Chemistry–A European Journal

Supporting Information

Multi-functional, Low Symmetry Pd₂L₄ Nanocage Libraries**

James E. M. Lewis^{*[a]}

General Experimental	2
Synthetic Procedures	3
General CuAAC Procedure	3
Synthesis of S1	4
Synthesis of S2	6
Synthesis of 1	9
Synthesis of L^{Bu}	12
Synthesis of L^{Bn}	15
Synthesis of L ^{он}	
Synthesis of L ^{Phth}	21
Synthesis of L ^{Ene}	24
Synthesis of L ^{Anth}	26
[Pd ₂ (L ^{Bu}) ₄](BF ₄) ₄	29
[Pd ₂ (L ^{Bn}) ₄](BF ₄) ₄	36
[Pd ₂ (L ^{OH}) ₄](BF ₄) ₄	42
[Pd ₂ (L ^{Ene}) ₄](BF ₄) ₄	48
[Pd ₂ (L ^{Phth}) ₄](BF ₄) ₄	53
[Pd ₂ (L ^{Anth}) ₄](BF ₄) ₄	58
Comparison of L ^{Bu} and L ^{Phth} Self-assembly	64
L ^{ви} + 0.25 eq. Pd(II)	64
L ^{Phth} + 0.25 eq. Pd(II)	66
Model Mononuclear Complexes	69
[Pd(1) ₄](BF ₄) ₂	69
[Pd(S2) ₄](BF ₄) ₂	69
Combinatorial Libraries	70
$[Pd_2(L^{Bu})_x(L^{Bn})_{(4-x)}](BF_4)_4$	70
$[Pd_2(L^{Bu})_x(L^{Phth})_{(4-x)}](BF_4)_4$	72
$[Pd_2(L^{OH})_x(L^{Ene})_y(L^{Anth})_z](BF_4)_4$	74
Geometry Optimised Structures	77
Solvodynamic Radii Calculations	79
Proton Affinity Calculations	80
X-ray Crystallography	82
References	86

General Experimental

Synthesis: Unless otherwise stated, all reagents, including anhydrous solvents, were purchased from commercial sources and used without further purification. $CDCl_3$ and NEt_3 were stored over 4 Å molecular sieves prior to use. All reactions were carried out under air using reagent grade solvents unless otherwise stated. Reactions carried out under an atmosphere of N_2 used degassed solvents. Analytical TLC was performed on pre-coated silica gel plates (0.25 mm thick, 60F254, Merck, Germany) and observed under UV light. EDTA solution refers to a 0.1 M solution of EDTA-Na₂ in 3% NH_{3(aq)}.

Analysis: NMR spectra were recorded on Bruker AV400 or AV500 instrument, at a constant temperature of 300 K. Chemical shifts are reported in parts per million from low to high field and referenced to residual solvent. Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint = quintet, q = quartet, t = triplet, d = doublet, s = singlet, app. = apparent, br. = broad. Signal assignment was carried out using 2D NMR methods (HSQC, HMBC, COSY, NOESY) where necessary. In the case of some signals absolute assignment was not possible. Here indicative either/or assignments (e.g. H_A/H_B for H_A or H_B) are provided. All melting points were determined using a hot stage apparatus and are uncorrected. Mass spectroscopy Service using Waters LCT Premier for HR-ESI-MS.

Synthetic Procedures

General CuAAC Procedure

$$\begin{array}{c} \label{eq:relation} N_3 & \overbrace{}^{CuSO_4:5H_2O} & \overbrace{}^{R} & \overbrace{}^{N} & \overbrace{}^{N} \\ R & \underset{N}{=} & N & \overbrace{}^{DMF} & rt & \overbrace{}^{N} & \overbrace{}^{N} \\ \end{array}$$

1 (67.6 mg, 0.25 mmol, 1.0 eq), $CuSO_4 \cdot 5H_2O$ (31.2 mg, 0.125 mmol, 0.5 eq.), sodium ascorbate (49.5 mg, 0.25 mmol, 1.0 eq) and alkyne were stirred at rt in DMF (5 mL) for 16 h. EtOAc (40 mL) was added and washed with EDTA solution (10 mL), brine (4 × 10 mL), dried (MgSO₄), and the solvent removed *in vacuo* to give the crude product which was purified by column chromatography on silica gel.

Synthesis of S1

9-Hydroxymethylanthracene (0.417 g, 2 mmol, 1 eq.) was added as a solid to NaH (60% dispersion in mineral oil, 0.200 g, 5 mmol, 2.5 eq.) in DMF (4 mL) at 0 °C under N₂. Propargyl bromide (80 wt. % in toluene, 0.33 mL, 3 mmol, 1.5 eq.) was subsequently added via syringe and the reaction stirred, allowing to warm to rt, for 19 h. H₂O (50 mL) was added and the resultant precipitate isolated by filtration on paper, washed copiously with H₂O, dissolved in CH₂Cl₂, dried (MgSO₄) and the solvent removed *in vacuo*. Purification by column chromatography on silica (1:1 pentane/CH₂Cl₂) gave the product as a yellow solid (0.429 g, 87%). Spectra were consistent with those previously reported.^[1] ¹H NMR (400 MHz, CDCl₃) δ : 8.49 (s, 1H), 8.45 (dd, *J* = 8.9, 1.0 Hz, 2H), 8.02 (app. dt, *J* = 8.4, 0.7 Hz, 2H), 7.57 (ddd, *J* = 8.9, 6.5, 1.4 Hz, 2H), 7.49 (ddd, *J* = 8.5, 6.5, 1.1 Hz, 2H), 5.62 (s, 2H), 4.33 (d, *J* = 2.4 Hz, 2H), 2.63 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 131.5, 131.3, 129.1, 128.9, 127.9, 126.5, 125.1, 124.3, 80.3, 75.1, 63.7, 57.6.

Figure S1 ¹H NMR (CDCl₃, 400 MHz) of S1.

Figure S3 COSY NMR (CDCl₃) of S1.

Synthesis of S2

8-Bromoisoquinoline (0.626 g, 3.0 mmol, 1.0 eq.), 4-ethynylaniline (0.387 g, 3.3 mmol, 1.1 eq.), Pd(PPh₃)₂Cl₂ (0.053 g, 0.075 mmol, 2.5 mol%) and CuI (0.029 g, 0.150 mmol, 5 mol%) were stirred at 80 °C in 2:1 dioxane/ⁱPr₂NH (18 mL) under N₂ in a sealed vial for 16 h. After the solvent was removed *in vacuo*, the residue was dissolved in CH₂Cl₂ (50 mL) and washed with EDTA solution (20 mL). The aqueous phase was extracted with CH₂Cl₂ and the combined organic phases dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica (acetone/CH₂Cl₂ step gradient 0:100 \rightarrow 5:95 \rightarrow 10:90 \rightarrow 15:85) the product was obtained as a bright yellow solid (0.659 g, 90%). R_f = 0.30 (1:9 acetone/CH₂Cl₂). M.p. 169-171 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.82 (s, 1H, H_a), 8.58 (d, *J* = 5.7 Hz, 1H, H_b), 7.77-7.74 (m, 2H, H_f, H_d/H_e), 7.66-7.62 (m, 2H, H_c, H_d/H_e), 7.46 (d, *J* = 8.6 Hz, 2H, H_g), 6.69 (d, *J* = 8.6 Hz, 2H, H_h), 3.90 (br. s, 2H, H_{NH}). ¹³C NMR (101 MHz, CDCl₃) δ : 151.6, 147.4, 143.8, 136.0, 133.4, 130.9, 130.0, 128.1, 126.3, 122.6, 120.6, 115.0, 112.1, 97.1, 83.9. HR-ESI-MS m/z = 245.1067 [M+H]⁺ calc. 245.1073.

Figure S4 ¹H NMR (CDCl₃, 400 MHz) of S2.

Figure S8 HMBC NMR (CDCl₃) of S2.

