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1 Modeling

1.1 Variable Definitions

Notation Description

d Power-stroke size
x Extension of myosin molecule
κ Stiffness of myosin
kBT Boltzmann’s constant times temperature
δ Parameter describing myosin’s force-dependent chemistry
E = κδd/kBT Non-dimensional parameter describing myosin’s force-dependent chemistry
vmax Unloaded shortening velocity
kD(x) ADP release rate
k0D Unloaded ADP release rate
S Length of stretch of half-sarcomere (nm) in a force-transient protocol
F0 Isometric force
Fp Force produced by a cross-bridge post-stretch in force-transient protocol
Fnc Non-cross-bridge force present in force-transient measurement

(same as F 0
nc in supplement section 6.2)

ηi(x, t) Probability density that myosin is bound in state i with an extension x
Ni(t) Probability that myosin is in state i
κ+w(x) Rate density for transition from unbound to bound states 5 to 1
k+w0

Overall attachment rate
ka, kT , k+h , k−h Rate constants for transition between states in kinetic scheme
[ATP] ATP concentration
l, τ , V , x̂, η̂, L Non-dimensional parameters for steady-state analytical solution

(see section 1.3.2)
G(x, µ) Normalized Gaussian function in terms of x with mean µ (see section 1.4.2)

αi(t), µ
j
i (t), A(t), bi(t) Parameters for solving non-steady-state approximation (see section 1.4.2)

F 0
xb, F

p
xb Cross-bridge forces pre- and post-stretch, respectively, in force transients

(see section 6.2)
F 0
nc, F

p
nc Non-cross-bridge forces pre- and post-stretch, respectively, in force

transients (see section 6.2)
V (x) Potential energy function
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1.2 Mathematical Formulation of Model

In this section, we describe the mathematical implementation of the five-state model in Fig. 1B in
the main text, and reproduced below in Fig. S1. The specific details of the four-state model are
similar (see Walcott 2012 [1] for more detail). Myosin and actin interact in the cyclical pattern
described by the kinetic scheme. Beginning with state 1, myosin is bound to actin in a pre-power-
stroke form with ADP and inorganic phosphate (Pi) in its nucleotide binding site. In some order,
myosin releases Pi and undergoes a conformational change, shifting to a post-power-stroke form
with ADP still in the active site (state 2) . ADP is released in a force-dependent manner and actin
and myosin stay bound in a post-power-stroke rigor state (state 3). ATP can then bind to the
empty active site on myosin, causing dissociation of myosin from actin (state 4). Finally, ATP is
hydrolyzed and myosin is unbound with ADP and Pi in the active site (state 5), and the cycle can
begin again.
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Figure S1: Five-state kinetic scheme detailing myosin’s interaction with actin, including a weakly-bound
state labeled in blue.

To transform this model into a system of equations, we must consider the force-dependence in the
system. We use x to denote the molecular extension of a myosin molecule. When myosin is in an
unbound state (states 4 and 5), it is not attached to actin, so there is no force on the molecule.
Thus, the probability of being in one of these states is simply a function of time, denoted Ni(t).
However, when myosin is bound to actin, it is bound with a particular extension, x. Thus, for
bound states (states 1, 2, and 3), we must define the probability density of myosin being bound
in state i with an extension x as ηi(x, t). The probability of being in one of the bound states is
therefore Ni(t) =

∫∞
−∞ ηi(x, t)dx.

We also must consider molecular extension when defining transitions between states. When myosin
binds to actin, it does so with a particular extension. Thus, the transition from unbound to weakly
bound (state 5 to state 1) must be defined as a rate density, κ+w(x), giving an overall attachment
rate of k+w0

=
∫∞
−∞ κ

+
w(x)dx. Additionally, ADP release rate (transition from state 2 to state 3) is

dependent on force, and is therefore a function of molecular extension, kD(x).

