Chemistry–A European Journal

Supporting Information

Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes

Fabio Masero⁺, Marie A. Perrin⁺, Subal Dey, and Victor Mougel^{*[a]}

Contents

1.	Summary of used complexes and reagents for N ₂ to metal-nitride formation
2.	Summary of used complexes and reagents to functionalize nitride originating from N_2 4
3.	Summary of used complexes and reagents for stoichiometric N_2 protonation and N_2 -hydrogenation 5
4.	Summary of used complexes and reagents for stoichiometric N_2 silylation
5.	Summary of used complexes and reagents for stoichiometric N-C bond formation
6.	Summary of complexes and reagents for catalytic N_2 protonation
7.	Summary of complexes and reagents for catalytic N_2 silylation
8.	References

1. Summary of used complexes and reagents for N_2 to metal-nitride formation.

Complex	Reagent	Selectivity ^(b)	Ref.
Mo(N(^t Bu)Ar) ₃] ₂ (1)	N ₂	[Mo(N)(N(^t Bu)Ar) ₃] (2)	[1]
	hν		[2]
[Mo(OSi(O ^t Bu) ₃) ₃] (3)	N ₂	[Mo(N)(OSi(O'Bu) ₃) ₃] (4)	[3]
[Ti(Cp')(CH ₂ SiMe ₃) ₃] (90)	N ₂ /H ₂	{[Ti(Cp')]4(µ3-NH)2(µ2-H)4}	[4]
$Cp' = C_5Me_4SiMe_3$			
{[Ti(Cp')] ₃ (µ ₃ -H)(µ ₂ -H) ₆ } (5)	N ₂	{[(Cp')Ti] ₃ (µ ₂ -NH)(µ ₃ -N)(µ ₂ -H) ₂ } (6)	[4]
$Cp' = C_5Me_4SiMe_3$			
{[Ti(Cp')] ₃ (µ ₂ -NH)(µ ₃ -N)(µ ₂ -H) ₂ }	¹⁵ N	{[(Cp')Ti] ₃ (μ_{3} - ¹⁵ N)(μ_{2} -NH) ₂ (μ_{2} - ¹⁵ NH}	[4]
[((<i>anti</i> -O ₃)Nb) ₂ (μ-H) ₄][K(dme)] ₂ (11)	N ₂	[((<i>anti-</i> O ₃)Nb) ₂ (µ-N) ₂][K(thf)] ₂ (12)	[5]
anti-O ₃ = CH{3,5-(^t Bu) ₂ Ph-2-O)} ₃ ³⁻			
[(calix-O ₄) ₂ Nb ₂] (13)	N ₂	[(calix-O ₄)Nb(N)] ₂ [Nb(calix-O ₄)] (14)	[6, 7]
	N2, TMEDA	[(<i>calix</i> -O ₄) ₂ Nb ₂ (μ-NNa(TMEDA) ₂] (15)	
[Mol ₂ (PCP)] (18)	Na(Hg)/N ₂	[Mol(N)(PCP)] ⁻ (19)	[8]
$PCP = 1,3-[OP(^{t}Bu)_{2}]_{2}C_{6}H_{3}^{-}$			
[Mo(PNP)I ₃] (20)	(CoCp* ₂)/N ₂	[Mol(N)(PNP)] ⁻ (21)	[9, 10]
$PNP = 1,3-[CH_2P(^tBu)_2]_2C_5H_3N$	Sml ₂ /N ₂		
[Mo(PNP)Cl ₃] (24)	i.) Na(Hg),/N ₂	[Mo(HPNP)(N)CI] ⁺ (23)	[11]
$PNP = N(CH_2CH_2P^tBu_2)_2^-$	ii.) HOTf		
[W(PNP)Cl ₃]	Na(Hg)/N ₂	[W(HPNP)(N)CI]⁺	[12]
$PNP = N(CH_2CH_2P^tBu_2)_2^-$			
[Mo(PPP)Cl ₃] (29)	Na(Hg), Nal/N₂	[Mo(N)I(PPP)] (31)	[13]
$PPP = PhP(CH_2CH_2PCy_2)_2$			
[ReCl ₂ (PNP)] (32)	CoCp* ₂ /N ₂	[Re ^v Cl(N)(PNP)] (33)	[14]
$PNP = N(CH_2CH_2P^tBu_2)_2^-$	Na(Hg)/N ₂		
	<i>E</i> _{red} = -1.9 V <i>vs.</i> Fc/Fc ⁺		
[ReCl ₂ (PNP)] (35)	CoCp* ₂ /N ₂	[Re ^v Cl(N)(PNP)] (36)	[15]
PNP = N(CHCHP ^t Bu ₂) ₂	Na(Hg)/N ₂		
	<i>E</i> _{red} = -1.67 V <i>v</i> s. Fc/Fc ⁺		
[(NNN ^{Si} V) ₂ (µ-CI) ₂] (37)	KC ₈ /N ₂	[(NNN ^{Si} V) ₂ (µ-N) ₂] (38)	[16]
NNN ^{Si} = Me ₃ SiN(CH ₂ CH ₂ NSiMe ₃) ₂ ²⁻		[(NNN ^{Si} V) ₂ (µ-N) ₂ K] ⁻ (39)	
[U(N ⁴)(DME)] ⁻ (40)	K-C ₁₀ H ₈ /N ₂	[(UN ⁴) ₂ (µ-NK) ₂] ²⁻ (41)	[17]

 Table S1. Summary of used complexes and reagents for metal nitride formation.

N ⁴ = Et ₈ -calix[4]tetrapyrrole			
[(O-µ-OO) ₂ Nb ₂] (42)	LiBEt ₃ H/N ₂	[{(OO-µ-O)Nb}2(µ-N)2(Li-thf)2] (43)	[18]
OOO = {(3-Me,5-'Bu)Ph-(2- O)CH ₂ Ph(2-O)(4-'Bu)CH ₂ Ph-(2- O)(3-Me,5- 'Bu)} ³⁻			
[(O-µ-NO) ₂ V ₂] (46)	KH/N ₂	[{(ONO)V} ₂ (µ-N) ₂ (K-dme) ₂] ²⁻ (47)	[19]
ONO = {(3-Me,5-'Bu)Ph-(2- O)CH ₂ Ph(2-NPhMe)(4-'Bu)CH ₂ Ph- (2-O)(3-Me,5- 'Bu)} ³⁻			
[Ti(N4 ^{Si})Cl] (48)	Mg/N ₂	[{Mg(N4 ^{Si})}(µ-NTi)2(Mg(N4 ^{Si})}] (50)	[20]
$N_4^{Si} = \{N(CH_2CH_2NSiMe_3)_3\}^{3-1}$			
[{Fe(β -diketamin)} ₂ (μ -Cl) ₂] (52)	KC ₈ /N ₂	[{Fe(β-diketamin)}₂(μ-N){(μ-N)K₂Cl₂Fe(β- diketamin)] (51)	[21]
β-diketamin= (2,6- Me₂Ph)NC(Me)CHC(Me)N(2,6- Me₂Ph)	Na/N ₂	[{Fe(β -diketamin)} ₂ (μ ₂ -N){K(thf) ₂ }(μ ₃ -N)Fe(β -diketamin)] (53)	[22]
[Fe ₃ (cyclophane-β-diketamin)Br ₂] (54)	KC ₀ /N ₂	$[Fe_3(\mu-NH)_{1-2}(cyclophane-diketamin)]$ (55)	[23]
cyclophane- β -diketamin = (2,4,6-Et- Ph-1,3,5-CH ₂ -NC(Me)CHC(Me)N-) ₃			
[Cp*Ta{N(ⁱ Pr)C(R)N(ⁱ Pr)}Cl ₃] (57)	KC ₈ /N ₂	$[\{Cp^{*}Ta[N('Pr)C(R)N('Pr)](\mu-N)\}_{2}] (\textbf{56})$	[24]
$Cp^* = \eta^5 - C_5 Me_5$, R = Me, NMe ₂ , Ph			
[Cp*Nb{N(ⁱ Pr)C(R)N(ⁱ Pr)}Cl ₃] (58)	KC ₈ /N ₂	[{Cp*Nb[N(ⁱ Pr)C(R)N(ⁱ Pr)](µ-N)}2] (59)	[25]
R = Me, Ph			
[{Cp*MNEtC(R)NEt}2(µ-N2)]	Na(Hg)/N ₂	[{Cp*MNEtC(R)NEt}2(µ-N)2]	[26]
M = Mo (60), W (61); R = Ph			
[MoCl₄·DME]	i.) MesMgBr/N ₂	[Mo(Mes) ₃ -N=Mo(Mes) ₃] (63)	[27]
	іі.) <i>h</i> v	$Mes = 2,4,6-Me_3(C_6H_2)$	
{Re(P'NP')Cl₃]	i.) LiBHEt ₃ /N ₂	[{Re(N)(P'NP')Cl] (66)	[28]
$P'NP' = (2,6-OP'Pr_2)C_5H_3N$	ii.) $h\nu$ ($\lambda = 405$)		
[{MoCp*(depf)}2(N2)] (67)	$h\nu \ (\lambda > 400)$	[{MoCp*(depf)}(N)] (68)	[29]
$[\{Cp^*M\{N(Pr)C(R)N(Pr)\}\}_2(\mu N_2)]$	hν	$\label{eq:main_state} \begin{split} & [\{Cp^*M\{N('Pr)C(R)N('Pr)\}\}_2(\mu\text{-}N)_2] \ (M = Mo, \ \textbf{71}; \\ & M = W, \ \textbf{72}) \end{split}$	[30]
w = Mo (69), w (70); R = Me		[{Cp*M(N){N(/Pr)C(R)N(/Pr)}}2] (73)	
<i>trans</i> -[Mo(depe) ₂ (N ₂) ₂] (74)	Oxidation, <i>E</i> _{red} = 0.5 V <i>vs.</i> Pt-wire	[Mo(depe) ₂ (N)] (75)	[31]