Synthesis of 1

$$N_3 \xrightarrow{h \ g} = \bigwedge_{a \ N_{-b}}^{f \ e} d$$

To a stirring solution of **S2** (0.392 g, 1.60 mmol, 1.0 eq.) in 2:1 AcOH/H₂O (6 mL) at 0 °C was added NaNO₂ (0.155 g, 2.25 mmol, 1.4 eq.). After 2 h, NaN₃ (0.312 g, 4.8 mmol, 3.0 eq.) was added portionwise and the reaction allowed to warm to rt. After 30 min, sat. aq. NaHCO₃ (80 mL) was added carefully and the aqueous phase extracted with CH₂Cl₂ (4 × 25 mL). The combined organic extracts were dried (MgSO₄) and the solvent removed *in vacuo* to give the product as a dark orange solid (0.412 g, 95%). M.p. 92-94 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.80 (s, 1H, H_a), 8.61 (d, *J* = 5.7 Hz, 1H, H_b), 7.81-7.79 (m, 2H, H_f, H_d/H_e), 7.68-7.65 (m, 2H, H_c, H_d/H_e), 7.64 (d, *J* = 8.6 Hz, 2H, H_g), 7.07 (d, *J* = 8.7 Hz, 2H, H_h). ¹³C NMR (101 MHz, CDCl₃) δ : 151.4, 147.0, 144.0, 140.8, 136.0, 133.4, 131.5, 129.9, 128.1, 127.2, 121.7, 120.6, 119.4, 95.3, 86.1. HR-ESI-MS m/z = 243.0921 [M+H-N₂]⁺ calc. 243.0917; 271.0984 [M+H]⁺ calc. 271.0978.

Figure S11 COSY NMR (CDCl₃) of 1.

Figure S13 HMBC NMR (CDCl₃) of $\mathbf{1}$.

Synthesis of L^{Bu}

$$m \xrightarrow{k} N: N \xrightarrow{h} Q \xrightarrow{f} Q$$

Prepared according to the general procedure with hex-1-yne (86 µL, 0.75 mmol, 3.0 eq.). Purification by column chromatography (acetone/CH₂Cl₂ step gradient 0:100 \rightarrow 5:95 \rightarrow 10:90) gave the product as a light yellow solid (78.6 mg, 89%). R_f = 0.29 (1:9 acetone/CH₂Cl₂). M.p. 132-134 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.82 (s, 1H, H_a), 8.62 (d, *J* = 5.7 Hz, 1H, H_b), 7.86-7.77 (m, 7H, H_f, H_g, H_h, H_i, H_d/H_e), 7.71-7.67 (m, 2H, H_c, H_d/H_e), 2.82 (t, *J* = 7.7 Hz, 2H, H_j), 1.73 (app. p, *J* = 7.5 Hz, 2H, H_k), 1.45 (m, 2H, H_i), 0.97 (t, *J* = 7.4 Hz, 3H, H_m). ¹³C NMR (101 MHz, CDCl₃) δ : 151.3, 149.6, 144.0, 137.2, 136.0, 133.3, 131.8, 129.9, 128.1, 127.5, 123.0, 121.3, 120.7, 120.3, 118.7, 94.6, 87.3, 31.6, 25.5, 22.5, 14.0. HR-ESI-MS m/z = 353.1763 [M+H]⁺ calc. 353.1761.

Figure S15 ¹³C NMR (CDCl₃, 101 MHz) of L^{Bu}.

Figure S17 HSQC NMR (CDCl₃) of L^{Bu} .

Synthesis of L^{Bn}

$$m \stackrel{i \stackrel{k}{\longrightarrow} j \quad i}{\longrightarrow} N \stackrel{h}{\longrightarrow} N \stackrel{g}{\longrightarrow} = \bigwedge_{a \stackrel{k}{\longleftarrow} b} \stackrel{f}{\longrightarrow} a \stackrel{g}{\longleftarrow} a \stackrel{f}{\longleftarrow} a \stackrel{g}{\longleftarrow} a \stackrel{f}{\longrightarrow} a \stackrel{g}{\longleftarrow} a \stackrel{f}{\longleftarrow} a \stackrel{g}{\longleftarrow} a \stackrel{f}{\longleftarrow} a \stackrel{g}{\longleftarrow} a \stackrel{f}{\longleftarrow} a \stackrel{g}{\longleftarrow} a \stackrel{f}{\longrightarrow} a \stackrel{g}{\longleftarrow} a \stackrel{f}{\longrightarrow} a \stackrel{g}{\longrightarrow} a \stackrel{$$

Prepared according to the general procedure with 3-phenyl-1-propyne (93 µL, 0.75 mmol, 3.0 eq.). Purification by column chromatography (EtOAc/CH₂Cl₂ step gradient 0:100 \rightarrow 10:90 \rightarrow 20:80 \rightarrow 30:70) gave the product as a light beige solid (77.1 mg, 80%). R_f = 0.43 (1:3 EtOAc/CH₂Cl₂). M.p. 158-160 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.72 (s, 1H, H_a), 8.62 (d, *J* = 5.7 Hz, 1H, H_b), 7.85-7.82 (m, 2H, H_f, 1 of H_d/H_e/H_k/H_I/H_m), 7.77 (s, 4H, H_g, H_h), 7.70-7.67 (m, 2H, H_c, 1 of H_d/H_e/H_k/H_I/H_m), 7.64 (s, 1H, H_j), 7.37-7.32 (m, 4H, 4 of H_d/H_e/H_k/H_I/H_m), 7.29-7.25 (m, 2H, 2 of H_d/H_e/H_k/H_I/H_m), 4.19 (s, 2H, H_j). ¹³C NMR (101 MHz, CDCl₃) δ : 151.3, 149.0, 144.1, 138.8, 137.1, 136.0, 133.3, 131.8, 129.9, 129.0, 128.9, 128.1, 127.6, 126.9, 123.2, 121.3, 120.7, 120.4, 119.5, 94.6, 87.4, 32.5. HR-ESI-MS m/z = 387.1608 [M+H]⁺ calc. 387.1604.

Figure S20 ¹³C NMR (CDCl₃, 101 MHz) of L^{Bn}.

Figure S22 HSQC NMR (CDCl₃) of L^{Bn} .

Synthesis of L^{OH}

$$HO \underbrace{\stackrel{i}{\underset{k}{\longrightarrow}} \stackrel{j}{\underset{N:N}{\longrightarrow}} \stackrel{h}{\underset{N}{\longrightarrow}} g}_{a} \underbrace{\stackrel{f}{\underset{N}{\longrightarrow}} \stackrel{e}{\underset{k}{\longrightarrow}} d}_{a} \underbrace{\underset{N}{\underset{N}{\longrightarrow}} \stackrel{f}{\underset{k}{\longrightarrow}} c}$$

Prepared according to the general procedure with 5-hexyn-1-ol (83 µL, 0.75 mmol, 3.0 eq.). Purification by column chromatography (MeOH/CH₂Cl₂ step gradient 0:100 \rightarrow 2:98 \rightarrow 3:97 \rightarrow 4:96 \rightarrow 5:95) gave the product as a light beige solid (60.1 mg, 65%). R_f = 0.26 (1:19 MeOH/CH₂Cl₂). M.p. 192-194 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.79 (s, 1H, H_a), 8.62 (d, *J* = 5.7 Hz, 1H, H_b), 7.87-7.83 (m, 2H, H_f, 1 of H_d/H_e), 7.80 (app. s, 5H, H_g, H_h, H_i), 7.72-7.68 (m, 2H, H_c, 1 of H_d/H_e), 3.73 (t, *J* = 6.4 Hz, 2H, H_m), 2.87 (m, 2H, H_j), 1.91-1.83 (m, 2H, H_k), 1.75-1.67 (m, 2H, H_i). ¹³C NMR (101 MHz, CDCl₃) δ : 151.1, 149.2, 143.8, 137.1, 136.0, 133.3, 131.8, 130.0, 127.5, 123.1, 121.4, 120.9, 120.8, 120.4, 118.8, 94.6, 87.3, 62.7, 32.3, 25.7, 25.5. HR-ESI-MS m/z = 369.1719 [M+H]⁺ calc. 369.1710.

Figure S24 ¹H NMR (CDCl₃, 400 MHz) of L^{OH}.

Figure S26 COSY NMR (CDCl₃) of L^{OH}.

Figure S28 HBMC NMR (CDCl₃) of L^{OH} .