Assuming a dense binding limit (i.e. that myosin can bind anywhere on the actin filament), a large
number of cross-bridges, and the above notation, the five-state kinetic scheme can be expressed by
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the following system of integro-PDEs:

∂η1
∂t

+ v
∂η1
∂x

= κ+w(x)N5 − (k−w + ka)η1

∂η2
∂t

+ v
∂η2
∂x

= kaη1 − kD(x)η2

∂η3
∂t

+ v
∂η3
∂x

= kD(x)η2 − kT [ATP ]η3 (1)

dN4

dt
= kT [ATP ]

∫ ∞

−∞
η3dx+ k−hN5 − k+hN4

dN5

dt
=

∫ ∞

−∞
k−wη1dx+ k+hN4 −

(
k−h +

∫ ∞

−∞
κ+w(x)dx

)
N5

1 =

∫ ∞

−∞
η1dx+

∫ ∞

−∞
η2dx+

∫ ∞

−∞
η3dx+N4 +N5

where the final equation gives conservation of mass.

ADP release is dependent on molecular extension and, based on experimental measurements [2, 3, 4],
we use the form:

kD(x) = k0D exp

(
− κ(x+ d)δ

kBT

)

where k0D is ADP release rate in the absence of force, κ is myosin’s stiffness (assuming myosin acts
as a linear spring), d is myosin’s power-stroke size, kBT is Boltzmann’s constant times temperature,
and δ is a parameter, with units of distance, that describes myosin’s force-dependent properties.
Additionally, assuming that myosin’s attachment probability varies exponentially with the energy
required for myosin to bind with a given extension, we define the following rate density:

κ+w(x) = k+w0

√
κ

2πkBT
exp

(
− κx2

2kBT

)

All other rate constants (denoted k−w , ka, kT , k−h , k+h ) are constant values.

With this, the mathematical model is described in full. Below, we detail the techniques used to
solve this system under various conditions, resulting in expressions for ηi(x, t) and Ni(t). We can
then calculate an expression for force. Force per myosin molecule is defined as the probability that
myosin is in a force-producing state (states 1, 2, and 3), times the force it produces when bound.
Noting that myosin has bound but has not undergone a power-stroke in state 1 (i.e. it has extension
x), and has undergone a power-stroke of step size d in states 2 and 3 (i.e. it has extension (x+ d)),
we get the following calculation for force:

F =

∫ ∞

−∞
κη1(x, t)xdx+

∫ ∞

−∞
κη2(x, t)(x+ d)dx+

∫ ∞

−∞
κη3(x, t)(x+ d)dx (2)
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In the following sections, we present both numerical solutions and analytical approximations for
the system under various conditions. The numerical methods are important because they provide
accurate and robust solutions to the system. However, they are often computationally expensive and
inefficient. This makes optimization without a good initial guess time consuming, and sometimes
impossible.

We develop analytical approximations to improve the optimization process. While less accurate,
our approximations have two advantages. First, they give an efficient way to search parameter
space. This allows us to quickly determine a good initial guess of best-fit parameters that can then
be used with the less efficient, but more accurate, numerical solutions. Additionally, our analytical
approximations provide intuition about our system, which is particularly useful when implementing
the full model solutions.

1.3 Steady-State Solutions

To compare the model to force-velocity and energetics measurements, we must solve the system
under steady-state conditions. First, we note that all of the experimental measurements we consider
are done for conditions of high ATP concentration, [ATP ]. The transition rate from state 3 to state
4 is dependent on this concentration, and thus, high concentrations of ATP results in a negligible
population of cross-bridges in rigor. This allows us to simplify the system by assuming that myosin
transitions directly from state 2 to state 4 at a rate of kD(x). With this simplification and the
assumption of steady-state, the system in Eq. 1 becomes:

v
dη1
dx

= −(k−w + ka)η1 +

(
k−w + ka

k+w0

)
κ+w(x)N1 (3)

v
dη2
dx

= kaη1 − kD(x)η2

1.3.1 Numerical Solution for Steady-State

To numerically solve the system of ordinary differential equations (ODEs) in Eq. 3 for a given
velocity value, v, we simultaneously implement a root find using Matlab’s fsolve function and an
ODE solver using Matlab’s ode15s. We use the root find to determine the value of N1 by solving
N1−

∫∞
−∞ η1(x)dx = 0, and the ODE solver to find η1(x) and η2(x). We use a solver specialized for

stiff ODEs because of the exponential term (kD(x)), which becomes large at the boundary. We can
then calculate the force using Eq. 2, resulting in a relationship for force as a function of velocity.