depe = Et₂PCH₂CH₂PEt₂

2. Summary of used complexes and reagents to functionalize nitride originating from $\ensuremath{\mathsf{N}}_2$

Nitride Complex	Reagent	Selectivity ^(b)	Ref.
[Mo ^{vi} (N ^t BuAr) ₃ (N)] (2)	Mel	[Mo ^{∨i} (N'BuAr)₃(NR)]⁺	[32]
[Nb [∨] (N′BuAr′)₃N][Na] (77)	RCOCI	RCN	[33]
[Mo ^{VI} (N'BuAr) ₃ (¹⁵ N)] (2-¹⁵N)	(CF ₃ CO) ₂ O	CF ₃ CO ¹⁵ NH ₂	[34]
[Mo ^{VI} (N'BuAr) ₃ (N)] (2)	RC(O)Cl + R' ₃ SiOTf + Mg(anthracene) + MCl ₂ (M = Sn, Zn)	RCN (R = Me, ^t Bu, Ph)	[35]
[(ONO)V [∨] (µ-N)]₂[K(dme)]₂ (47)	CO or isocyanide	potassium isocyanate 81 or carbodiimide complex 82 .	[19]
[((anti-O ₃)Nb ^V) ₂ (μ-N) ₂][K(thf)] ₂ (12)	Mel, CO ₂	Imide, ureate complex 79.	[5, 36]
[(Cp*Mo[N([/] Pr)C(Me)N([/] Pr)]) ₂ (µ-N ₂)] (69)	R ₃ ECI (R ₃ E = Me ₃ Si, Ph ₃ Si, Me ₃ Ge or Me ₃ C) + CO or CO ₂	RNCO	[37]
[Re ^v (<i>PNP</i>)Cl(N)] (33)	MeOTf	Imide complex 83.	[38]
$(PNP = (({}^{t}Bu)_{2}P(CH_{2}CH_{2})N)$			
[Re ^v (<i>PNP</i>)CI(N)] (33)	EtOTf, (KN(SiMe ₃) ₂), NCS	MeCN	[39]
$(PNP = ((^{t}Bu)_{2}P(CH_{2}CH_{2})N)$			
[Re [∨] (<i>PNP</i>)Cl(N)] (33)	i.) BnBr, AgOTf, DTBMP, ii.) (KN(SiMeo))	PhCN	[40]
$(PNP = ((^{t}Bu)_{2}P(CH_{2}CH_{2})N)$	iii.) NCS		
[Re ^V (<i>PNP</i>)Cl(N)] (33)	i.) <i>hν</i> (390 nm)	PhCN + PhC(O)NH ₂	[41]
$(PNP = (({}^{i}Pr)_{2}P(CH_{2}CH_{2})N)$	ii.) $E = -1.67 \text{ V}, \text{ N}_2$		
[(Cp'Ti)₄(μ³-NH)₂(μ³-N)₂] (89) (Cp' =C₅Me₄SiMe₃)	RC(O)Cl (R = aryl, Bn, Me, [/] Bu)	RCN	[42]
[Mo ^{IV} (PPP ^{Cy})(N)(I)] (31)	1,2-bisdimethylsilyethane	Bis(silyl)amine	[13]
[{Ta ^v (<i>NN</i>)Cp*(µ-N)} ₂] (56)	PhSiH ₃	Silylimido complex 92 .	[24]
[(Mo ^{II} (<i>NN</i>)Cp*) ₂ (µ-N ₂)] (60) ^a	Me ₃ SiCl + [/] PrOH	HN(SiMe ₃) ₂	[43]

 Table S2. Summary of used complexes and reagents for nitride functionalization.

[a] in-situ generation of the metal nitride

3. Summary of used complexes and reagents for stoichiometric $N_{\rm 2}$ protonation and $N_{\rm 2}$ -hydrogenation

Complex	Reagent	Selectivity ^[b]	Ref.
trans- $[W(N_2)_2(dppe)_2]$ (94) dppe = Ph ₂ PCH ₂ CH ₂ PPh ₂	HX (X= Cl, Br)	<i>tran</i> s-[W(NH-NH)(dppe)₂X]* (97)	[44]
trans-[$Mo(N_2)_2(depe)_2$] (95) dppe = $Et_2PCH_2CH_2PEt_2$	HX (X = Cl, Br)	<i>trans-</i> [Mo(NH-NH)(dppe) ₂ X]* (98)	[45]
trans-[W(N ₂) ₂ (depf) ₂] (103) depf = $Et_2PFcPEt_2$	HOTf	<i>trans-</i> [W(N-NH ₂)(depf) ₂ OTf] ⁺ (101)	[46]
trans-[W(N ₂) ₂ (depr) ₂] (104) depr = $Et_2PRuCp_2PEt_2$	HOTf	<i>trans-</i> [W(N-NH ₂)(depr) ₂ OTf] ⁺	[47]
<i>trans</i> -[W(N ₂) ₂ (depc) ₂] (105)	HOTf	<i>trans-</i> [W(N-NH ₂)(depc) ₂ OTf] ⁺⁺	[48]
<i>trans-</i> [<i>Mo</i> (N ₂) ₂ (depf) ₂] (106)	HOTf	<i>trans-</i> [Mo(N-NH ₂)(depf) ₂ OTf] ⁺ (102)	[46]
<i>trans-[Mo</i> (N ₂) ₂ (depc) ₂] (107)	HOTf	<i>trans-</i> [Mo(N-NH ₂)(depc) ₂ OTf] ⁺	[48]
<i>trans</i> -[W(N ₂) ₂ (depf)(PPh ₂ Me) ₂] (108)	H ₂ SO ₄	NH4 ⁺	[46]
trans-[Mo(N ₂) ₂ (depf)(PPh ₂ Me) ₂] (110)	H ₂ SO ₄	NH_4^+	[46]
<i>trans</i> -[W(N ₂) ₂ (depc)(PPh ₂ Me) ₂] (109)	H ₂ SO ₄	NH4 ⁺	[48]
<i>trans</i> -[W(N ₂) ₂ (PPh ₂ Me) ₄] (121)	HCI	<i>trans-</i> [W(NH=NH)(Me ₂ PPh) ₄ Cl] ⁺ (122)	[45]
<i>trans</i> -[W(N ₂) ₂ (MePPh ₂) ₄] (121)	H ₂ SO ₄	NH ₃	[49]
<i>cis</i> -[W(N ₂) ₂ (Me ₂ PPh) ₄] (123)	H ₂ SO ₄	NH ₃	[49]
<i>cis</i> -[Mo(N ₂) ₂ (Me ₂ PPh) ₄] (124)	H ₂ SO ₄	NH ₃ , NH ₂ -NH ₂	[50]
<i>cis</i> -[Mo(N ₂) ₂ (PPP)PPh ₃] (125)	HBr	NH ₃	[51]
PPP = <i>bis</i> -(2-diphenylphosphinoethylene)phenylphosphine			
<i>cis</i> -[Mo(N ₂) ₂ (PPP)(depf)] (127)	HBr	NH3	[52]
trans-[Cr(N ₂) ₂ (dmpe) ₂] dmpe = Me ₂ PCH ₂ CH ₂ PMe ₂	HOTf	[Cr(N-NH ₂)(dmpe) ₂ (OTf)] ⁺	[53]
[Cr(N ₂) ₂ (P ^{Ph} ₄ N ^{Bn} ₄)] (130)	HOTf	$[Cr(N_2H)(P^{Ph}_4N^{Bn}_4)]^+$ (131) (DFT)	[54]
$P^{Ph}_4 N^{Bn}_4 = 1,5,9,13$ -benzylaza-3,7,11,15-phenylphosphocyclohexadecane	HOTf, CoCp ₂	N ₂ H ₅ ⁺ , NH ₄ ⁺	
$[Cr(N_2)_2(P^{Ph}_4N^{Bn}_4)] \text{ (130)}$	ТЕМРОН	NH ₃	[55]
[Fe(N ₂)(DMeOPrPE) ₂] (113)	HOTf	[Fe(N-NH₂)(DMeOPrPE)₂] ⁺	[56]

 Table S3. Summary of used complexes and reagents for stoichiometric N-H bond formation.