Synthesis of L^{Phth}

$$\bigvee_{i}^{k} \bigvee_{O}^{O} \bigvee_{N:N}^{j} \bigvee_{i}^{h} \bigvee_{i}^{h} g = \bigwedge_{a \in \mathcal{N}}^{f} g a = \bigwedge_{a \in \mathcal{$$

Prepared according to the general procedure with N-propargylphthalimide (57.9 mg, 0.313 mmol, 1.25 eq.). Purification by column chromatography (acetone/CH₂Cl₂ step gradient 0:100 \rightarrow 15:85 in 5% increments) gave the product as a light yellow solid (113 mg, 99%). R_f = 0.30 (1:9 acetone/CH₂Cl₂). M.p. 219-221 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.83 (s, 1H, H_a), 8.61 (d, *J* = 5.9 Hz, 1H, H_b), 8.10 (s, 1H, H_i), 7.92-7.87 (m, 4H, H_d/H_e, H_f, H_k/H_i), 7.81-7.78 (m, 6H, H_c, H_d/H_e, H_g, H_h), 7.75-7.73 (dd, *J* = 5.5, 3.0 Hz, 2H, H_k/H_i), 5.11 (s, 2H, H_j). ¹³C NMR (101 MHz, CDCl₃) δ : 167.8, 149.8, 143.9, 141.4, 137.0, 136.6, 134.4, 133.4, 132.5, 132.2, 131.3, 127.9, 127.6, 123.7, 123.1, 122.0, 121.8, 121.1, 120.6, 95.3, 86.9, 33.2. HR-ESI-MS m/z = 456.1463 [M+H]⁺ calc. 456.1461.

Figure S29 ¹H NMR (CDCl₃, 400 MHz) of L^{Phth}.

Figure S31 COSY NMR (CDCl₃) of L^{Phth} .

Figure S33 HMBC NMR (CDCl₃) of L^{Phth} .

Synthesis of L^{Ene}

$$H \xrightarrow{H}_{k} O \xrightarrow{j}_{N:N} H \xrightarrow{h g}_{g} H \xrightarrow{f}_{k} O \xrightarrow{g}_{k} O \xrightarrow{j}_{k} O \xrightarrow{h}_{N:N} H \xrightarrow{g}_{g} O \xrightarrow{f}_{h} O \xrightarrow{g}_{g} O \xrightarrow{f}_{h} O \xrightarrow{g}_{g} O \xrightarrow$$

Prepared according to the general procedure with propargyl acrylate (83 µL, 0.75 mmol, 3 eq.). Purification by column chromatography (acetone/CH₂Cl₂ step gradient 0:100 \rightarrow 15:85 in 5% increments) gave the product as a light yellow solid (79.4 mg, 83%). R_f = 0.34 (1:9 acetone/CH₂Cl₂). M.p. 145-147 °C. ¹H NMR (500 MHz, CDCl₃) δ : 9.88 (br. s, 1H, H_a), 8.66 (br. s, 1H, H_b), 8.14 (s, 1H, H_i), 7.89 (m, 2H, H_d/H_e, H_f), 7.87-7.74 (m, 6H, H_c, H_d/H_e, H_g, H_b), 6.48 (dd, *J* = 17.4, 1.3 Hz, 1H, H_m), 6.17 (dd, *J* = 17.3, 10.5 Hz, 1H, H_k), 5.89 (dd, *J* = 10.5, 1.4 Hz, 1H, H_i), 5.41 (s, 2H, H_j). ¹³C NMR (126 MHz, CDCl₃) δ : 166.2, 150.3, 144.0, 142.4, 136.9, 136.3, 133.4, 132.3, 131.9, 130.7, 128.0, 127.6, 123.4, 122.1, 121.7, 120.6, 94.9, 87.2, 57.7 (2 × 4° C signals missing). HR-ESI-MS m/z = 381.1356 [M+H]⁺ calc. 381.1352.

Figure S34 ¹H NMR (CDCl₃, 500 MHz) of L^{Ene}.

Figure S36 COSY NMR (CDCl₃) of L^{Ene} .

Synthesis of LAnth

Prepared according to the general procedure with **S1** (77.0 mg, 0.313 mmol, 1.25 eq.). Purification by column chromatography (1:9 acetone/CH₂Cl₂) gave the product as a yellow solid (110 mg, 85%). R_f = 0.44 (1:9 acetone/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 9.82 (s, 1H, H_a), 8.61 (d, *J* = 5.8 Hz, 1H, H_b), 8.48 (s, 1H, H_p), 8.38 (dd, *J* = 8.9, 1.0 Hz, 2H, H_o/H_l), 8.02 (m, 2H, H_o/H_l), 7.92 (s, 1H, H_i), 7.89-7.86 (m, 2H, H_d/H_e, H_f), 7.80-7.73 (m, 6H, H_c, H_d, H_g, H_h), 7.55 (ddd, *J* = 8.8, 6.5, 1.4 Hz, 2H, H_m/H_n), 7.48 (ddd, *J* = 7.8, 6.5, 1.1 Hz, 2H, H_m/H_n), 5.67 (s, 2H, H_k), 4.96 (d, *J* = 0.7 Hz, 2H, H_j). ¹³C NMR (101 MHz, CDCl₃) δ : 150.2, 146.8, 142.2, 137.0, 136.4, 133.4, 132.3, 131.6, 131.2, 130.8, 129.2, 128.8, 128.3, 128.0, 127.5, 126.5, 125.2, 124.4, 123.1, 121.8, 121.4, 120.7, 120.5, 95.1, 87.0, 65.0, 64.1. HR-ESI-MS m/z = 517.2024 [M+H]⁺ calc. 517.2028.

Figure S38 ¹³C NMR (CDCl₃, 101 MHz) of L^{Anth}.

Figure S40 HSQC NMR (CDCl₃) of L^{Anth} .

Figuro	\$41	HMRC	NMR	of Anth
rigure	341	TIVIDC		01 L

[Pd₂(L^{Bu})₄](BF₄)₄

L^{Bu} (10.6 mg, 0.030 mmol, 2.0 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (6.7 mg, 0.015 mmol, 1.0 eq.) were sonicated in *d*₆-DMSO (0.75 mL) until all solids were dissolved, giving a light yellow solution. Quantitative conversion to [Pd₂(**L**^{Bu})₄](BF₄)₄ was observed by ¹H NMR. ¹H NMR (500 MHz, *d*₆-DMSO) δ: 10.30 (s, 4H, H_a), 9.89 (d, *J* = 6.7 Hz, 4H, H_b), 9.06 (s, 4H, H_i), 8.59 (d, *J* = 6.6 Hz, 4H, H_c), 8.30-8.21 (m, 20H, H_d, H_g, H_h), 8.10-8.05 (m, 8H, H_e, H_f), 3.30 (m, 1H, H_i), 2.95 (ddd, *J* = 15.2, 8.8, 6.0 Hz, 1H, H_{i'}), 1.49-1.41 (m, 1H, H_k), 1.35-1.27 (m, 2H, H_i), 1.25-1.17 (m, 1H, H_{k'}), 0.82 (t, *J* = 7.3 Hz, 12H, H_m). Diffusion coefficient (500 MHz, *d*₆-DMSO) *D*: 1.03 × 10⁻¹⁰ m²s⁻¹. ¹³C NMR (126 MHz, *d*₆-DMSO) δ: 155.0, 150.6, 142.9, 136.5, 136.0, 134.4, 133.4, 133.3, 128.2, 127.5, 125.0, 124.1, 123.0, 120.4, 120.3, 96.0, 86.6, 30.0, 24.8, 21.4, 13.7. ESI-MS *m/z* = 405.12 {[Pd₂(L^{Bu})₄]}⁴⁺ calc. 405.12; 569.17 {[Pd₂(L^{Bu})₄](BF₄)}³⁺ calc. 569.16; 897.26 {[Pd₂(L^{Bu})₄](BF₄)₂²⁺ calc. 897.24; 1881.51 {[Pd₂(L^{Bu})₄](BF₄)₃⁺ calc. 1881.49.

Figure S42 Stacked ¹H NMR spectra (*d*₆-DMSO, 400 MHz) of L^{Bu} (top) and [Pd₂(L^{Bu})₄](BF₄)₄ (bottom). Δδ (ppm): H_a 0.50; H_b 1.25; H_i 0.37.

Figure S44 ¹³C NMR (d_6 -DMSO, 126 MHz) of [Pd₂(L^{Bu})₄](BF₄)₄. CH₃CN from the Pd(II) source is indicated(*).

Figure S46 HSQC NMR (d_6 -DMSO) of $[Pd_2(L^{Bu})_4](BF_4)_4$.

Figure S48 NOESY NMR (d_6 -DMSO, 500 MHz) of $[Pd_2(L^{Bu})_4](BF_4)_4$.