1.3.2 Analytical Solution for Steady-State

To solve for an analytical solution under steady-state conditions, it is most convenient to non-
dimensionalize the system in Eq. 3. To do so, we define the following non-dimensional parameters:
` =

√
2kBT/κ, τ = 1/(k−w + ka), V = vτ/`, x̂ = x/`, η̂ = η`, E = κδd/kBT , L = `/d,
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With this notation, the equation for η1 becomes,

V
∂η̂1
∂x̂

= −η̂1 +
1√
π
e−x̂

2
N1 (4)

This can be analytically solved using an integrating factor. Using the convention that v < 0 for
shortening, which therefore gives the boundary condition that η̂1(∞) = 0, we get the solution,

η̂1 =
N1

2V
e1/(4V

2)e−x̂/V
[
− 1 + erf

(
x̂− 1

2V

)]
(5)

Next, we must solve for η2. We implement the η1 solution with the equation for η2 in Eq. 3 to get,

v
∂η2
∂x

= −k0D exp

(
− ELx̂− E

)
η2 +

kaN1

2V l
e1/(4V

2)e−x̂/V
[
− 1 + erf

(
x̂− 1

2V

)]
(6)

To solve, we introduce a new non-dimensional length scale and rescale with x = x/d and η2 = dη2.
Note that ` is small compared to d, so we can also define L = `/d = ε.

Finally, we define two non-dimensional parameters, Ta = kaτ/ε and Td = k0Dτ/ε. Both of these
parameters include τ , the time scale of weak binding, which is assumed to be fast compared to
strong binding. Thus, τ is O(ε), and Ta and Td are both O(1). We can therefore simplify Eq. 6 to
be,

∂η2
∂x

=
−Td
V

exp
(
− Ex− E

)
η2 +

TaN1

V

[
1

2εV
e1/(4V

2)e−x/(εV )

(
− 1 + erf

(
x

ε
− 1

2V

))]
(7)

We solve for η2 using a matched asymptotic expansion. First, we construct the outer solution away
from zero. In this region, we must solve,

∂η2
∂x

=
−Td
V

exp(−Ex− E)η2 (8)

which gives the solution,

η2
out = A exp

(
Tde
−Ex−E

EV

)
(9)

Next, for the inner solution near zero, we must solve,

∂η2
∂x

=
TaN1

V

[
1

2εV
e1/(4V

2)e−x/(εV )

(
− 1 + erf

(
x

ε
− 1

2V

))]
(10)

To solve, we must first define a layer coordinate to rescale into the layer. We divide the length
parameter by ε, which we can write using our original notation: x/ε = x̂. Rescaling Eq. 10 allows
us to solve for the inner solution with an arbitrary constant. Noting that η2

in(∞) = 0, we can solve
for this constant to get the solution

η2
in =

TaN1

2V

(
erf(x̂) + e1/(4V

2)e−x̂/V
(

1 + erf

(
1

2V
− x̂
))
− 1

)
(11)
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Matching these solutions near zero, we get the following composite solution:

ηcomp
2 =

{
ηin2 ∀x, x̂, x
ηin2 + ηout2 − ηmatch

2 for x, x̂, x < 0

where

ηout2 =
−TaN1

V
exp

(−Tde−E
EV

)
exp

(
Tde
−Ex−E

EV

)

ηin2 =
TaN1

2V

(
erf(x̂) + e1/(4V

2)e−x̂/V
(

1 + erf

(
1

2V
− x̂
))
− 1

)
(12)

ηmatch
2 =

−TaN1

V

This expression for η2 can be integrated to solve for N2, since N2 =
∫∞
−∞ η2(x, t)dx. A value for N2

then allows us to solve for N1.

Combining all of the above, we have fully defined analytical expressions for η1 and η2. As a final
step, we can use Eq. 2 to solve for force as a function of shortening velocity.

1.4 Non-Steady-State Solutions

In the force transient experiments, the muscle fiber is activated and held isometrically, stretched
on a very rapid time scale, and then held isometrically again. Therefore, to compare the model to
these measurements, we assume isometric conditions and solve for force as a function of time.

