 1.905 [0.12 0.1] [273 120 61] 
[2Fe-2S]1+;c [2.008 1.914 1.741] 1.888 [0.12 0.1] [273 54 42] 
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Figure S5. cw EPR spectra of the ‘AbCntA-WT+carnitine+NADH’ following photoactivation and 

annealing at the specified temperatures/time. (A,C) wide-sweep, cw-EPR spectra of ‘AbCntA-

WT+carnitine+NADH’ shows the formation of high-spin (S=5/2), ferric EPR signal; (B,D) narrow-

sweep, cw-EPR spectra of ‘AbCntA-WT+carnitine+NADH’ shows the decay of EPR signals arising 

from a S = ½ spin-state observed between 3200-4000 G; (C) The EPR spectra are normalised relative 

to the EPR signal observed at 270 K with an annealing time of 20 minutes to demonstrate the 

formation of the g = 4.3 EPR signals following annealing; (D) The EPR spectra are normalised 

relative to the EPR signal observed at 240 K before the annealing to demonstrate the decay of the 

EPR signals; All EPR spectra were measured as a frozen solution at 20 K. Conditions; as described 

in the experimental section. 
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 Figure S6. EPR spectral changes observed when “AbCntA+carnitine” was annealed at the specified 

temperatures/times following photoexcitation using 365 nm, blue-light for 120 minutes. (A, C) wide-

sweep, cw-EPR spectra of ‘AbCntA+carnitine’ monitoring the changes in intensity of the high-spin 

(S=5/2), ferric EPR signal when annealed at higher temperatures; (B) narrow-sweep, cw-EPR spectra 

of ‘AbCntA+carnitine’ to monitor the EPR signals arising from an S = ½ species;  
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Figure S7. EPR spectral changes observed when “AbCntA+NADH” was annealed at the specified 

temperatures/times, following photoexcitation using 365 nm, blue-light for 30 minutes. (A) wide-

sweep, cw-EPR spectra of ‘AbCntA+NADH’ show no change in intensity of the EPR signals arising 

from a high spin, (S=5/2), ferric EPR signal when annealed at higher temperatures; (B,C) narrow-

sweep, cw-EPR spectra of ‘AbCntA+NADH’ monitoring the changes in intensity of the one-electron 

reduced, Rieske [2Fe-2S]+1 EPR signal when annealed at higher temperatures;  
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Figure S8. cw-EPR spectra of “as-isolated” AbCntA+H2O2 in the presence (red trace) and absence 

(black trace) of the substrate, carnitine show the formation of high-spin, S = 5/2 ferric EPR signals. 

Both spectra have been background subtracted to remove the residual EPR signal arising from the 

empty EPR cavity. Conditions – as described in the experimental section.	
  

 
 
																																						

	

	

	

	

	

	

	

	

	

Figure S9. wide-sweep cw-EPR spectra of dithionite reduced, “as-isolated” AbCntA in the presence 

(red trace) and absence (black trace) of the substrate, carnitine show the formation of one-electron 

reduced, Rieske, [2Fe-2S]+1 EPR signals. There is no evidence for the generation of high-spin, S = 

5/2 ferric EPR signals in the EPR spectra. The black asterisk mark indicates that this strong EPR 

signal arise from the quartz-impurity in the EPR tube (See Figure S10). Conditions – as described in 

the experimental section. 
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Figure S10. narrow-sweep, cw-EPR spectra of dithionite reduced, “as-isolated” AbCntA in the 

presence (red trace) and absence (black trace) of the substrate, carnitine show the formation of one-

electron reduced, Rieske, [2Fe-2S]+1 EPR signals. The blue traces and asterisk marks in the top and 

bottom panels indicate the EPR signal arising from the quartz-impurity in the EPR tube. The magenta 

upward arrow indicates presence of a second EPR active species when AbCntA is reduced with 

dithionite in the absence of carnitine (bottom; black trace), plausibly arise from the mono-nuclear, 

catalytic iron active-site. Conditions – as described in the experimental section. 
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Figure S11. narrow-sweep, cw-EPR spectra of dithionite reduced, “AbCntA+carnitine” (red trace) 

and photoactivated, “AbCntA+carnitine+NADH” show the formation of similar/identical, one-

electron reduced, Rieske, [2Fe-2S]+1 EPR signals in both samples. The blue trace and asterisk mark 

indicate the EPR signal arising from the quartz-impurity in the EPR tube. Conditions – as described 

in the experimental section. If the intense, derivative like EPR signal observed at g = 2 (Figures, S10 

and  S11; blue trace and asterisk mark) is due to the presence of equilibrium between [S2O42- & 2 

SO2-] ions (monomeric, SO2- is paramagnetic; J. Phys. Chem., 1959, 63, 302; Trans. Faraday Soc., 

1969, 65, 496-502), one would have expected to observe the same signal in the “AbCntA-

WT+dithionite” sample (Figures S9 and S10; black traces). The absence of this signal in “AbCntA-

WT+dithionite” rules out that the EPR signal at g = 2 signal was not due to dithionite.  

 

 

 

 

 

 

 

 

 

 

 

 



	 S13	

 

 

 

 

 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure S12. narrow-sweep, cw-EPR spectra of dithionite reduced (red traces) and NADH-

photoactivated (black traces), “AbCntA” in the presence (top) and absence (bottom) of carnitine show 

the formation of, one-electron reduced, Rieske, [2Fe-2S]+1 EPR signals in both samples. The two red 

asterisk marks indicate that the strong EPR signals arising from the quartz-impurity in the EPR tube 

(see Figure S11) are truncated in this region to show the effective reduction by NADH-

photoactivation process. Conditions – as described in the experimental section. 
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Figure S13. cw-EPR spectra of the ‘AbCntA-E205A+NADH’, following photoactivation using blue-

light, 365 nm for various time scale. The spectra were measured as a frozen solution at 20 K. 

Conditions – as described in the experimental section.  
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Figure S14. (top) EPR spectral changes observed when “AbCntA-E205A+NADH” was annealed at 

the specified temperatures/times, following photoexcitation using 365 nm, blue-light for 120 minutes. 

(bottom) All the spectra were normalised relative to the EPR intensity observed at 240 K (3340 G) 

after photoactivation of NADH for 120 minutes. The comparison of relative EPR signal of “AbCntA-

E205A+NADH” observed at 275 K (~ 30 %) to that of “AbCntA-WT +NADH” at 270 K (Figure S7; 

~ 80 %), suggest that the bridging glutamate plays a critical role in stabilising the one-electron 

reduced, Rieske centre in the absence of carnitine. Conditions – as described in the experimental 

section.       
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Figure S15. Comparisons of narrow-sweep, cw-EPR spectra of photoactivated, “AbCntA-

WT+NADH” (black traces; 30 min) and “AbCntA-E205A+NADH” (red traces; 120 min) before 

(bottom) and after (top) annealing at 270 K (AbCntA-WT+NADH – 20 min)/275 K (AbCntA-

E205A+NADH; 5 min). All EPR spectra were measured as a frozen solution at 20 K. The observation 

of significantly reduced catalytic activity for the “AbCntA-E205A” mutant is likely due to the 

disruption in the electron transfer process and its incompetence to stabilise the one-electron reduced 

centre as shown in the comparison. Conditions – as described in the experimental section. 
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