[Fe(N ₂)(dppe) ₂] (112)	HCI	NH ₃ , NH ₂ -NH ₂	[57]
[Fe(dmpe) ₂ (N ₂)] (111)	H(OEt ₂) ₂ OTf/THF	NH ₃	[58]
	H(OEt ₂) ₂ OTf/Pentane	NH ₂ -NH ₂	
$[(Cp^{*})_{2}Zr(N_{2})-(\mu^{2}-N_{2})-Zr(N_{2})(Cp^{*})_{2}] $ (133)	HCI/Toluene	NH ₂ -NH ₂	[59]
[(NEt ₂ CS ₂) ₃ Nb] ₂ (µ-N ₂) (134)	HCI	NH ₂ -NH ₂ , NH ₃	[60, 61]
[(NEt ₂ CS ₂) ₃ Ta] ₂ (µ-N ₂) (135)	HCI	NH ₂ -NH ₂ , NH ₃	
{[(Me ₃ Si) ₂ N] ₂ (thf)Y} ₂ (μ - η ² : η ² -N ₂ [K(thf) ₆] (138)	[Et₃NH][BPh₄]	$\{[(Me_3Si)_2N]_2(thf)Y\}_2(\mu\text{-}N_2H_2)\;(\textbf{139})$	[62]
{[bis-(2- ^t Bu-4-Me-phenolate)methylene]Th(dme)Cl} (140)	N ₂ /K-naphthalinide	{[bis-(2- [/] Bu-4-Me- phenolate)methylene]Th(dme)NH ₂ } (141)	[63]
M ₂ (mTP) ₂ (M = U, 142 and M = Th, 143)	KC ₈ /N ₂	K ₄ [M ₂ (µ-N ₂ H ₂)(mTP) ₂] (M = U, 144 ; Th,	[64]
mTP = [$\{2-(OC_6H_2-^{t}Bu-2,4)_2CH\}-C_6H_4-1,3\}^{4-}$		145)	
[K ₃ {[U(OR) ₃] ₂ (μ-N) (μ-η ² :η ² -N ₂)}] (R = Si(O ^t Bu)) (147)	HCI, H ₂	NH ₃	[65]
<i>cis</i> -[W(N ₂) ₂ (PPh ₂ Me) ₄] (123)	ZrHCpCI (148)	NH ₃ , NH ₂ -NH ₂	[66]
	CoH(CO)4 (151)		
	HFeCo(CO) ₁₂ (149)		
	(H) ₂ Fe(CO) ₄ (150)		
<i>trans</i> -[W(N ₂) ₂ (dppe) ₂] (93)	Ru(H) ₂ Cp(dtfpe)Cl (152)	NH ₃	[67]
<i>trans</i> -[W(N ₂) ₂ (dppe) ₂] (93)	[Ru(H₂)(dppe)₂Cl]⁺ (153)	NH ₃	[68]
<i>ci</i> s-[W(N ₂) ₂ (PPh ₂ Me) ₄] (123)	[(Cp*M)₂(µ-SH)₃] {M = Ir, Rh} (154, 155)	NH ₃	[69]
	[(PPP-Fe) ₂ (µ-SH) ₃] (156)		
	$\{PPP = MeC(CH_2PPh_2)_3\}$		
[Cr(diaminopyridine)Cl] (157)	NaH	[Cr(N-H)(diaminopyridine)Na(thf) (158)	[70]
[(P ₂ N ₂)Zr-(<i>µ</i> -N ₂)-Zr(P ₂ N ₂)] (159)	H ₂	[(P ₂ N ₂)Zr-(µ-N-NH)-Zr(P ₂ N ₂)] (160)	[71]
$[P_2N_2 = \{(Ph-PCH_2SiMe_2)_2N\}_2]$			
$[(CpMe_4H)_2Zr-(\mu-N_2)-Zr(CpMe_4H)_2]$ (161)	H ₂	NH ₃	[72]
[(PNP)Ti-(µ-H)₄-Ti(PNP) (163)		[(PNP)HTi-(µ-N)(µ-NH)-Ti(PNP)] (165)	[73]
[Ta(H) ₄ (SiO) _n] (167)	-	[(≡OSi)₂Ta(=NH)(NH₂)] (169)	[74]

4. Summary of used complexes and reagents for stoichiometric N_2 silylation.

Complex	Reagent	Selectivity	Ref.
[Mo(N ₂) Cp*(depf)] (170)	Me ₃ SiCl	[Mo(N=N-SiMe ₃) Cp*(depf)] (171)	[75]
Mg(thf) ₄ [Co(PhBP ^{iPr} ₃)(N ₂)] ₂ (172)	Me ₃ SiCl	[(PhBP ^{iPr} 3)CoN=N-TMS] (174)	[76]
[P ₃ ^B = Tris-[2-(diisopropylphosphino)-phenyl]borane]			
[Co(EP ^{ph} ₃)Cl] (E=N, 175 ; E=CMe, 176)		[Co(XP ^{Ph} ₃)(N=NTMS)]	[77]
$EP^{Ph}_{3} = E(CH_2CH_2PPh_2)_3$		(E=N, 177 ; E=CMe, 178)	
[Fe(P ₃ ^B)Cl] (179)	N₂/Na(Hg)	[(P ₃ ^B)Fe=N-N(Me ₂ SiCH ₂ CH ₂ SiMe ₂)]	[78]
$(P_3^B = [tris-(2-diisopropylphosphino)-borane)$	CIMe2SICH2CH2SIMe2CI	(181)	
$[Fe_2(P_2^B)_2(N_2)]$ (183)	Na/CIMe2SiCH2CH2SiMe2CI	[(P2 ^B)Fe=N-N(Me2SiCH2CH2SiMe2)]	[79]
(P ₂ ^B = [bis-(2-diisopropylphosphino)-phenylborane)		(104)	
[Fe(N₂)AltraPhos] ⁻ (188)	KC ₈ /CIMe ₂ SiCH ₂ CH ₂ SiMe ₂ CI	[Fe{N ₂ (SiMe ₂ CH ₂) ₂ })AltraPhos] (189)	[80]
AltraPhos = Al[N(o-C ₆ H ₄ NCH ₂ P <i>i</i> Pr ₂) ₃			
[(μ-η¹:η²-N₂){Ta(NPN)H}₂] (190)	RSiH₃ {R = ^{<i>n</i>} Bu, Ph}	[{Ta(NPN)}2(µ-NSiH2R)2] (194, 195)	[81]
[NPN = (PhNSiMe ₂ CH2) ₂ PPh)]		(R = Ph, <i>ⁿ</i> Bu)	
[{(η ⁵ -C ₅ H ₂ -1,2,4-Me ₃) ₂ Hf} ₂ (μ ₂ ,η ² ,η ² -N ₂)] (196)	CySiH₃	[{(η ⁵ -C ₅ H ₂ -1,2,4-Me ₃) ₂ Hf}(μ-H){μ,η ¹ ,η ² - N(SiH ₂ Cy)N}] (197)	[82]

Table S4. Summary of used complexes and reagents for stoichiometric silylation of metal-dinitrogen complexes.