Again, we assume conditions of high ATP, reducing our five-state model to not include the negligibly
populated state 3. Additionally assuming isometric conditions (i.e. v = 0), the system (Eq.1)
reduces to the following:

∂η1
∂t

= κ+w(x)N5 − (k−w + ka)η1

∂η2
∂t

= kaη1 − kD(x)η2 (13)

dN5

dt
= k−wN1 + k+h (1−N1 −N2 −N5)− (k−h + k+w0

)N5

1.4.1 Numerical Solution for Non-Steady-State

To numerically solve the system, we use the method of characteristics to convert these partial
differential equations (PDEs) to a system of ODEs at each x. We then implement a fourth-order
Runge-Kutta algorithm (RK4) in Matlab to solve the system of ODEs. We implement our own
RK4 instead of using one of Matlab’s suite of ODE solvers because of the integral constraint,
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Ni =
∫∞
−∞ ηi(x, t)dx. This constraint results in coupling between the characteristics, so that the

ODEs are coupled and cannot be solved individually.

To implement RK4, we first solve the system analytically in steady-state (t = 0). Our simulation
begins at the time of stretch, and so the initial condition is the steady-state distributions shifted by
the stretch amplitude. For each value of x, we have a system of ODEs. We use the RK4 algorithm
to take a step forward in time, using the values of η1, η2, N1, N2 and N5 at the previous time step,
to solve for the values of η1, η2 and N5 at the next point in time. After the time step, we integrate
the new distributions for η1 and η2 to get the new N1 and N2 values. Repeating this process, our
final result is η1(x, t) and η2(x, t), and we can use Eq. 2 to solve for F (t).

1.4.2 Analytical Approximation for Non-Steady-State

Given both the x and t-dependence in the non-steady-state system (Eq. 13), this system cannot
be solved analytically. Instead, we develop the following moment approximation [5], which allows
us to approximate the system of PDEs as a set of ODEs, which we can then optimize with greater
efficiency.

Recall that η1(x, t) and η2(x, t) are the probability densities that myosin is weakly or strongly-
bound, respectively, with a particular extension, x at time t. We assume the attachment rate
varies exponentially with the energy required for myosin to bind with a particular extension, which
means that the attachment rate is a normalized Gaussian function centered at 0. Thus, myosin
molecules attach into a weakly-bound state based on this function, and so we approximate the η1
distribution as a Gaussian function. For the strongly-bound cross-bridges, transition into this state
occurs in the same manner, but detachment is force-dependent and favors smaller extensions, so we
approximate the η2 distribution with a Gaussian centered slightly to the right of 0. Throughout our
approximation, we allow these means to vary when appropriate, but assume that their standard
deviations are constant (this is equivalent to truncating our moment approximation).

Next, we implement a separation of time scales and solve the system on each interval. The force
transient response suggests three time scales: 1) Pre-stretch: the muscle is activated and has
reached steady-state, 2) Fast time: the stretch occurs at the start of this interval, all bound cross-
bridges are stretched, and the fast weakly-bound cross-bridges re-adjust, and 3) Slow time: the
weakly-bound cross-bridges are in steady-state and the strongly-bound cross-bridges slowly adjust
back from the stretched position.

We solve each time scale individually below. In the following, we use G to denote normalized
Gaussian functions with mean µ so that

∫∞
−∞G(x, µ)dx = 1.

Pre-Stretch/Isometric: Pre-stretch the muscle has been activated and allowed enough time to reach
steady-state. We approximate the pre-stretch η distributions as described above,

η1 = α1(t)G1(x, 0) (14)

η2 = α2(t)G2(x, µ
a
2(t))

Using these approximations, we can transform our system in Eq. 13 into a system of ordinary
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differential equations:

dα1

dt
= k+w0

N5 − (k−w + ka)α1

dα2

dt
= kaα1 − α2

∫ ∞

−∞
kD(x)G2(x, µ

a
2(t))dx

(15)

dµa2
dt

=

−σ2
[
µa2

(
kaα1 − α2

∫∞
−∞ kD(x)G2(x, µ

a
2)dx

)
+ α2

∫∞
−∞ xkD(x)G2(x, µ

a
2)dx

]

α2

(∫∞
−∞ x

2G2(x, µa2)dx− (µa2)2
)

dN5

dt
= k−wα1 + k+h (1− α1 − α2 −N5)− (k−h + k+w0

)N5

For the purposes of our calculation, we are only interested in the pre-stretch steady-state force. We
solve the above system under steady-state conditions by implementing a non-linear root find and
using Matlab’s fsolve function. This gives steady-state values for αss

1 , αss
2 , µa,ss2 and N ss

5 . Finally
Eq. 2 can be used to calculate pre-stretch isometric force.