Figure S49 DOSY NMR (d_6 -DMSO, 500 MHz) of [Pd₂(L^{Bu})₄](BF₄)₄.

Figure S50 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Bu})_4]}^{4+}$.

Figure S51 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Bu})_4](BF_4)}^{3+}$.

Figure S52 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Bu})_4](BF_4)_2]^{2+}}$.

Figure S53 Observed (top) and calculated (bottom) isotopic patterns for {[Pd₂(L^{Bu})₄](BF₄)₃}+.

Figure S54 ESI-MS of $[Pd_2(L^{Bu})_4](BF_4)_4$.
$[Pd_2(L^{Bn})_4](BF_4)_4$

L^{Bn} (11.6 mg, 0.030 mmol, 2.0 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (6.7 mg, 0.015 mmol, 1.0 eq.) were sonicated in *d*₆-DMSO (0.75 mL) until all solids were dissolved, giving a light yellow solution. Quantitative conversion to [Pd₂(**L**^{Bn})₄](BF₄)₄ was observed by ¹H NMR. ¹H NMR (400 MHz, *d*₆-DMSO) δ: 10.31 (s, 4H, H_a), 9.67 (d, *J* = 6.7 HzO, 4H, H_b), 9.05 (s, 4H, H_i), 8.33-8.27 (m, 20H, H_c, H_h, H_g), 8.22-8.18 (m, 4H, H_d), 8.08-8.04 (m, 8H, H_e, H_f), 7.16 (t, *J* = 7.3 Hz, 4H, H_m), 7.08 (app. t, *J* = 7.4 Hz, 8H, H_i), 6.89 (d, *J* = 6.8 Hz, 8H, H_k), 4.71 (d, *J* = 16.9 Hz, 4H, H_j), 4.61 (d, *J* = 16.8 Hz, 4H, H_{j'}). Diffusion coefficient (500 MHz, *d*₆-DMSO) *D*: 9.53 × 10⁻¹¹ m²s⁻¹. ¹³C NMR (101 MHz, *d*₆-DMSO) δ: 154.8, 149.0, 142.6, 136.4, 136.3, 136.0, 134.2, 133.3, 133.2, 128.4, 128.2, 127.9, 127.4, 126.9, 125.3, 125.0, 123.1, 120.6, 120.2, 96.0, 86.7, 30.6. ESI-MS *m*/*z* = 439.11 {[Pd₂(L^{Bn})₄]}⁴⁺ calc. 439.10; 614.49 {[Pd₂(L^{Bn})₄](BF₄)}³⁺ calc. 614.47; 965.23 {[Pd₂(L^{Bn})₄](BF₄)₂²⁺ calc. 965.21.

Figure S56 ¹³C NMR (d_6 -DMSO, 101 MHz) of [Pd₂(L^{Bn})₄](BF₄)₄. CH₃CN from the Pd(II) source is indicated(*).

Figure S58 HSQC NMR (d_6 -DMSO) of $[Pd_2(L^{Bn})_4](BF_4)_4$.

Figure S60 NOESY NMR (d_6 -DMSO, 400 MHz) of $[Pd_2(L^{Bn})_4](BF_4)_4$.

Figure S62 Observed (top) and calculated (bottom) isotopic patterns for $\{[\mathsf{Pd}_2(L^{\mathsf{Bn}})_4]\}^{4+}.$

Figure S63 Observed (top) and calculated (bottom) isotopic patterns for {[Pd₂(L^{Bn})₄](BF₄)}³⁺.

Figure S64 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Bn})_4](BF_4)_2]^{2+}}$.

Figure S65 ESI-MS of $[Pd_2(L^{Bn})_4](BF_4)_4$.

[Pd₂(L^{OH})₄](BF₄)₄

L^{OH} (11.1 mg, 0.030 mmol, 2.0 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (6.7 mg, 0.015 mmol, 1.0 eq.) were sonicated in *d*₆-DMSO (0.75 mL) until all solids were dissolved, giving a light yellow solution. Quantitative conversion to [Pd₂(**L**^{OH})₄](BF₄)₄ was observed by ¹H NMR. ¹H NMR (400 MHz, *d*₆-DMSO) δ: 10.29 (s, 4H, H_a), 9.87 (d, *J* = 6.7 Hz, 4H, H_b), 9.07 (s, 4H, H_i), 8.58 (d, *J* = 6.5 Hz, 4H, H_c), 8.29-8.22 (m, 20H, H_d/H_e, H_g, H_h), 8.12-8.04 (m, 8H, H_d/H_e, H_f), 4.45 (br. S, 4H, H_{OH}), 3.30 (m, 12H, H_i, H_m), 3.01-2.94 (m, 4H, H_i'), 1.60-1.51 (m, 4H, H_k), 1.48-1.41 (m, 8H, H_i), 1.31-1.21 (m, 4H, H_k'). Diffusion coefficient (500 MHz, *d*₆-DMSO) *D*: 9.64 × 10⁻¹¹ m²s⁻¹. ¹³C NMR (101 MHz, *d*₆-DMSO) δ: 154.9, 150.7, 142.8, 136.5, 136.0, 134.3, 133.4, 133.3, 128.2, 127.5, 125.1, 124.1, 123.0, 120.4, 120.3, 95.9, 86.6, 60.1, 31.4, 24.9, 24.7. ESI-MS *m/z* = 421.12 {[Pd₂(L^{OH})₄]⁴⁺ calc. 421.11; 576.49 {[Pd₂(L^{OH})₄](HCO₂)}³⁺ calc. 576.49; 887.24 {[Pd₂(L^{OH})₄](HCO₂)²⁺ calc. 887.23.

Figure S66 ¹H NMR (*d*₆-DMSO, 400 MHz) of [Pd₂(L^{OH})₄](BF₄)₄.

Figure S68 COSY NMR (d_6 -DMSO) of $[Pd_2(L^{OH})_4](BF_4)_4$.

Figure S70 HMBC NMR (d_6 -DMSO) of [$Pd_2(L^{OH})_4$](BF₄)₄.

Figure S72 DOSY NMR (d_6 -DMSO, 500 MHz) of $[Pd_2(L^{OH})_4](BF_4)_4$.

Figure S73 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{OH})_4]}^{4+}$.

Figure S74 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{OH})_4](HCO_2)}^{3+}$.

 $\{ [Pd_{2}(L^{OH})_{4}](HCO_{2}) \}^{3+}$ $\{ [Pd_{2}(L^{OH})_{3}](HCO_{2})_{2} \}^{2+}$ $\{ [Pd_{2}(L^{OH})_{4}] \}^{4+}$ $\{ [Pd_{2}(L^{OH})_{3}](HCO_{2}) \}^{+}$ $\{ [Pd_{2}(L^{OH})_{3}](HCO_{2})_{3} \}^{+}$ $\{ [Pd_{2}(L^{OH})_{3}](HCO_{2})_{3} \}^{+}$ $\{ [Pd_{2}(L^{OH})_{4}] \}^{4+}$ $f(Pd_{2}(L^{OH})_{3}](HCO_{2})_{3} \}^{+}$ $f(Pd_{2}(L^{OH})_{3}](HCO_{2})_{3} +$ $f(Pd_{2}(L^{OH})_{$

Figure S76 ESI-MS of $[Pd_2(L^{OH})_4](BF_4)_4$.

Figure S75 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{OH})_4](HCO_2)_2]^{2+}}$.

[Pd₂(L^{Ene})₄](BF₄)₄

L^{Ene} (11.4 mg, 0.030 mmol, 2.0 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (6.7 mg, 0.015 mmol, 1.0 eq.) were sonicated in *d*₆-DMSO (0.75 mL) until all solids were dissolved, giving a light yellow solution. Quantitative conversion to [Pd₂(**L**^{Ene})₄](BF₄)₄ was observed by ¹H NMR. ¹H NMR (400 MHz, *d*₆-DMSO) δ : 10.27 (d, *J* = 0.8 Hz, 4H, H_a), 9.78 (d, *J* = 6.7 Hz, 4H, H_b), 9.32 (s, 4H, H_i), 8.50 (d, *J* = 6.3 Hz, 4H, H_c), 8.29-8.25 (m, 20H, H_d, H_g, H_h), 8.10-8.05 (m, 8H, H_e, H_f), 6.12 (dd, *J* = 17.2, 1.4 Hz, 4H, H_m), 5.87 (dd, *J* = 10.4, 1.4 Hz, 4H, H_i), 5.83 (br.s, 8H, H_j), 5.70 (dd, *J* = 17.2, 10.5 Hz, 4H, H_k). Diffusion coefficient (500 MHz, *d*₆-DMSO) *D*: 9.89 × 10⁻¹¹ m²s⁻¹. ¹³C NMR (101 MHz, *d*₆-DMSO) δ : 164.7, 155.0, 145.1, 142.8, 136.6, 135.8, 134.3, 133.4, 133.2, 132.9, 128.3, 127.5, 127.1, 126.9, 125.1, 123.4, 120.7, 120.3, 95.8, 86.7, 56.1. ESI-MS *m*/*z* = 606.44 {[Pd₂(**L**^{Ene})₄](BF₄)}³⁺ calc. 606.44; 953.18 {[Pd₂(**L**^{Ene})₄](BF₄)²⁺ calc. 953.16.