5. Summary of used complexes and reagents for stoichiometric N-C bond formation.

Complex	Reagent	Selectivity	Ref.
<i>trans</i> -[W(N ₂) ₂ (dppe) ₂)] (94)	RCOBr {R = Me, Et, Ph, <i>p</i> - OMePh}	<i>trans</i> -[W(N-NHC(O)R)(dppe) ₂ Br ₂] (201- 204) (R = Et, Ph, <i>p</i> -OMePh)	[83]
<i>trans</i> -[Mo(N ₂) ₂ (dppe) ₂)] (95)	RCOCI {R = Me, Et}	<i>trans</i> -[Mo(N-NHC(O)R)(dppe) ₂ Br ₂] (205-206)	[83]
<i>trans</i> -[W(N ₂) ₂ (dppe) ₂)] (94)	R-X (R = Me, Et, ^{<i>n</i>} Pr, ^{<i>i</i>} Pr, ^{<i>i</i>} Bu,, X = Cl, Br	[(dppe) ₂ W(-N=NR)] {R = Me, Et, ^{<i>n</i>} Pr, ⁽ Pr, ⁽ Bu} (207-211)	[84]
		$[(dppe)_2W(=N-NR_2)] \{R = Me\} (214)$	
<i>trans</i> -[Mo(N ₂) ₂ (dppe) ₂)] (95)	R-X {R = Me, Et}	[(dppe) ₂ Mo(-N=NR)] {R = Me, Et} (212- 213)	[85]
<i>trans</i> -[W(N ₂) ₂ (dppe) ₂)] (94)	CICH ₂ CH ₂ CH ₂ CH ₂ CI	[(dppe) ₂ W(=N-N(CH ₂) ₄)] (215)	[86]
$[(PhMe_2P)_3Re(N_2)Cl_2]$	RCOCI (R = Me, Ph)	[(PhMe ₂ P) ₃ Re(N ₂ COR)Cl ₂]	[84]
[M(PhB(CH ₂ P ^{iPr}) ₃)Cl]{M = Fe, Co} (216 , 173)	N₂/Mg/MeOTs	M(PhB(CH₂P ^{iP} r)₃)(N=NMe), M = Fe (218), Co (217)	[76]
[Fe(P ₃ ^X)L] (L = Cl, Br) (219-220)	N₂/Na(Hg)/MeOTf	Fe(P ₃ ^x)(N-NMe ₂) (221-222)	[87]
(X = B, Si)	N ₂ /KC ₈ /MeOTf		
$[Zr((\eta^{5}-C_{5}Me_{4}R)_{2}SiMe_{2})]_{2}(\mu-\eta^{2},\eta^{2}-N_{2}) (\textbf{223})$	CO ₂	$[Zr((\eta^{5}-C_{5}Me_{4}R)_{2}SiMe_{2})]_{2}(\mu-\eta^{2},\eta^{2}-OCON-NOCO)]$ (224)	[88]
[{(η^{5} -C ₅ Me ₄ H) ₂ Hf} ₂ -(μ_{2} - η^{2} , η^{2} -N ₂)] (225)	CO ₂	$[\{(\eta^5-C_5Me_4H)_2Hf\}_2\{NN(CO_2)_2\}]~(\textbf{226})$	[89]
[{(η ⁵ -C ₅ Me ₄ H) ₂ Hf} ₂ -(μ ₂ -η ² ,η ² -N ₂)] (225)	PhNCO	$[\{(\eta^5-C_5Me_4H)_2Hf\}_2(N_5C_3O_3Ph_3)]$	[89]
[{(η ⁵ -C ₅ Me ₄ H)Sc{(NEt) ₂ CNEt ₂ } ₂ (μ ₂ -η ² ,η ² -N ₂)] (227)	EtBr	[{(η ⁵ -C ₅ Me ₄ H)Sc{(NEt) ₂ CNEt ₂ } ₂ -(μ ₂ - η²,η²-N ₂ Me)]	[24]
[{(η ⁵ -C ₅ Me ₄ H)Sc{(N ⁱ Pr) ₂ C ⁱ Bu} ₂ (μ ₂ -η ² ,η ² -N ₂)] ⁻ (228)	Xs MeOTf	[{(η ⁵ -C ₅ Me₄H)Sc{(N ⁱ Pr) ₂ C ⁱ Bu} ₂ {μ ₂ -η ² ,η ² - (MeN-NMe)}] (229)	[90]
[(μ-η ¹ :η ² -N ₂)Ta ₂ (NPN) ₂ (μ-H) ₂] (190)	PhCH₂Br	[(NPN)Ta-(η¹-NCH₂Ph:μ²-N)(μ- H)₂TaBr(NPN)] (231)	[91]
[(μ-η ¹ :η ² -N ₂)Ta ₂ (NPN) ₂ (μ-H) ₂] (190)	Ph-N=C=N-Ph	[(NPN)Ta-(μ-η¹:η²-{κ²-N(Ph)C(N-Ph)N- N}(μ-H)₂TaBr(NPN)]	[92]
	X=N=C=S	[(NPN)(X=N=C=N)Ta-(μ-N)(μ-S)- Ta(NPN)]	
[(P ₂ N ₂)Zr-(µ-N ₂)-Zr(P ₂ N ₂)] (159)	H-C=C-Ar	$[(P_2N_2)Zr_{\mu}-\eta^2:\eta^2-N-N(CH=CHAr)](\mu-\eta^2:\eta^2-N-N(CH=CHAr)](\mu-\eta^2:\eta^2-N-N(CH=CHAr))](\mu-\eta^2)$	[93]
	Ar = Ph, <i>p</i> -MePh, <i>p-'</i> BuPh	∪=∪PN)-∠r(P2№2)] (233-235)	
$[(O_3C)_2Ti_2(\mu-N_2)K_3(thf)_3][K(thf)_6] (236)$		[(O ₃ C) ₂ Ti ₂ {μ-(κ ² :κ ² -(OCO) ₂ N-N(COO-)} (237)	[94]
	Banoo	[(O ₃ C) ₂ Ti ₂ { <i>μ</i> -(<i>κ</i> ² : <i>κ</i> ² -(N ^t BuCON) ₂ } (238)	

Table S5. Summary of used complexes and reagents for stoichiometric N₂-functionalization for N-C bond formation.

PhC=C=CH ₂		[(O ₃ C) ₂ Ti ₂ { <i>μ-η</i> ² : <i>η</i> ² -NN(C(CH ₃)CHPh)}] (239)or,
		[(O ₃ C) ₂ Ti ₂ { <i>μ</i> - <i>η</i> ² : <i>η</i> ² -NN(C(CH ₂)CH ₂ Ph)}] (240)
[K ₃ {[U(OR) ₃] ₂ (μ-N) (μ-η ² :η ² -N ₂)}] (R = Si(O ^t Bu)) (147)	СО	KCN + [K ₂ ([U(OR) ₃] ₂ (μ-Ο)(μ-NCO) ₂)] ^[65] (241)
[K ₂ ([U(OR) ₃] ₂ (μ-Ο) (μ-η ² :η ² -N ₂))] (243) (R = Si(O'Bu))	CO	[K ₂ {[U(OR) ₃] ₂ (μ-O) ₂ (μ-NCN)}] (244) ^[95] +'NCNCO' (<i>not identified</i>)

6. Summary of complexes and reagents for catalytic N_2 protonation.

Catalyst	Reductant (equiv.)ª	Proton source (equiv.)	Solvent	Reaction conditions	TONª	Ref.
$\begin{array}{l} [\{(Tren^{TMS})Ti\}_{2}(\mu\text{-}\eta^{1}\!\!:\!\!\eta^{2}\!\!:\!\!\eta^{2}N_{2}K_{2})] \\ (\textbf{49}) \end{array}$	KC ₈ (600)	[Cy₃PH]I (600)	Et ₂ O	1 atm of N ₂ , - 78 $^\circ\text{C}$	9	[96]
[V(OXyI)(PNP')(N ₂)] (262)	KC ₈ (200)	[HOEt ₂][BAr ^F ₄] (184)	Et ₂ O	1 atm of N ₂ , - 78 °C	6	[97]
Mg[Mg ₂ Mo ₈ O ₂₂ (OMe) ₆ (MeOH) ₄] (245)	Na/Hg	solvent	Methanol	1 atm of N ₂ , 20 °C	1000 ^b	[98]
[Mo(N₂)(HIPTN₃N)] (246)	CrCp [*] ₂ (36)	[LutH]{BAr ^F 4]	Hexane	1 atm of N ₂ , 25 °C	3.78	[99]
[Mo(N ₂) ₂ (PNP)] ₂ (μ-N ₂) (22)	CoCp ₂ (72)	[LutH][OTf] (96)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	11.5	[100]
[Mo(N)(PNP)Cl][OTf] (253)	CoCp ₂ (36)	[LutH][OTf] (48)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	3	[101]
[Mo(N ₂) ₂ (p-OMe-PNP)] ₂ (µ-N ₂) (254)	CoCp ₂ (216)	[LutH][OTf] (288)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	17	[102]
[Mo(Cl ₃)(<i>p</i> -OFc-PNP)](255)	CoCp [*] ₂ (360)	[LutH][OTf] (480)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	41.5	[103]
[Mo(N ₂) ₂ (<i>p</i> -Fc-PNP)] ₂ (<i>µ</i> -N ₂) (256)	CoCp ₂ (216)	[LutH][OTf] (288)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	18.5	[104]
[Mo(Cl ₃)(<i>p</i> -OFc(PNP) ₂)](257)	CoCp [*] ₂ (360)	[LutH][OTf] (480)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	22	[103]
[Mo(N)(PPP)CI] (26)	CoCp [*] ₂ (36)	[ColH][OTf] (48)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	5.5	[105]
[Mo(N ₂) ₂ (PCP)] ₂ (µ-N ₂) (263)	CrCp [*] ₂ (72)	[LutH][OTf] (96)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	58	[106]
[Mol ₃ (PNP)] (20)	CoCp [*] ₂ (180)	[ColH][OTf] (180)	Toluene	1 atm of N ₂ , 25 °C	26	[9]
[Mo(N)I(PNP)] ⁻ (21)	CoCp [*] ₂ (180)	[ColH][OTf] (180)	Toluene	1 atm of N ₂ , 25 $^\circ\text{C}$	6.1	[9]
[Mol ₃ (PNP)] (20)	Sml ₂ (360)	HOCH ₂ CH ₂ OH (360)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	21.4	[10]
[Mol ₂ (PNP')] (258)	Sml ₂ (thf) ₂ (180)	HOCH ₂ CH ₂ OH (180)	THF	1 atm of N ₂ , 25 °C	6.1	[107]
[Mo(N ₂) ₂ (PCP)] ₂ (µ-N ₂) (263)	Sml ₂ (360)	HOCH ₂ CH ₂ OH (360)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	18	[10]
[Mo(N ₂) ₂ (PCP)] ₂ (µ-N ₂) (263)	Sml ₂ (14400)	H ₂ O (14400)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	2175	[10]
[Fe(PNP')(N ₂)] (260)	KC ₈ (40)	[HOEt ₂][BAr ^F ₄] (38)	Et ₂ O	1 atm of N ₂ , - 78 °C	3.5	[108]
[Na(12-crown-4) ₂][Fe(P ₃ ^B)(N ₂)] (264)	KC ₈ (50)	[HOEt ₂][BAr ^F ₄] (46)	Et ₂ O	1 atm of N ₂ , - 78 °C	3.5	[109]
[Na(12-crown-4) ₂][Fe(P ₃ ^B)(N ₂)] (264)	CoCp [*] ₂ (486)	[H ₂ NPh ₂][OTf] (966)	Et ₂ O	1 atm of N ₂ , - 78 °C	6.4	[110]
[K(Et ₂ O) _{0.5}][Fe(P ₃ ^C)(N ₂)] (265)	KC ₈ (40)	[HOEt ₂][BAr ^F ₄] (38)	Et ₂ O	1 atm of N ₂ , - 78 °C	2.3	[111]