Fast Time: We assume that the stretch occurs at the start of this time scale. This means that
the steady-state distributions of η1 and η2 are shifted by the amplitude of the stretch imposed,
s. Throughout this fast time scale, the weakly-bound cross-bridges adjust back to steady-state,
so the η1 distribution adjusts from the stretched position back to be centered at 0. The strongly-
bound cross-bridges act on a much slower time scale, and so we assume they are constant and are
well-approximated by the Gaussian in the shifted position.

Under these conditions, our distributions become:

η1 = A(t)G1(x, µ
b
1(t)) + (αss

1 −A(t))G1(x, 0) (16)

η2 = αss
2 G2(x, µ

B
2 )

with A(0) = αss
1 , µb1(0) = s, µB2 = µa,ss2 + s. Note that here, αss

1 , αss
2 , and µa,ss2 are the respective

steady-state values from the previous solution for pre-stretch conditions.

On this fast time scale, we additionally assume that N5 is in steady-state. This allows us to solve
the system, and using the initial condition that η1(x, 0) = αss

1 G1(x, s), we get an expression for η1,

η1 = αss
1 G1(x, s)e

−(k−w+ka)t +
k+w (x)N ss

5

k−w + ka

(
1− e−(k−w+ka)t

)
(17)

And finally, we can again use Eq. 2 to solve for F (t) on this time scale.

Slow Time: On the final time scale, we assume that the weakly-bound cross-bridges have re-
adjusted, and now the strongly-bound cross-bridges are adjusting from the stretched distribution
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back to steady-state. Thus, the η1 distribution stays centered near 0, and the η2 distribution begins
in a shifted position and adjusts back to be centered near 0, as follows:

η1 = a1(t)G1(x, 0) (18)

η2 = a2(t)G2(x, µ
a
2(t)) + b2(t)G2(x, µ

b
2(t))

with a1(0) = αss
1 , a2(0) = 0, b2(0) = αss

2 , µa2(0) = 0, and µb2(0) = µa,ss2 + s. Again, note that
steady-state values refer to pre-stretch steady-state.

To solve this, we must assume that µa2 << µb2, i.e. that the means of the two Gaussians for
the stretched and un-stretched positions are far apart. This allows us to assume that there are
neighborhoods around both µa2 and µb2 where they are separate, and can therefore be integrated
independently.

We use these approximations in Eq. 18 to transform the system of PDEs in 13 into the following
set of ODEs:

da1
dt

= k+w0
N5 − (k−w + ka)a1

da2
dt

= kaa1 − a2
∫ ∞

−∞
kD(x)G2(x, µ

a
2)dx

db2
dt

= −b2
∫ ∞

−∞
kD(x)G2(x, µ

b
2)dx

(19)

dµa2
dt

=

−σ2
[
µa2(t)

(
kaa1 − a2

∫∞
−∞ kD(x)G2(x, µ

a
2)dx

)
+ a2

∫∞
−∞ xkD(x)G2(x, µ

a
2)dx

]

a2

[ ∫∞
−∞ x

2G2(x, µa2)dx− (µa2)2
]

dµb2
dt

=

−σ2
[
− µb2

∫∞
−∞ kD(x)G2(x, µ

b
2)dx+

∫∞
−∞ xkD(x)G2(x, µ

b
2)dx

]

∫∞
−∞ x

2G2(x, µb2)dx− (µb2)
2

dN5

dt
= k−wa1 + k+h (1− a1 − a2 − b2 −N5)− (k−h + k+w0

)N5

This system of ODEs is much faster to solve numerically than our original system of PDEs.