Figure S77 ¹H NMR (*d*₆-DMSO, 400 MHz) of [Pd₂(L^{Ene})₄](BF₄)₄.

Figure S78 ¹³C NMR (*d*₆-DMSO, 101 MHz) of [Pd₂(L^{Ene})₄](BF₄)₄. Impurities and CH₃CN from the Pd(II) source are indicated(*).

Figure S79 COSY NMR (d_6 -DMSO) of $[Pd_2(L^{Ene})_4](BF_4)_4$.

Figure S81 HMBC NMR (d_6 -DMSO) of $[Pd_2(L^{Ene})_4](BF_4)_4$.

Figure S82 NOESY NMR (*d*₆-DMSO, 400 MHz) of [Pd₂(L^{Ene})₄](BF₄)₄.

Figure S83 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Ene})_4](BF_4)}^{3+}$.

Figure S84 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Ene})_4](BF_4)_2\}^{2+}}$.

Figure S85 ESI-MS of $[Pd_2(L^{Ene})_4](BF_4)_4$.

[Pd₂(L^{Phth})₄](BF₄)₄

L^{Phth} (13.7 mg, 0.030 mmol, 2.0 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (6.7 mg, 0.015 mmol, 1.0 eq.) were sonicated in *d*₆-DMSO (0.75 mL) until all solids were dissolved, giving a light yellow solution. Quantitative conversion to [Pd₂(**L**^{Phth})₄](BF₄)₄ was observed by ¹H NMR. ¹H NMR (500 MHz, *d*₆-DMSO) δ : 10.31 (s, 4H, H_a), 9.83 (d, *J* = 6.7 Hz, 4H, H_b), 9.24 (s, 4H, H_i), 8.55 (d, *J* = 6.5 Hz, 4H, H_c), 8.34 (d, *J* = 7.3 Hz, 4H, H_a), 8.24 (d, *J* = 8.7 Hz, 8H, H_g), 8.18 (d, *J* = 8.8 Hz, 8H, H_h), 8.12-8.07 (m, 8H, H_e, H_f), 7.83 (s, 8H, H_k, H_l), 5.54 (d, *J* = 16.5 Hz, 4H, H_j), 5.03 (d, *J* = 16.5 Hz, 4H, H_f). Diffusion coefficient (500 MHz, *d*₆-DMSO) *D*: 8.89 × 10⁻¹¹ m²s⁻¹. ¹³C NMR (126 MHz, *d*₆-DMSO) δ : 167.2, 155.2, 146.8, 142.7, 136.7, 135.7, 134.7, 134.3, 133.4, 133.3, 131.5, 128.4, 127.8, 125.4, 125.3, 123.4, 123.4, 120.4, 120.4, 95.7, 86.9, 32.7. ESI-MS *m*/*z* = 706.45 {[Pd₂(**L**^{Phth})₄](BF₄)}³⁺ calc. 706.45; 1103.18 {[Pd₂(**L**^{Phth})₄](BF₄)₂²⁺ calc. 1103.18.

Figure S86 ¹H NMR (*d*₆-DMSO, 500 MHz) of [Pd₂(L^{Phth})₄](BF₄)₄.

Figure S88 COSY NMR (d_6 -DMSO) of [$Pd_2(L^{Phth})_4$](BF₄)₄.

Figure S90 HMBC NMR (d_6 -DMSO) of $[Pd_2(L^{Phth})_4](BF_4)_4$.

Figure S92 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Phth})_4](BF_4)}^{3+}$.

Figure S93 Observed (top) and calculated (bottom) isotopic patterns for $\{[Pd_2(L^{Phth})_4](BF_4)_2\}^{2+}$.

Figure S94 ESI-MS of $[Pd_2(L^{Phth})_4](BF_4)_4$.

[Pd₂(L^{Anth})₄](BF₄)₄

L^{Anth} (15.5 mg, 0.030 mmol, 2.0 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (6.7 mg, 0.015 mmol, 1.0 eq.) were sonicated in *d*₆-DMSO (0.75 mL) until all solids were dissolved, giving a light yellow solution. Quantitative conversion to [Pd₂(**L**^{Anth})₄](BF₄)₄ was observed by ¹H NMR. ¹H NMR (500 MHz, *d*₆-DMSO) δ : 10.19 (s, 4H, H_a), 9.49 (d, *J* = 6.7 Hz, 4H, H_b), 9.17 (s, 4H, H_i), 8.64 (s, 4H, H_p), 8.33 (d, *J* = 8.6 Hz, 8H, H_g), 8.27 (d, *J* = 8.7 Hz, 8H, H_h), 8.10 (d, *J* = 8.9 Hz, 4H, H_o), 8.00 (d, *J* = 6.5 Hz, 4H, H_c), 7.89-7.83 (m, 16H, H_e, H_f, H_l), 7.79 (d, *J* = 8.0 Hz, 4H, H_d), 7.44 (m, 8H, H_n), 7.36 (ddd, *J* = 8.8, 6.5, 1.4 Hz, 8H, H_m), 5.33 (d, *J* = 13.2 Hz, 4H, H_j), 5.22 (d, *J* = 11.0 Hz, 4H, H_k), 5.51 (d, *J* = 10.9 Hz, 4H, H_k'), 4.68 (d, *J* = 13.3 Hz, 4H, H_j'). Diffusion coefficient (500 MHz, *d*₆-DMSO) *D*: 9.07 × 10⁻¹¹ m²s⁻¹. ¹³C NMR (126 MHz, *d*₆-DMSO) δ : 154.6, 146.6, 142.4, 136.1, 135.7, 134.0, 133.5, 133.0, 130.8, 130.1, 129.0, 128.7, 127.7, 127.4, 127.2, 126.3, 125.9, 125.1, 124.7, 123.7, 123.5, 120.6, 119.9, 95.6, 86.9, 63.5, 61.7. ESI-MS *m/z* = 787.85 {[Pd₂(L^{Anth})₄](BF₄)}³⁺ calc. 787.86; 1225.29 {[Pd₂(L^{Anth})₄](BF₄)₂)²⁺ calc. 1225.30.

Figure S95 ¹H NMR (*d*₆-DMSO, 500 MHz) of [Pd₂(L^{Anth})₄](BF₄)₄.

Figure S97 COSY NMR (d_6 -DMSO) of $[Pd_2(L^{Anth})_4](BF_4)_4$.

Figure S99 HMBC NMR (d_6 -DMSO) of $[Pd_2(L^{Anth})_4](BF_4)_4$.

Figure S101 DOSY NMR (d_6 -DMSO, 500 MHz) of $[Pd_2(L^{Anth})_4](BF_4)_4$.

Figure S102 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Anth})_4](BF_4)}^{3+}$.

Figure S103 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Anth})_4](BF_4)_2]^{2+}}$.

Figure S104 ESI-MS of $[Pd_2(L^{Anth})_4](BF_4)_4$.

Comparison of L^{Bu} and L^{Phth} Self-assembly

L^{Bu} + 0.25 eq. Pd(II)

 L^{Bu} (10.6 mg, 0.030 mmol, 2.0 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (3.3 mg, 0.0075 mmol, 1.0 eq.) were sonicated in d_6 -DMSO (0.75 mL) until all solids were dissolved, giving a light yellow solution.

Figure S105 ¹H NMR spectra (400 MHz, d_6 -DMSO) of a) $[Pd_2(L^{Bu})_4](BF_4)_4$, b) L^{Bu} , and c) L^{Bu} + 0.25 eq. Pd(II) ($[L^{Bu}]$ = 40 mM). Non-overlapping peaks have been colour-coded: $[Pd_2(L^{Bu})_4](BF_4)_4$ = blue, L^{Bu} = orange, $[Pd(L^{Bu})_4](BF_4)_2$ = green.