Table S6. Molecular catalysts for N_2 protonation, conditions for highest TON reported

[Na(12-crown-4) ₂][Fe(P ₃ ^{Si})(N ₂)] (266)	-crown-4) ₂][Fe(P ₃ ^{Si})(N ₂)] KC ₈ (1800) [HOEt ₂][BAr ^F ₄] (1500)		Et ₂ O	1 atm of N ₂ , - 78 °C	1.9	[112]
$[K(thf)_2][Ru(P_3{}^{Si})(N_2)]$	KC ₈ (50)	[HOEt ₂][BAr ^F ₄] (46)	Et ₂ O	1 atm of N ₂ , - 78 $^\circ\text{C}$	2.2	[113]
[K(thf) ₂][Os(P ₃ ^{Si})(N ₂)]	CoCp* ₂ (1800)	[H ₂ NPh ₂][OTf] (1500)	Et ₂ O	1 atm of N ₂ , - 78 °C	60	[113]
[FeH(PPP)] ₂ (N ₂)] (268)	KC8 (3600)	[HOEt ₂][BAr ^F ₄] (3000)	Et ₂ O	1 atm of N ₂ , - 78 °C, Hg lamp	33.4	[114]
$[Fe(N_2)(P^{Ph}P_2^{Cy})(H)_2] \ (\textbf{268})$	KC ₈ (200)	[HOEt ₂][BAr ^F ₄] (200)	Et ₂ O	1 atm of N ₂ , - 80 °C	1.4	[115]
[Fe(CAAC) ₂][BAr ^F ₄]] (269)	KC ₈ (50)	[HOEt ₂][BAr ^F ₄] (50)	Et ₂ O	1 atm of N ₂ , - 95 $^\circ\text{C}$	1.7	[116]
[Fe(depe) ₂ N ₂] (270)	CoCp [*] ₂ (270)	[H ₂ NPh ₂][OTf] (360)	Et ₂ O	1 atm of N ₂ , - 78 $^\circ\text{C}$	12.3°	[117]
[Co(PNP')(N ₂)] (261)	KC ₈ (40)	[HOEt ₂][BAr ^F ₄] (38)	Et ₂ O	1 atm of N ₂ , - 78 °C	2.2	[118]

[a] equivalents per catalyst. [b] based on the equivalents of reductant. [c] in $N_{2}H_{4}$

7. Summary of complexes and reagents for catalytic $N_{\rm 2}$ silylation

Catalyst	Reductant (equiv.) ^a	Silyl source (equiv.)	Solvent	Reaction conditions	TONª	Ref.
$K_2[\{(Xy\text{-}N_3N)Ti\}_2(\mu_2\text{-}N_2)] \text{ (306)}$	K (1500)	Me₃SiCl (1500)	THF	1 atm of N ₂ , 50 $^\circ\text{C}$	6.3	[119]
[V{(Me ₃ SiNCH ₂ CH ₂) ₂ NSiMe ₃ }(µ-N)] ₂ (38)	Na (600)	Me₃SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	11.5	[120]
$\begin{array}{l} K[V\{(Me_3SiNCH_2CH_2)_2NSiMe_3\}(\mu\text{-}N)]_2\\ \textbf{(39)} \end{array}$	Na (600)	Me₃SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	12	[120]
$[V\{(Me_3SiNCH_2CH_2)_2NSiMe_3\}(\mu\text{-}CI)]_2$	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	5.5	[120]
[VCl{N(SiMe ₃) ₂ } ₂ (thf)]	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	5.5	[120]
[VCl ₂ (tmeda) ₂] (307)	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	6	[120]
[Na(thf)][V(N ₂) ₂ (dppe) ₂] (308)	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	10.5	[120]
[CrCl ₃]	Li (50)	Me₃SiCl (50)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	2.7	[121]
$[Cr(N_2)_2(P^{Ph}_4N^{Bn}_4)]$ (130)	Na (10 ⁵)	Me ₃ SiCl (10 ⁵)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	17	[55]
$[Cr(Cy_2PC_6H_4-(\eta^5-C_5H_4Et_4)(N_2)_2] $ (275)	K (2000)	Me ₃ SiCl (2000)	Et ₂ O	1 atm of N ₂ , 25 $^\circ\text{C}$	13	[122]
<i>trans</i> -[W(N ₂) ₂ (dppe) ₂] (94)	Na (100)	Me₃SiCl (100)	THF	1 atm of N ₂ , 30 $^\circ\text{C}$	1.7	[123]
<i>trans-</i> [Mo(N ₂) ₂ (dppe) ₂] (95)	Na (100)	Me ₃ SiCl (100)	THF	1 atm of N ₂ , 30 $^\circ\text{C}$	4.9	[123]
$[Mo(N_2)_2(PMe_2Ph)_4] (124)$	Na (200)	Me ₃ SiCl (200)	THF	1 atm of N ₂ , 30 $^\circ\text{C}$	18.3	[123]
[Mo(N ₂) ₂ (depf) ₂] (106)	Na (8000)	Me ₃ SiCl (8000)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	226	[124]
[Mo(PP ^{Cy} ₃)Cl][BPh ₄] (276)	K (200)	Me ₃ SiCl (200)	THF	1 atm of N ₂ , 50 $^\circ\text{C}$	5.9	[125]
[Mo(PP ^{Cy} ₃)(=N-N(SiMe ₃) ₂] (278)	K (200)	Me ₃ SiCl (200)	THF	1 atm of N ₂ , 50 $^\circ\text{C}$	7.5	[125]
[Mo(PP ^{Cy} ₃)(=N(SiMe ₃)] (279)	K (200)	Me ₃ SiCl (200)	THF	1 atm of N ₂ , 50 $^\circ\text{C}$	5.9	[125]
[Mo(PPP)Cl ₃] (28)	K (400)	Me ₃ SiCl (400)	THF	1 atm of N ₂ , 25 °C	19.2	[126]
[{Mo(PMe ₃)Cp*} ₂ (μ ₂ - H) ₈ {FeN(SiMe ₃) ₂ }] (295)	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	34.5	[127]
[{Mo(PMe₃)Cp*}₂(μ₂- H)ଃ{MnN(SiMe₃)₂}] (296)	Na (600)	Me₃SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	6	[127]
$\label{eq:main_state} \begin{array}{l} [\{Mo(PMe_3)Cp^*\}_2(\mu_2\text{-}H)_8\{FeS(2,4,6-2)^2Pr_3C_6H_2)\}] \end{array}$	Na (600)	Me₃SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	32.5	[127]
$\label{eq:main_state} \begin{array}{l} [\{Mo(PMe_3)Cp^*\}_2(\mu_2\text{-}H)_8\{FeS(2,6-(SiMe_3)_2C_6H_3)\}] \end{array} (\textbf{298}) \end{array}$	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	34.5	[127]

 $\label{eq:stable} \textbf{Table S7}. \ \text{Molecular catalysts for N_2 silvlation, conditions for highest TON reported.}$