Thus, with the above approximation, we have separated the force transient behavior into three time
scales, approximated the system of PDEs with a system of ODEs, solved numerically, and calculated
the resulting force. In total, we have an efficient method for approximating F (t). Additionally,
we find that this approximate solution is very close to the more accurate full numerical solution
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(Fig. S2). Thus, this approximation is advantageous because it can be used to preliminarily fit force
transient measurements, resulting in a very good approximation of best-fit parameters, which can
then be used as an initial condition to optimizing the more accurate full RK4 numerical solution.
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Figure S2: Model simulation of a force transient response to a quick stretch: The model can be solved
numerically using fourth-order Runge-Kutta (see section 1.4.1) to provide an accurate result for force as
a function of time (gray, dotted line). For efficiency, the model can additionally be approximated using
separation of time scales and a modified moment approximation (see section 1.4.2), resulting in a method of
solving the system that is both a very good approximation to the numerical solution (red, solid line), and
efficient enough to perform preliminary parameter optimizations.

2 Four-State Model + Viscous Drag

2.1 Weak Binding Acts as a Viscous Drag

In the motivation section of the main text, we begin by introducing a four-state model (Fig. 1A of
main text) which has been previously shown to describe molecular muscle measurements and force-
velocity measurements from muscle fibers [1, 6]. Based on experimental evidence [7, 8, 9, 10, 11, 12],
we hypothesize that this model must additionally include a weakly-bound interaction between
actin and myosin, leading to the five-state model (Fig. S1 and Fig. 1B of the main text). Given
that weakly-bound myosin molecules rapidly bind and unbind from the actin filament without
undergoing a power-stroke [8, 10], and given that the rate constants for weak binding (k−w and ka)
do not depend on force, these cross-bridges act as a viscous drag on the system [13] (Fig. S3). This
provides us with another method of efficiently approximating the five-state model in force-velocity
measurements: we can add a viscous drag to the four-state model.

We initially use this method to fit the force-velocity data of A. V. Hill and the energetics data of
W. O. Fenn, and to motivate the necessity of a weakly-bound state in the main text. To do so,
we solve the four-state model to get force as a function of shortening velocity, and then subtract a
linear function from this result. The slope of this line determines the amount of viscous drag, or
equivalently, the amount of weakly-bound cross-bridges. With this force-velocity relationship, we
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can also calculate total energy as a function of force. We find that the four-state model with viscous
drag is able to simultaneously fit Hill’s force-velocity and Fenn’s energetics data, motivating our
hypothesis that weak binding is necessary to consistently model muscle measurements.

2.2 Parameter Optimization and the Four-State Model

In addition to motivating our hypothesis, we used the four-state model with drag to identify pa-
rameters that can describe our own force-velocity measurements (Figs. 2D, 3B and 4B of the main
text) because it has fewer parameters and is more computationally efficient than the five-state
model. The parameter combinations for the four-state model with drag were identified by fixing
a particular amount of drag (i.e. amount of weakly-bound cross-bridges), and performing an opti-
mization to determine the best fit ADP release rate (k0D) and force-dependent parameter (E). We
use a matched asymptotic analytical solution to the four-state model to get close to the best-fit
parameters, and then perform the final optimization using a numerical solution to the four-state
model. We optimize using Matlab’s fminsearch, and define the error as the sum of the squared
difference between the model and measurements divided by the number of data points. In the
four-state model at steady-state, E and k0D are the only two unknown parameters. Our results are
plotted as gray squares in Fig. S4a.

This parameter optimization is much simpler than the equivalent optimization with the five-state
model, which includes three additional unknown parameters (k−w , ka, and k+w0

), which determine
the time scale and amount of weak binding. In fact, the combinations of E and k0D that fit the
five-state model to force-velocity measurements are not unique, but are dependent on the time scale
of weak-binding. Thus, to fit the five-state model, we must fix one of the weak-binding parameters
(either k−w or ka), which specified the time scale of weak binding, and then fit the other unknown
parameters. By fixing E at different values, we get combinations of E and k0D that result in good
fits of the five-state model to the force-velocity measurements (colored symbols in Fig. S4a).