Figure S106 NOESY NMR spectrum (500 MHz, d_6 -DMSO) of L^{Bu} + 0.25 eq. Pd(II). Peak labels have been colour-coded: $[Pd_2(L^{Bu})_4](BF_4)_4 = blue, L^{Bu} = orange, [Pd(L^{Bu})_4](BF_4)_2 = green.$

Figure S107 DOSY NMR spectrum (500 MHz, d_6 -DMSO) of L^{Bu} + 0.25 eq. Pd(II).

L^{Phth} + 0.25 eq. Pd(II)

 L^{Phth} (13.7 mg, 0.030 mmol, 2.0 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (3.3 mg, 0.0075 mmol, 1.0 eq.) were sonicated in d_6 -DMSO (0.75 mL) until all solids were dissolved, giving a light yellow solution.

Figure S108 ¹H NMR spectra (400 MHz, d_6 -DMSO) of a) [Pd₂(L^{Phth})₄](BF₄)₄, b) L^{Phth}, and c) [Pd(L^{Phth})₄](BF₄)₂ ([L^{Phth}] = 40 mM).

Figure S109 NOESY NMR spectrum (500 MHz, d_6 -DMSO) of $[Pd(L^{Phth})_4](BF_4)_2$.

Figure S110 DOSY NMR spectrum (500 MHz, d_6 -DMSO) of $[Pd(L^{Phth})_4](BF_4)_2$.

Figure S111 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{Phth})_3](HCO_2)}^+$.

Figure S112 ESI-MS of $[Pd(L^{Phth})_4](BF_4)_2$.

Model Mononuclear Complexes

 $[Pd(1)_4](BF_4)_2$

1 (8.1 mg, 0.030 mmol, 4 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (3.3 mg, 0.0075 mmol, 1 eq.) were sonicated in d_6 -DMSO (0.75 mL) until all solids were dissolved, giving an orange solution. Quantitative conversion to $[Pd(\mathbf{1})_4](BF_4)_2$ was observed by ¹H NMR.

Figure S113 ¹H NMR spectrum (400 MHz, *d*₆-DMSO) of a) **1**, and b) **1** + 0.25 eq. Pd(II) ([**1**] = 40 mM).

$[Pd(S2)_4](BF_4)_2$

S2 (7.3 mg, 0.030 mmol, 4 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (3.3 mg, 0.0075 mmol, 1 eq.) were sonicated in d_6 -DMSO (0.75 mL) until all solids were dissolved, giving an orange solution. Quantitative conversion to $[Pd(S2)_4](BF_4)_2$ was observed by ¹H NMR.

a)

Figure S114 ¹H NMR spectrum (400 MHz, *d*₆-DMSO) of a) S2, and b) S2 + 0.25 eq. Pd(II) ([S2] = 40 mM).

Combinatorial Libraries

$[\mathsf{Pd}_2(\mathsf{L}^{\mathsf{Bu}})_x(\mathsf{L}^{\mathsf{Bn}})_{(4-x)}](\mathsf{BF}_4)_4$

 L^{Bu} (5.3 mg, 0.015 mmol, 1 eq.), L^{Bn} (5.8 mg, 0.015 mmol, 1 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (6.7 mg, 0.015 mmol, 1 eq.) were sonicated in d_6 -DMSO (0.75 mL) until a homogenous solution was obtained.

Figure S116 DOSY NMR (*d*₆-DMSO, 500 MHz) of [Pd₂(L^{Bu})_x(L^{Bn})_(4-x)](BF₄)₄.

Figure S118 ESI-MS of combinatorial library $[Pd_2(L^{Bu})_x(L^{Bn})_{(4-x)}](BF_4)_4$.
$[\mathsf{Pd}_2(\mathsf{L}^{\mathsf{Bu}})_{\!\scriptscriptstyle X}(\mathsf{L}^{\mathsf{Phth}})_{\!\scriptscriptstyle (4\text{-}x)}](\mathsf{BF}_4)_4$

 L^{Bu} (10.6 mg, 0.030 mmol, 1 eq.), L^{Phth} (13.7 mg, 0.030 mmol) and $[Pd(CH_3CN)_4](BF_4)_2$ (13.3 mg, 0.030 mmol, 1 eq.) were sonicated in d_6 -DMSO (0.75 mL) until a homogenous solution was obtained.

Figure S120 DOSY NMR (d_6 -DMSO, 500 MHz) of $[Pd_2(L^{Bu})_x(L^{Phth})_{(4-x)}](BF_4)_4$.

Figure S122 ESI-MS of combinatorial library $[Pd_2(L^{Bu})_x(L^{Phth})_{(4-x)}](BF_4)_4$.

 $[\mathsf{Pd}_2(\mathsf{L}^{\mathsf{OH}})_{\!\scriptscriptstyle X}(\mathsf{L}^{\mathsf{Ene}})_{\!\scriptscriptstyle Y}(\mathsf{L}^{\mathsf{Anth}})_{\!\scriptscriptstyle Z}](\mathsf{BF}_4)_4$

 L^{OH} (7.4 mg, 0.020 mmol, 1 eq.), L^{Phth} (9.1 mg, 0.020 mmol, 1 eq.), L^{Anth} (10.3 mg, 0.020 mmol, 1 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (13.3 mg, 0.030 mmol, 1.5 eq.) were sonicated in d_6 -DMSO (1.5 mL) until a homogenous solution was obtained.

Figure S124 DOSY NMR (d_6 -DMSO, 500 MHz) of $[Pd_2(L^{OH})_x(L^{Ene})_y(L^{Anth})_z](BF_4)_4$.

Figure S126 Partial ESI-MS of combinatorial library $[Pd_2(L^{OH})_x(L^{Phth})_y(L^{Anth})_z](BF_4)_4$.

Figure S127 ESI-MS of combinatorial library $[Pd_2(L^{OH})_x(L^{Phth})_y(L^{Anth})_z](BF_4)_4$.

Table S1 List of number of possible isomers for homoleptic, and binary and ternary heteroleptic *cis*-Pd₂L₄ cages.

Figure 128 Cartoon representation of possible isomers for homoleptic, and binary and ternary heteroleptic cis-Pd2L4 cages

Geometry Optimised Structures

Molecular mechanics models were constructed using Avogadro^[2] and energy-minimised using UFF.^[3] Geometry optimisations were subsequently performed using the semi-empirical method PM6^[4] in Gaussian 16.^[5]

Table S2 Results summary for structure optimisation of "All up" [Pd₂(L^{Me})]⁴⁺

Calculation Type = FOPT Calculation Method = RPM6 Formula = $C_{80}H_{56}N_{16}Pd_2$ Basis Set = ZDO Charge = 4 Spin = Singlet Solvation = None E(RPM6) = 2.3382136 Hartree RMS Gradient Norm = 2.9e-08 Hartree/Bohr Imaginary Freq = Dipole Moment = 0.4512 Debye Point Group = C1 Molecular Mass = 1452.2943 amu Maximum force = 0 Converged RMS force = 0 Converged Maximum displacement = 4.1e-05 Converged RMS displacement = 7e-06 Converged Predicted energy change = -4.950729e-12 Hartree

Table S3 Results summary for structure optimisation of "Three-up-one-down" $[Pd_2(L^{Me})]^{4+}$

Calculation Type = FOPT Calculation Method = RPM6 Formula = $C_{80}H_{56}N_{16}Pd_2$ Basis Set = ZDO Charge = 4 Spin = Singlet Solvation = None E(RPM6) = 2.2786545 Hartree RMS Gradient Norm = 4.6e-08 Hartree/Bohr Imaginary Freq = Dipole Moment = 1.4818913 Debye Point Group = C1 Molecular Mass = 1452.2943 amu Maximum force = 2e-06 Converged RMS force = 0 Converged Maximum displacement = 5.7e-05 Converged RMS displacement = 9e-06 Converged Predicted energy change = -4.734033e-12 Hartree