[Fe(CO) ₅]	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25°C	12.5	[128]
[Fe(SiMe ₃) ₂ (CO) ₄]	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25°C	14.5	[128]
[FeCp(CO) ₂] ₂	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 °C	8.5	[128]
[FeCp ₂]	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 °C	6.5	[128]
$[Fe(\eta^5-C_5H_4SiMe_3)_2]$	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 °C	11.5	[128]
$[Fe(\eta^5-C_5H_2(SiMe_3)_3\}_2]$	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	17	[128]
[Fe(PSiP)H(PMe ₃)N ₂] (285)	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 °C	13	[129]
[Fe[SiCHSi](H)(N ₂)(PMe ₃)] (287)	KC ₈ (1800)	Me ₃ SiCl (1800)	Dioxane	1 atm of N ₂ , 25 °C	37.2	[130]
[Fe(CAAC) ₂][BAr ^F ₄]] (269)	KC ₈ (600)	Me ₃ SiCl (600)	Et ₂ O	1 atm of N ₂ , 25 $^\circ\text{C}$	12.2	[116]
[Fe(depe) ₂ N ₂] (270)	KC ₈ (1500)	Me ₃ SiCl (1500)	Et ₂ O	1 atm of N ₂ , 25 °C	60.5	[131]
[Fe(P ₄ N ₂)N ₂] (289)	KC ₈ (500)	Me ₃ SiCl (500)	Toluene	1 atm of N ₂ , 25 °C	5.5	[132]
$[Fe(N_2)(P^{Ph}P_2{}^{Cy})(H)_2]$	K (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25°C	14.5	[115]
$[Fe(N_2)_2(P^{Ph}P_2^{Cy})\ (\textbf{290})$	K (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 °C	16	[115]
$[Fe(N_2)_2(P^{_{1B_u}}P_2{^{Cy}}) (\textbf{291})$	K (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 °C	7.3	[115]
[Fe ₃ (cyclophane-β-diketamin)Br ₂] (54)	KC ₈ (500)	Me ₃ SiCl (500)	Et ₂ O	1 atm of N ₂ , - 34 $^\circ\text{C}$	41.5	[133]
$\label{eq:eq:expansion} \begin{split} & [\text{Fe}_4(\mu\text{-H})_4(\mu_3\text{-H})_2\{N(\text{SiMe}_3)_2\}_2(\text{PMe}_3)_4] \\ & (\textbf{292}) \end{split}$	Na (600)	Me₃SiCl (600)	DME	1 atm of N ₂ , 25 °C	80	[134]
$[Fe_6(\mu\text{-}H)_{10}(\mu_3\text{-}H)_2(PMe_3)_{10}] \text{ (293)}$	Na (600)	Me ₃ SiCl (600)	DME	1 atm of N ₂ , 25 $^\circ\text{C}$	91.5	[134]
[Fe₄(η ⁶ -C7H ₈)(μ-H) ₂ {μ- N(SiMe ₃) ₂ } ₂ {N(SiMe ₃) ₂ } ₂] (294)	Na (600)	Me₃SiCl (600)	DME	1 atm of N ₂ , 25 $^\circ\text{C}$	74	[134]
$[Fe_4(\mu\text{-}H)_4(\mu_3\text{-}H)_2(SDmp)_2(PMe_3)_4]$	Na (600)	Me ₃ SiCl (600)	DME	1 atm of N ₂ , 25 °C	52	[134]
[Co ₂ (CO) ₈]	Na (600)	Me ₃ SiCl (600)	DME	1 atm of N ₂ , 25 $^\circ\text{C}$	18	[135]
[Co ₂ (CO) ₈]	Na (600)	Me ₃ SiCl (600)	DME	1 atm of N ₂ , 25 °C	20	[135]
				+ 2 equiv. bipy.		
[Co(SiMe ₃)(CO) ₄]	Na (600)	Me ₃ SiCl (600)	DME	1 atm of N ₂ , 25 $^\circ\text{C}$	18	[135]
[CoCp ₂]	Na (600)	Me ₃ SiCl (600)	DME	1 atm of N ₂ , 25 °C	4	[135]
[Co ₂ (P ₃ N ₃)] (299)	KC ₈ (2000)	Me ₃ SiCl (2000)	THF	1 atm of N ₂ , 25 °C	195	[135]
[Co(ICy) ₂ (N ₂)] (300)	KC ₈ (2000)	Me ₃ SiCl (2000)	Et ₂ O	1 atm of N ₂ , 25 °C	125	[136]
[Co(NpNP)] (302)	KC ₈ (1500)	Me ₃ SiCl (2000)	THF	1 atm of N ₂ , - 40 $^\circ\text{C}$	100	[137]
[Co(QuiNacNacP)Cl] (303)	KC ₈ (1000)	Me ₃ SiCl (1500)	THF	1 atm of N ₂ , 25 °C	38	[138]

[Co(PSiP)(PMePh ₂)N ₂] (304)	Na (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , 25 $^\circ\text{C}$	20.5	[129]
[Rh(PNP')N ₂] (305)	KC ₈ (600)	Me ₃ SiCl (600)	THF	1 atm of N ₂ , - 40 $^\circ\text{C}$	11.5	[139]
[U ₂ (<i>m</i> TP) ₂] (309)	K (85)	Me ₃ SiCl (60)	C_6H_6	1 atm of N ₂ , 25 $^\circ\text{C}$	3.2°	[64]
$mTP = [{2-(OC_6H_2-^{t}Bu-2,Me-4)_2CH}-C_6H_4-1,3]^{4-}$		[HNEt ₃][BPh ₄]				

[a] equivalents per catalyst. [b] based on the equivalents of reductant. [c] in HMDS

8. References

- [1] C. E. Laplaza, C. C. Cummins, Science 1995, 268, 861-863.
- [2] A. S. Huss, J. J. Curley, C. C. Cummins, D. A. Blank, J. Phys. Chem. B 2013, 117, 1429-1436.
- [3] M. Pucino, F. Allouche, C. P. Gordon, M. Wrle, V. Mougel, C. Coperet, *Chem. Sci.* 2019, *10*, 6362-6367.
- [4] T. Shima, S. Hu, G. Luo, X. Kang, Y. Luo, Z. Hou, Science 2013, 340, 1549-1552.
- [5] F. Akagi, T. Matsuo, H. Kawaguchi, Angew. Chem. Int. Ed. 2007, 46, 8778-8781.
- [6] A. Zanotti-Gerosa, E. Solari, L. Giannini, C. Floriani, A. Chiesi-Villa, C. Rizzoli, J. Am. Chem. Soc. 1998, 120, 437-438.
- [7] A. Caselli, E. Solari, R. Scopelliti, C. Floriani, N. Re, C. Rizzoli, A. Chiesi-Villa, J. Am. Chem. Soc. 2000, 122, 3652-3670.
- [8] T. J. Hebden, R. R. Schrock, M. K. Takase, P. Muller, Chem. Commun. 2012, 48, 1851-1853.
- [9] K. Arashiba, A. Eizawa, H. Tanaka, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Bulletin of the Chemical Society* of Japan 2017, 90, 1111-1118.
- [10] Y. Ashida, K. Arashiba, K. Nakajima, Y. Nishibayashi, *Nature* 2019, *568*, 536-540.
- [11] G. A. Silantyev, M. Forster, B. Schluschass, J. Abbenseth, C. Wurtele, C. Volkmann, M. C. Holthausen, S. Schneider, *Angew. Chem. Int. Ed.* **2017**, *56*, 5872-5876.
- [12] B. Schluschass, J. Abbenseth, S. Demeshko, M. Finger, A. Franke, C. Herwig, C. Wurtele, I. Ivanovic-Burmazovic, C. Limberg, J. Telser, S. Schneider, *Chem. Sci.* 2019, *10*, 10275-10282.
- [13] Q. Liao, A. Cavaille, N. Saffon-Merceron, N. Mezailles, Angew. Chem. Int. Ed. 2016, 55, 11212-11216.
- [14] B. M. Lindley, R. S. van Alten, M. Finger, F. Schendzielorz, C. Wurtele, A. J. M. Miller, I. Siewert, S. Schneider, J. Am. Chem. Soc. 2018, 140, 7922-7935.
- [15] R. S. van Alten, F. Watjen, S. Demeshko, A. J. M. Miller, C. Wurtele, I. Siewert, S. Schneider, *Eur. J. Inorg. Chem.* **2020**, 2020, 1402-1410.
- [16] G. K. B. Clentsmith, V. M. E. Bates, P. B. Hitchcock, F. G. N. Cloke, J. Am. Chem. Soc. 1999, 121, 10444-10445.
- [17] I. Korobkov, S. Gambarotta, G. P. Yap, Angew. Chem. Int. Ed. 2002, 41, 3433-3436.
- [18] H. Kawaguchi, T. Matsuo, Angew. Chem. Int. Ed. 2002, 41, 2792-2794.
- [19] Y. Ishida, H. Kawaguchi, J. Am. Chem. Soc. 2014, 136, 16990-16993.
- [20] L. R. Doyle, A. J. Wooles, S. T. Liddle, Angew. Chem. Int. Ed. 2019, 58, 6674-6677.
- [21] M. M. Rodriguez, E. Bill, W. W. Brennessel, P. L. Holland, *Science* 2011, 334, 780-783.
- [22] K. Grubel, W. W. Brennessel, B. Q. Mercado, P. L. Holland, J. Am. Chem. Soc. 2014, 136, 16807-16816.
- [23] Y. Lee, F. T. Sloane, G. Blondin, K. A. Abboud, R. Garcia-Serres, L. J. Murray, *Angew. Chem. Int. Ed.* **2015**, *54*, 1499-1503.
- [24] M. Hirotsu, P. P. Fontaine, A. Epshteyn, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc. 2007, 129, 9284-9285.
- [25] A. J. Keane, B. L. Yonke, M. Hirotsu, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc. 2014, 136, 9906-9909.
- [26] L. M. Duman, W. S. Farrell, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc. 2016, 138, 14856-14859.
- [27] E. Solari, C. Da Silva, B. Iacono, J. Hesschenbrouck, C. Rizzoli, R. Scopelliti, C. Floriani, *Angew. Chem. Int. Ed.* 2001, 40, 3907-3909.
- [28] Q. J. Bruch, G. P. Connor, C. H. Chen, P. L. Holland, J. M. Mayer, F. Hasanayn, A. J. M. Miller, *J. Am. Chem. Soc.* 2019, 141, 20198-20208.