These fits demonstrate two important results. First, we find that as the time scale of weak binding
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Figure S3: Weakly-bound cross-bridges act as a viscous drag. The five-state model fits force-velocity
measurements (red line, data from [14]). This total force is comprised of the force from strongly-bound
cross-bridges (gray, solid line) and force from weakly-bound cross-bridges (black, dotted line). The linear
relationship between force and velocity generated by the weakly-bound cross-bridges demonstrates that they
act as a viscous drag on the system.
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increases, the five-state model results approach those of the four-state plus drag (Fig. S4). Second,
when we violate the assumption that weak binding is fast compared to strong binding, the four-state
model plus drag underestimates the ADP release rate necessary to fit our measurements, i.e. the
k0D values predicted from the the four-state model plus drag are a lower bound to those predicted
by the five-state model. This latter fact is useful when we compare the five-state model fits to our
force-velocity and force transient measurements. Because the best-fit k0D value at a given E for the
force transient measurements are always less than the equivalent k0D value for our force-velocity
measurements, the five-state model force-velocity fits will give parameters equivalent to, or worse
than, those from the four-state plus drag. Therefore, for simplicity, we use the four-state plus drag
force-velocity parameters (Figs. 2D, 3B, and 4B of the main text) to compare to force transient
results.
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Figure S4: As the time scale of weak-binding increases, the five-state model approaches the four-state
model plus drag. A: Best-fit combinations of unloaded ADP release rate (k0D) and the force-dependent
parameter (E) for the four-state model plus various amounts of drag (gray squares) and the five-state model
with various weak-binding time scales (colored symbols). For each colored symbol, one of the weak binding
parameters (k−w or ka) was fixed along with the force-dependent parameter (E), and the other parameters
were optimized. The four-state model parameters are a lower bound to the five-state results. B: This panel
illustrates the weak-binding time scale corresponding to each colored symbol in panel A. As the time scale
of weak binding increases, the five-state predictions in panel A approach those of the four-state model.

3 Weak Binding is Necessary for Consistent Force-Dependence:
Modeling Classic Measurements of the Energetics of Muscle (Fenn 1923) and the
Force-Velocity Relationship (Hill 1938)

In the main text, we motivate the necessity of a weakly-bound state in modeling the interaction
between actin and myosin by fitting the four- and five-state models to classic measurements from
W.O. Fenn (1923) and A.V. Hill (1938). Here, we discuss how we model these measurements, the
details of the optimization, and the statistical significance of our results.
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3.1 Modeling the Energetics of Muscle

In his work, W.O. Fenn measured energy liberation during muscle contraction. Experimentally, a
muscle was maximally stimulated for a fixed time and allowed to shorten a fixed distance. Fenn
measured the work done by the muscle and the heat produced as a function of the load imposed
[15].

To model this relationship, we first note that due to conservation of energy, total energy is equal
to work done plus heat released. In our case, ATP hydrolysis fuels the cyclical interaction between
actin and myosin, so total energy is equivalent to the energy of ATP hydrolysis, which we call
EATP . One molecule of ATP is hydrolyzed each time a myosin molecule completes the actomyosin
cycle. Thus, the flux through an irreversible step of the cycle gives the rate of ATP consumption,
which is proportional to the time derivative of EATP (the proportionality constant is the energy
of ATP hydrolysis). We integrate this expression to get EATP (v) where v is velocity. Additionally
using our calculated force-velocity relationship, we have an expression for total energy as a function
of force, which directly relates to Fenn’s measurements.

Implementing the above with the five-state model, we find that weak binding has a minimal effect
on this calculation. With the addition of weakly-bound cross-bridges, the muscle must do more
work to overcome the resistive force of these cross-bridges. However, we find that the magnitude
of this work is small compared to the work necessary for the muscle to raise the weight (Fig. S5).
Additionally, the magnitude of the overall work is small compared to the heat produced by the
muscle. In Fenn’s original measurements, the heat produced was an order of magnitude larger than
the work done by the muscle [15].
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Figure S5: Weak binding has a minimal effect on work done by a muscle. Simulating Fenn’s experimental
protocol using the five-state model results in work done by the muscle to lift the weight (red solid line) that
is much larger than the work done to overcome resistive force from weakly-bound cross-bridges (dotted red
line).