Table S4 Results summary for structure optimisation of trans-[Pd₂(L^{Me})]⁴⁺

Calculation Type = FOPT Calculation Method = RPM6 Formula = $C_{80}H_{56}N_{16}Pd_2$ Basis Set = ZDO Charge = 4 Spin = Singlet Solvation = None E(RPM6) = 2.2642098 Hartree RMS Gradient Norm = 4.3e-08 Hartree/Bohr Imaginary Freq = Dipole Moment = 0.0006 Debye Point Group = C1 Molecular Mass = 1452.2943 amu Maximum force = 2e-06 Converged RMS force = 0 Converged Maximum displacement = 4.9e-05 Converged RMS displacement = 6e-06 Converged Predicted energy change = -4.097872e-12 Hartree Table S5 Results summary for structure optimisation of cis -[Pd₂(L^{Me})]⁴⁺

Calculation Type = FOPT Calculation Method = RPM6 Formula = $C_{80}H_{56}N_{16}Pd_2$ Basis Set = ZDO Charge = 4 Spin = Singlet Solvation = None E(RPM6) = 2.2273589 Hartree RMS Gradient Norm = 1.24e-07 Hartree/Bohr Imaginary Freq = Dipole Moment = 0.0002 Debye Point Group = C1 Molecular Mass = 1452.2943 amu Maximum force = 4e-06 Converged RMS force = 0 Converged Maximum displacement = 6e-05 Converged RMS displacement = 8e-06 Converged Predicted energy change = -1.36126e-11 Hartree

Solvodynamic Radii Calculations

Solvodynamic radii were calculated using a variation of the Stokes-Einstein equation:

$$R_S = \frac{k_B T}{6\pi\eta D}$$

Where R_S is the solvodynamic radius (m)

 k_B is the Boltzmann constant (1.38 \times 10 $^{-23}$ J K $^{-1})$

T is the temperature (K)

 η is the solvent viscosity (2.180 × 10⁻³ kg s⁻¹m⁻¹ for d_6 -DMSO)^[6]

D is the diffusion coefficient (m²s⁻¹)

Table S6 Calculated	l solvodynami	c radii
---------------------	---------------	---------

Cage	<i>D</i> (m ² s ⁻¹)	<i>R</i> s (Å)
[Pd ₂ (L^{Bu}) ₄](BF ₄) ₄	1.03×10^{-10}	9.7
[Pd ₂ (L ^{Bn}) ₄](BF ₄) ₄	9.53 × 10 ⁻¹¹	10.5
[Pd ₂ (L^{OH}) ₄](BF ₄) ₄	9.64 × 10 ⁻¹¹	10.4
$[Pd_2(\mathbf{L^{Ene}})_4](BF_4)_4$	9.89 × 10 ⁻¹¹	10.1
$[Pd_2(L^{Phth})_4](BF_4)_4$	8.89 × 10 ⁻¹¹	11.3
$[Pd_2(L^{Anth})_4](BF_4)_4$	9.07 × 10 ⁻¹¹	11.0
$[Pd_2(L^{Bu})_x(L^{Bn})_{(4-x)}](BF_4)_4$	9.98 × 10 ⁻¹¹	10.0
$[Pd_{2}(L^{Bu})_{x}(L^{Phth})_{(4-x)}](BF_{4})_{4}$	8.90 × 10 ⁻¹¹	11.3
$[Pd_2(L^{OH})_x(L^{Phth})_y(L^{Anth})_z](BF_4)_4$	9.20 × 10 ⁻¹¹	10.9

$$\mathsf{PA} = -\Delta \mathsf{H} = -((\mathcal{E}_0 + H_{corr})_{\mathsf{BH}+} - (\mathcal{E}_0 + H_{corr})_{\mathsf{B}})$$

	$\varepsilon_0 + H_{corr}$	PA (kJ mol ⁻¹)	
L ^{Bu}	-1107.0432		
L ^{Bu} H⁺	-1107.4689	1118	
L ^{Phth}	-1500.9847	4400	
$L^{Phth}H^+$	-1501.4043	1102	

Table S7 Results summary for structure optimisation and frequency calculation of L^{Bu}

Calculation Type = FREQ	Imaginary Freq = 0
Calculation Method = RB3LYP	Temperature = 298.15 Kelvin
$Formula = C_{23}H_{20}N_4$	Pressure = 1 atm
Basis Set = 6-31G(d)	Frequencies scaled by = 1
Charge = 0	Electronic Energy (EE) = -1107.447 Hartree
Spin = Singlet	Zero-point Energy Correction = 0.37977 Hartree
Solvation = scrf=solvent=dmso	Thermal Correction to Energy = 0.402865 Hartree
E(RB3LYP) = -1107.447 Hartree	Thermal Correction to Enthalpy = 0.40381 Hartree
RMS Gradient Norm = 1.73e-07 Hartree/Bohr	Thermal Correction to Free Energy = 0.321838 Hartree
Imaginary Freq = 0	EE + Zero-point Energy = -1107.0672 Hartree
Dipole Moment = 4.1639731 Debye	EE + Thermal Energy Correction = -1107.0441 Hartree
Polarizability (?) = 414.172 a.u.	EE + Thermal Enthalpy Correction = -1107.0432 Hartree
Point Group = C1	EE + Thermal Free Energy Correction = -1107.1252 Hartree
Molecular Mass = 352.1688 amu	E (Thermal) = 252.802 kcal/mol
	Heat Capacity (Cv) = 88.537 cal/mol-kelvin

Maximum force = 0 Converged RMS force = 0 Converged Maximum displacement = 5e-05 Converged RMS displacement = 1.1e-05 Converged Predicted energy change = -8.511519e-13 Hartree Entropy (S) = 172.523 cal/mol-kelvin

Table S8 Results summary for structure optimisation and frequency calculation of L^{Bu}H⁺

Calculation Type = FREQ Calculation Method = RB3LYP Formula = $C_{23}H_{21}N_4$ Basis Set = 6-31G(d) Charge = 1 Spin = Singlet Solvation = scrf=solvent=dmso E(RB3LYP) = -1107.8871 Hartree RMS Gradient Norm = 1.574e-06 Hartree/Bohr Imaginary Freq = 0 Dipole Moment = 20.039729 Debye Polarizability (?) = 414.80167 a.u. Point Group = C1 Molecular Mass = 353.17662 amu

Maximum force = 0 Converged RMS force = 0 Converged Maximum displacement = 2e-05 Converged RMS displacement = 5e-06 Converged Predicted energy change = -4.137923e-13 Hartree Imaginary Freq = 0Temperature = 298.15 Kelvin Pressure = 1 atm Frequencies scaled by = 1Electronic Energy (EE) = -1107.8871 Hartree Zero-point Energy Correction = 0.394159 Hartree Thermal Correction to Energy = 0.41721 Hartree Thermal Correction to Enthalpy = 0.418165 Hartree Thermal Correction to Free Energy = 0.337583 Hartree EE + Zero-point Energy = -1107.4929 Hartree EE + Thermal Energy Correction = -1107.4699 Hartree EE + Thermal Enthalpy Correction = -1107.4689 Hartree EE + Thermal Free Energy Correction = -1107.5495 Hartree E (Thermal) = 261.81 kcal/mol Heat Capacity (Cv) = 89.126 cal/mol-kelvin Entropy (S) = 169.599 cal/mol-kelvin

Table S9 Results summary for structure optimisation and frequency calculation of L^{Phth}

Calculation Type = FREQ Calculation Method = RB3LYP Formula = $C_{28}H_{17}N_5O_2$ Basis Set = 6-31G(d) Charge = 0 Spin = Singlet Solvation = scrf=solvent=dmso E(RB3LYP) = -1501.4039 Hartree RMS Gradient Norm = 4.25e-07 Hartree/Bohr Imaginary Freq = 0 Dipole Moment = 6.5451258 Debye Polarizability (?) = 490.518 a.u. Point Group = C1 Molecular Mass = 455.13822 amu

Maximum force = 0 Converged RMS force = 0 Converged Maximum displacement = 3.3e-05 Converged RMS displacement = 8e-06 Converged Predicted energy change = -2.182248e-12 Hartree

Imaginary Freq = 0Temperature = 298.15 Kelvin Pressure = 1 atm Frequencies scaled by = 1 Electronic Energy (EE) = -1501.4039 Hartree Zero-point Energy Correction = 0.391245 Hartree Thermal Correction to Energy = 0.418173 Hartree Thermal Correction to Enthalpy = 0.419117 Hartree Thermal Correction to Free Energy = 0.327205 Hartree EE + Zero-point Energy = -1501.0126 Hartree EE + Thermal Energy Correction = -1500.9857 Hartree EE + Thermal Enthalpy Correction = -1500.9847 Hartree EE + Thermal Free Energy Correction = -1501.0766 Hartree E (Thermal) = 262.408 kcal/mol Heat Capacity (Cv) = 105.274 cal/mol-kelvin Entropy (S) = 193.446 cal/mol-kelvin