- [29] T. Miyazaki, H. Tanaka, Y. Tanabe, M. Yuki, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Angew. Chem. Int. Ed.* 2014, 53, 11488-11492.
- [30] A. J. Keane, W. S. Farrell, B. L. Yonke, P. Y. Zavalij, L. R. Sita, Angew. Chem. Int. Ed. 2015, 54, 10220-10224.
- [31] A. Katayama, T. Ohta, Y. Wasada-Tsutsui, T. Inomata, T. Ozawa, T. Ogura, H. Masuda, *Angew. Chem. Int. Ed.* **2019**, 58, 11279-11284.
- [32] E. L. Sceats, J. S. Figueroa, C. C. Cummins, N. M. Loening, P. Van der Wel, R. G. Griffin, *Polyhedron* **2004**, *23*, 2751-2768.
- [33] J. S. Figueroa, N. A. Piro, C. R. Clough, C. C. Cummins, J. Am. Chem. Soc. 2006, 128, 940-950.
- [34] H. Henderickx, G. Kwakkenbos, A. Peters, J. van der Spoel, K. de Vries, *Chem. Commun.* 2003, 2050-2051.
- [35] J. J. Curley, E. L. Sceats, C. C. Cummins, J. Am. Chem. Soc. 2006, 128, 14036-14037.
- [36] F. Akagi, S. Suzuki, Y. Ishida, T. Hatanaka, T. Matsuo, H. Kawaguchi, *Eur. J. Inorg. Chem.* **2013**, *2013*, 3930-3936.
- [37] B. L. Yonke, J. P. Reeds, P. P. Fontaine, P. Y. Zavalij, L. R. Sita, *Organometallics* **2014**, *33*, 3239-3242.
- [38] I. Klopsch, M. Finger, C. Wurtele, B. Milde, D. B. Werz, S. Schneider, J. Am. Chem. Soc. 2014, 136, 6881-6883.
- [39] I. Klopsch, M. Kinauer, M. Finger, C. Wurtele, S. Schneider, Angew. Chem. Int. Ed. 2016, 55, 4786-4789.
- [40] I. Klopsch, F. Schendzielorz, C. Volkmann, C. Wurtele, S. Schneider, Zeitschrift Fur Anorganische Und Allgemeine Chemie 2018, 644, 916-919.
- [41] F. Schendzielorz, M. Finger, J. Abbenseth, C. Wurtele, V. Krewald, S. Schneider, *Angew. Chem. Int. Ed.* 2019, 58, 830-834.
- [42] M. M. Guru, T. Shima, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 12316-12320.
- [43] L. M. Duman, L. R. Sita, J. Am. Chem. Soc. 2017, 139, 17241-17244.
- [44] J. Chatt, G. A. Heath, R. L. Richards, J. Chem. Soc., Chem. Commun. 1972, 1010-1011.
- [45] J. Chatt, G. A. Heath, R. L. Richards, J. Chem. Soc, Dalton Trans. 1974, 2074-2082.
- [46] M. Yuki, Y. Miyake, Y. Nishibayashi, I. Wakiji, M. Hidai, Organometallics 2008, 27, 3947-3953.
- [47] M. Yuki, T. Midorikawa, Y. Miyake, Y. Nishibayashi, Organometallics 2009, 28, 4741-4746.
- [48] M. Yuki, Y. Miyake, Y. Nishibayashi, Organometallics 2009, 28, 5821-5827.
- [49] J. Chatt, A. J. Pearman, R. L. Richards, *Nature* **1975**, *253*, 39-40.
- [50] T. Takahashi, Y. Mizobe, M. Sato, Y. Uchida, M. Hidai, J. Am. Chem. Soc. 1980, 102, 7461-7467.
- [51] J. A. Baumann, T. A. George, J. Am. Chem. Soc. 1980, 102, 6153-6154.
- [52] T. A. George, R. C. Tisdale, J. Am. Chem. Soc. 1985, 107, 5157-5159.
- [53] J. E. Salt, G. Wilkinson, M. Motevalli, M. B. Hursthouse, J. Chem. Soc, Dalton Trans. 1986, 1141-1154.
- [54] M. T. Mock, S. Chen, M. O'Hagan, R. Rousseau, W. G. Dougherty, W. S. Kassel, R. M. Bullock, *J. Am. Chem. Soc.* 2013, *135*, 11493-11496.
- [55] A. J. Kendall, S. I. Johnson, R. M. Bullock, M. T. Mock, J. Am. Chem. Soc. 2018, 140, 2528-2536.
- [56] D. A. Hall, G. J. Leigh, J. Chem. Soc, Dalton Trans. 1996, 3539-3541.
- [57] P. J. Hill, L. R. Doyle, A. D. Crawford, W. K. Myers, A. E. Ashley, J. Am. Chem. Soc. 2016, 138, 13521-13524.
- [58] L. R. Doyle, P. J. Hill, G. G. Wildgoose, A. E. Ashley, *Dalton Trans.* 2016, 45, 7550-7554.

- [59] J. M. Manriquez, R. D. Sanner, R. E. Marsh, J. E. Bercaw, J. Am. Chem. Soc. 1976, 98, 3042-3044.
- [60] J. R. Dilworth, R. A. Henderson, A. Hills, D. L. Hughes, C. Macdonald, A. N. Stephens, D. R. M. Walton, *J. Chem. Soc, Dalton Trans.* **1990**, 1077-1085.
- [61] R. A. Henderson, S. H. Morgan, A. N. Stephens, J. Chem. Soc, Dalton Trans. 1990, 1101-1106.
- [62] M. Fang, D. S. Lee, J. W. Ziller, R. J. Doedens, J. E. Bates, F. Furche, W. J. Evans, *J. Am. Chem. Soc.* 2011, 133, 3784-3787.
- [63] I. Korobkov, S. Gambarotta, G. P. A. Yap, Angew. Chem. Int. Ed. 2003, 42, 4958-4961.
- [64] P. L. Arnold, T. Ochiai, F. Y. T. Lam, R. P. Kelly, M. L. Seymour, L. Maron, *Nat. Chem.* **2020**, *12*, 654-659.
- [65] M. Falcone, L. Chatelain, R. Scopelliti, I. Živković, M. Mazzanti, *Nature* 2017, 547, 332-335.
- [66] H. Nishihara, T. Mori, Y. Tsurita, K. Nakano, T. Saito, Y. Sasaki, J. Am. Chem. Soc. 1982, 104, 4367-4372.
- [67] G. Jia, R. H. Morris, C. T. Schweitzer, *Inorg. Chem.* 1991, 30, 593-594.
- [68] Y. Nishibayashi, S. Iwai, M. Hidai, *Science* **1998**, 279, 540-542.
- [69] Y. Nishibayashi, S. Iwai, M. Hidai, J. Am. Chem. Soc. 1998, 120, 10559-10560.
- [70] I. Vidyaratne, J. Scott, S. Gambarotta, P. H. Budzelaar, *Inorg. Chem.* 2007, 46, 7040-7049.
- [71] H. Shan, Y. Yang, A. J. James, P. R. Sharp, *Science* 1997, 275, 1460.
- [72] J. A. Pool, E. Lobkovsky, P. J. Chirik, *Nature* 2004, 427, 527-530.
- [73] B. Wang, G. Luo, M. Nishiura, S. Hu, T. Shima, Y. Luo, Z. Hou, J. Am. Chem. Soc. 2017, 139, 1818-1821.
- [74] P. Avenier, M. Taoufik, A. Lesage, X. Solans-Monfort, A. Baudouin, A. de Mallmann, L. Veyre, J. M. Basset, O. Eisenstein, L. Emsley, E. A. Quadrelli, *Science* **2007**, *317*, 1056-1060.
- [75] T. Miyazaki, Y. Tanabe, M. Yuki, Y. Miyake, K. Nakajima, Y. Nishibayashi, *Chem. Eur. J.* **2013**, *19*, 11874-11877.
- [76] T. A. Betley, J. C. Peters, J. Am. Chem. Soc. 2003, 125, 10782-10783.
- [77] S. L. Apps, P. W. Miller, N. J. Long, Chem. Commun. 2019, 55, 6579-6582.
- [78] M. E. Moret, J. C. Peters, J Am Chem Soc 2011, 133, 18118-18121.
- [79] D. L. Suess, J. C. Peters, J. Am. Chem. Soc. 2013, 135, 4938-4941.
- [80] P. A. Rudd, N. Planas, E. Bill, L. Gagliardi, C. C. Lu, *Eur. J. Inorg. Chem.* 2013, 2013, 3898-3906.
- [81] M. D. Fryzuk, B. A. MacKay, B. O. Patrick, J. Am. Chem. Soc. 2003, 125, 3234-3235.
- [82] S. P. Semproni, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2011, 133, 10406-10409.
- [83] J. Chatt, G. A. Heath, G. J. Leigh, J. Chem. Soc., Chem. Commun. 1972, 444-445.
- [84] J. Chatt, A. A. Diamantis, G. A. Heath, N. E. Hooper, G. J. Leigh, J. Chem. Soc, Dalton Trans. 1977, 688-697.
- [85] J. Chatt, R. A. Head, G. J. Leigh, C. J. Pickett, J. Chem. Soc., Chem. Commun. 1977, 299-300.
- [86] J. Chatt, W. Hussain, G. J. Leigh, H. Neukomm, C. J. Pickett, D. A. Rankin, *J. Chem. Soc., Chem. Commun.* **1980**, 1024-1025.
- [87] J. Rittle, J. C. Peters, J. Am. Chem. Soc. 2016, 138, 4243-4248.
- [88] D. J. Knobloch, H. E. Toomey, P. J. Chirik, J. Am. Chem. Soc. 2008, 130, 4248-4249.
- [89] W. H. Bernskoetter, E. Lobkovsky, P. J. Chirik, Angew. Chem. Int. Ed. 2007, 46, 2858-2861.
- [90] Z. J. Lv, Z. Huang, W. X. Zhang, Z. Xi, J. Am. Chem. Soc. 2019, 141, 8773-8777.

- [91] M. D. Fryzuk, S. A. Johnson, B. O. Patrick, A. Albinati, S. A. Mason, T. F. Koetzle, *J. Am. Chem. Soc.* **2001**, *123*, 3960-3973.
- [92] J. Ballmann, A. Yeo, B. O. Patrick, M. D. Fryzuk, Angew. Chem. Int. Ed. 2011, 50, 507-510.
- [93] L. Morello, J. B. Love, B. O. Patrick, M. D. Fryzuk, J. Am. Chem. Soc. 2004, 126, 9480-9481.
- [94] Y. Nakanishi, Y. Ishida, H. Kawaguchi, Angew. Chem. Int. Ed. 2017, 56, 9193-9197.
- [95] M. Falcone, L. Barluzzi, J. Andrez, F. Fadaei Tirani, I. Zivkovic, A. Fabrizio, C. Corminboeuf, K. Severin, M. Mazzanti, *Nat. Chem.* **2019**, *11*, 154-160.
- [96] L. R. Doyle, A. J. Wooles, L. C. Jenkins, F. Tuna, E. J. L. McInnes, S. T. Liddle, *Angewandte Chemie International Edition* **2018**, *57*, 6314-6318.
- [97] Y. Sekiguchi, K. Arashiba, H. Tanaka, A. Eizawa, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Angewandte Chemie International Edition* **2018**, *57*, 9064-9068.
- [98] A. E. Shilov, Russian Chemical Bulletin 2003, 52, 2555-2562.
- [99] D. V. Yandulov, R. R. Schrock, *Science* **2003**, *301*, 76-78.
- [100] K. Arashiba, Y. Miyake, Y. Nishibayashi, Nat. Chem. 2011, 3, 120-125.
- [101] H. Tanaka, K. Arashiba, S. Kuriyama, A. Sasada, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Nature Communications* **2014**, *5*, 3737-3737.
- [102] S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, N. Kamaru, K. Yoshizawa, Y. Nishibayashi, *J. Am. Chem. Soc.* 2014, *136*, 9719-9731.
- [103] T. Itabashi, K. Arashiba, H. Tanaka, A. Konomi, A. Eizawa, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Organometallics* 2019, 38, 2863-2872.
- [104] S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, *Chem. Sci.* 2015, 6, 3940-3951.
- [105] K. Arashiba, E. Kinoshita, S. Kuriyama, A. Eizawa, K. Nakajima, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, *J. Am. Chem. Soc.* 2015, *137*, 5666-5669.
- [106] A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Nature Communications* **2017**, *8*, 14874.
- [107] Y. Tanabe, Y. Sekiguchi, H. Tanaka, A. Konomi, K. Yoshizawa, S. Kuriyama, Y. Nishibayashi, *Chem. Commun.* 2020.
- [108] S. Kuriyama, K. Arashiba, K. Nakajima, Y. Matsuo, H. Tanaka, K. Ishii, K. Yoshizawa, Y. Nishibayashi, *Nat. Commun.* 2016, 7, 12181-12181.
- [109] J. S. Anderson, J. Rittle, J. C. Peters, *Nature* 2013, 501, 84-87.
- [110] M. J. Chalkley, T. J. Del Castillo, B. D. Matson, J. P. Roddy, J. C. Peters, ACS Cent. Sci. 2017, 3, 217-223.
- [111] S. E. Creutz, J. C. Peters, J. Am. Chem. Soc. 2014, 136, 1105-1115.
- [112] T. J. Del Castillo, N. B. Thompson, J. C. Peters, J. Am. Chem. Soc. 2016, 138, 5341-5350.
- [113] J. Fajardo, J. C. Peters, J. Am. Chem. Soc. 2017, 139, 16105-16108.
- [114] T. M. Buscagan, P. H. Oyala, J. C. Peters, Angew. Chem. Int. Ed. 2017, 56, 6921-6926.
- [115] A. Cavaille, B. Joyeux, N. Saffon-Merceron, N. Nebra, M. Fustier-Boutignon, N. Mezailles, *Chem. Commun.* 2018, 54, 11953-11956.
- [116] G. Ung, J. C. Peters, Angew. Chem. Int. Ed. 2015, 54, 532-535.
- [117] L. R. Doyle, P. J. Hill, G. G. Wildgoose, A. E. Ashley, *Dalton Transactions* **2016**, *45*, 7550-7554.
- [118] S. Kuriyama, K. Arashiba, H. Tanaka, Y. Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Angew. Chem. Int. Ed.* 2016, 55, 14291-14295.
- [119] L. R. Doyle, A. J. Wooles, L. C. Jenkins, F. Tuna, E. J. L. McInnes, S. T. Liddle, *Angew. Chem. Int. Ed.* **2018**, *57*, 6314-6318.

- [120] R. Imayoshi, K. Nakajima, Y. Nishibayashi, Chem. Lett. 2017, 46, 466-468.
- [121] K. Shiina, J. Am. Chem. Soc. 1972, 94, 9266-9267.
- [122] J. Yin, J. Li, G. X. Wang, Z. B. Yin, W. X. Zhang, Z. Xi, J. Am. Chem. Soc. 2019, 141, 4241-4247.
- [123] K. Komori, H. Oshita, Y. Mizobe, M. Hidai, J. Am. Chem. Soc. 1989, 111, 1939-1940.
- [124] H. Tanaka, A. Sasada, T. Kouno, M. Yuki, Y. Miyake, H. Nakanishi, Y. Nishibayashi, K. Yoshizawa, *J. Am. Chem. Soc.* **2011**, *133*, 3498-3506.
- [125] Q. Liao, N. Saffon-Merceron, N. Mézailles, Angew. Chem. Int. Ed. 2014, 53, 14206-14210.
- [126] Q. Liao, N. Saffon-Merceron, N. Mézailles, ACS Catal. 2015, 5, 6902-6906.
- [127] Y. Ohki, Y. Araki, M. Tada, Y. Sakai, Chem. Eur. J. 2017, 23, 13240-13248.
- [128] M. Yuki, H. Tanaka, K. Sasaki, Y. Miyake, K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2012, 3, 1254-1254.
- [129] R. Imayoshi, K. Nakajima, J. Takaya, N. Iwasawa, Y. Nishibayashi, *Eur. J. Inorg. Chem.* **2017**, 2017, 3769-3778.
- [130] S. Li, Y. Wang, W. Yang, K. Li, H. Sun, X. Li, O. Fuhr, D. Fenske, Organometallics 2020, 39, 757-766.
- [131] A. D. Piascik, R. Li, H. J. Wilkinson, J. C. Green, A. E. Ashley, J. Am. Chem. Soc. 2018, 140, 10691-10694.
- [132] D. E. Prokopchuk, E. S. Wiedner, E. D. Walter, C. V. Popescu, N. A. Piro, W. S. Kassel, R. M. Bullock, M. T. Mock, 2017, 139, 9291-9301.
- [133] R. B. Ferreira, B. J. Cook, B. J. Knight, V. J. Catalano, R. García-Serres, L. J. Murray, ACS Catal. 2018, 8, 7208-7212.
- [134] R. Araake, K. Sakadani, M. Tada, Y. Sakai, Y. Ohki, J. Am. Chem. Soc. 2017, 139, 5596-5606.
- [135] R. Imayoshi, H. Tanaka, Y. Matsuo, M. Yuki, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Chem. Eur. J.* 2015, *21*, 8905-8909.
- [136] Y. Gao, G. Li, L. Deng, J. Am. Chem. Soc. 2018, 140, 2239-2250.
- [137] T. Suzuki, K. Fujimoto, Y. Takemoto, Y. Wasada-Tsutsui, T. Ozawa, T. Inomata, M. D. Fryzuk, H. Masuda, ACS Catal. 2018, 8, 3011-3015.
- [138] C. A. Sanz, C. A. M. Stein, M. D. Fryzuk, *Eur. J. Inorg. Chem.* 2020, 2020, 1465-1471.
- [139] R. Kawakami, S. Kuriyama, H. Tanaka, K. Arashiba, A. Konomi, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Chem. Commun.* 2019, *55*, 14886-14889.