Table S10 Results summary for structure optimisation and frequency calculation of LPhthH+

Calculation Type = FREQ Calculation Method = RB3LYP Formula = $C_{28}H_{18}N_5O_2$ Basis Set = 6-31G(d) Charge = 1 Spin = Singlet Solvation = scrf=solvent=dmso E(RB3LYP) = -1501.8375 Hartree RMS Gradient Norm = 1.829e-06 Hartree/Bohr Imaginary Freq = 0 Dipole Moment = 13.385819 Debye Polarizability (?) = 495.71333 a.u. Point Group = C1 Molecular Mass = 456.14605 amu

Maximum force = 0 Converged RMS force = 0 Converged Maximum displacement = 0.000134 Not converged RMS displacement = 2.5e-05 Converged Predicted energy change = -5.341069e-12 Hartree Imaginary Freq = 0 Temperature = 298.15 Kelvin Pressure = 1 atm Frequencies scaled by = 1 Electronic Energy (EE) = -1501.8375 Hartree Zero-point Energy Correction = 0.405281 Hartree Thermal Correction to Energy = 0.432242 Hartree Thermal Correction to Enthalpy = 0.433187 Hartree Thermal Correction to Free Energy = 0.342008 Hartree EE + Zero-point Energy = -1501.4322 Hartree EE + Thermal Energy Correction = -1501.4052 Hartree EE + Thermal Enthalpy Correction = -1501.4043 Hartree EE + Thermal Free Energy Correction = -1501.4955 Hartree E (Thermal) = 271.236 kcal/mol Heat Capacity (Cv) = 105.931 cal/mol-kelvin Entropy (S) = 191.901 cal/mol-kelvin

X-ray Crystallography

Crystals of $[Pd_2(L^{Bu})_4](BF_4)_4$ were grown by vapour diffusion of ${}^{i}Pr_2O$ into a DMF solution of the compound. Data were collected at 173 K using an Agilent Xcalibur 3 E diffractometer. Cell determination, data collection, data reduction, cell refinement and absorption correction were performed with CrysalisPro.^[7] The structure was solved using SHELXT^[8] within WINGX and refined against F₂ using anisotropic thermal displacement parameters for all non-hydrogen atoms, except for one DMF and one ${}^{i}Pr_2O$ molecule, using SHELXL-2017/1^[9] within WINGX^[10]. Hydrogen atoms were placed in calculated positions and refined using a riding model.

CCDC	2043240	2043240	
Empirical formula	[Pd ₂ (C ₂₃ H ₂₀ N ₄) ₄](BF ₄) ₄ ·($[Pd_2(C_{23}H_{20}N_4)_4](BF_4)_4 \cdot (C_3H_7NO)_4 \cdot (C_6H_{14}O)_2$	
Formula weight	2466.48	2466.48	
Temperature	173(2) K	173(2) К	
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 2 ₁ /n		
Unit cell dimensions	a = 13.4683(3) Å	a= 90°	
	b = 18.1293(4) Å	b= 99.400(2)°	
	c = 24.7113(5) Å	g = 90°	
Volume	5952.8(2) Å ³		
Z	2		
Density (calculated)	1.376 Mg/m ³	1.376 Mg/m ³	
Absorption coefficient	0.389 mm ⁻¹	0.389 mm ⁻¹	
F(000)	2552	2552	
Crystal size	0.484 × 0.182 × 0.145 r	$0.484 \times 0.182 \times 0.145 \text{ mm}^3$	
Theta range for data collection	2.359 to 28.334°.	2.359 to 28.334°.	
Index ranges	-16≤h≤14, -21≤k≤16, -3	-16≤h≤14, -21≤k≤16, -32≤l≤31	
Reflections collected	33881	33881	
Independent reflections	12454 [R(int) = 0.0322]	12454 [R(int) = 0.0322]	
Completeness to theta = 25.242°	99.7%	99.7%	
Absorption correction	Semi-empirical from ed	Semi-empirical from equivalents	
Max. and min. transmission	1.000 and 0.94338	1.000 and 0.94338	
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F ²	
Data / restraints / parameters	12454 / 0 / 689	12454 / 0 / 689	
Goodness-of-fit on F ²	1.032	1.032	
Final R indices [I>2sigma(I)]	$R_1 = 0.0752, wR_2 = 0.20$	$R_1 = 0.0752, wR_2 = 0.2057$	
R indices (all data)	$R_1 = 0.1046, wR_2 = 0.23$	$R_1 = 0.1046, wR_2 = 0.2361$	
Largest diff. peak and hole	1.859 and -0.998 e.Å ⁻³	1.859 and -0.998 e.Å ⁻³	

Figure S129 Ellipsoid plot of the asymmetric unit of $[Pd_2(L^{Bu})_4](BF_4)_4 \cdot (C_3H_7NO)_4 \cdot (C_6H_{14}O)_2$. Ellipsoids shown at 50% probability. Hydrogen atoms omitted for clarity.

Crystals of $[Pd(1)_4](BF_4)_2$ were grown by vapour diffusion of Et₂O into a DMF solution of the compound. Data were collected at 173 K using an Agilent Xcalibur 3 E diffractometer. Cell determination, data collection, data reduction, cell refinement and absorption correction were performed with CrysalisPro.^[7] The structure was solved using SHELXT^[8] within Olex2^[11] and refined against F₂ using anisotropic thermal displacement parameters for all non-hydrogen atoms using SHELXL-2018/3^[9] within Olex2. Disordered BF₄ counteranions and solvent molecules could not be appropriately modelled; electron density was accounted for using a mask. Hydrogen atoms were placed in calculated positions and refined using a riding model.

CCDC	2050421		
Empirical formula	[Pd(C ₁₇ H ₁₀ N ₄) ₄](BF ₄) ₂ ·4	$[Pd(C_{17}H_{10}N_4)_4](BF_4)_2 \cdot 4(C_4H_{10}O)$	
Formula weight	1657.66	1657.66	
Temperature	173.00(14) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	I 4/m		
Unit cell dimensions	a = 14.1424(3) Å	a= 90°	
	b = 14.1424(3) Å	b= 90°	
	c = 36.1928(11) Å	g = 90°	
Volume	7238.8(4) Å ³		
Z	4		
Density (calculated)	1.521 Mg/m ³		
Absorption coefficient	0.345 mm ⁻¹		
F(000)	3424		
Crystal size	$0.286 \times 0.214 \times 0.073 \text{ mm}^3$		
Theta range for data collection	2.251 to 28.223°.		
Index ranges	-13≤h≤15, -10≤k≤18, -45≤l≤47		
Reflections collected	12412		
Independent reflections	3912 [R(int) = 0.0315]		
Completeness to theta = 25.242°	99.6%		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.000 and 0.79900		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3912 / 0 / 193		
Goodness-of-fit on F ²	1.077		
Final R indices [I>2sigma(I)]	$R_1 = 0.0469, wR_2 = 0.1270$		
R indices (all data)	$R_1 = 0.0655, wR_2 = 0.1424$		
Largest diff. peak and hole	0.94 and -0.36 e.Å ⁻³		

Figure S130 Stick representation of the SCXRD structure of $[Pd(1)_4](BF_4)_2$ shown from the side (left) and the top (right).

Figure S131 Ellipsoid plot of the asymmetric unit of $[Pd(1)_4](BF_4)_2 \cdot 4(C_4H_{10}O)$. Ellipsoids shown at 50% probability.

References

[1] N. Guven and P. Camurlu, Polymer, 2015, 73, 122-130.

[2] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchinson, J. Cheminform., 2012, 4, 17.

[3] A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, *J. Am. Chem. Soc.*, 1992, **114**, 10024-10035.

[4] J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173-1213.

[5] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[6] M. Holz, X. Mao, D. Seiferling and A. Sacco, J. Chem. Phys., 1996, 104, 669-679.

[7] CrysAlis Pro, Riagku Oxford Diffraction, Yarnton, Oxfordshire, England, 2015.

[8] G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.

[9] G. M. Sheldrick, Acta Cryst., 2015, C**71**, 3-8.

[10] L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.

[11] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.