3.2 Fitting Model to Energetics and Force-Velocity Data

To compare the model to Hill’s force-velocity and Fenn’s energetics data, we first solve for the
model’s force-velocity relationship (see section 1). This is directly comparable to Hill’s measure-
ments. Next, based on the above calculation, we solve for total energy as a function of force, which
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is comparable to Fenn’s measurements.

We fit the four- and five-state models to the data [14, 15]. In the case of the energetics data, we
multiply the normalized force data by 0.9. This gives a better fit between model and data, and we
justify it by the fact that true isometric force of a muscle is extremely challenging to measure and
is not directly reported in Fenn’s paper. We perform fits to the data by simulating the model for
a given parameter set, calculating the error as the sum of the squared difference between model
and data divided by the number of data points, and optimizing using Matlab’s fminsearch. When
simultaneously fitting energetics and force-velocity data, we define the error as the sum of the
individual errors, with the force-velocity error weighted slightly higher.

Because the four- and five-state models have two and four unknown parameters respectively, we
tested whether the five-state model was a better fit with an F-test, which yields p < 0.05. We
therefore conclude the five-state model gives a significantly better fit than the four-state. Addition-
ally, we find that the five-state model fits are insensitive to one of the unknown parameters. Thus,
if the five-state model differs from the four-state model by only one extra parameter, the difference
between the two models is more significant.

4 Mismatch Between Force Transient Data and Model is not Unique
to Drosophila Jump Muscle

In section 3.1 of the main text, we describe a discrepancy between our model predictions and our
force transient measurements. In particular, our model predicts a peak force post-stretch (phase
I) that is at least twice what we measure in Drosophila jump muscle. Importantly, the model
prediction is a lower bound, since the calculation accounts only for force from strongly-bound
cross-bridges that have undergone a power-stroke. Thus, if weakly-bound cross-bridges are also
present, they will produce additional force once stretched, leading to an even larger discrepancy
between model and measurements.

This difference is not unique to Drosophila jump muscle. In fact, measurements from a variety
of vertebrates and a range of muscle fiber types result in peak forces that are similar to our
measurements (Fig. S6, [16, 17, 18, 19]). While some of the experimental measurements are above
our predicted line, the majority are not. Additionally, since the predicted line is a lower bound,
measurements must be well above this prediction to be fit by the model. If the weakly-bound state
is significantly populated, we would expect peak forces to be higher than the predicted lower bound
by a factor of 2 or more. Thus, of the fifteen measurements considered here, only four have the
potential to be fit by the model ([20, 21] and fiber types I and IIA from [22]).

5 Explanation 1: Overestimated Stretch Amplitude

In the main text, we discuss how our model, with the assumption of linear cross-bridge elasticity,
is inconsistent with force transient measurements because the model predicts a peak force post-
stretch that is significantly larger than that measured (Fig. 2B main text). In section 3.2, we
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Figure S6: Peak force above isometric force in transient response after rapid stretch (phase I) as a function
of stretch size. Measurements from a variety of muscle fiber types are at or below the model’s prediction.

present an argument against the possibility that this discrepancy is caused by an overestimated
stretch amplitude at the sarcomere level due to series elasticity. Here, we provide further details
on the computation that led to this conclusion.

5.1 Fitting Model with Decreased Stretch Amplitude

To fit the model to force transient measurements for the case of overestimated stretch amplitude,
we allow the unknown model parameters to vary (k−w , ka, k0D, E), and additionally include the
stretch amplitude, ∆s, as an unknown parameter. Note that in the force transient measurements,
the force does not return to steady-state for long time, but instead remains slightly higher than the
pre-stretch isometric value. Our model does not account for this residual force enhancement. Thus,
in order to compare the model to the data, we must shift the force transient measurements so that
the force returns to steady-state. To simulate the force transient, we solve the system numerically
using RK4. To compare the results to our measurements, we define error as the sum of the squared
difference between the model results and the shifted data divided by the number of data points,
and optimize using Matlab’s fminsearch.

We fit the model to a force transient measurement with a stretch amplitude of 0.5% muscle length
(main text Fig. 2A). Assuming there is no effect of series elasticity, this corresponds to a 9 nm stretch
at the half-sarcomere level. Our optimization results in a set of best-fit parameters, including a
single best-fit value for the reduced stretch amplitude of ∆s = 0.437 nm. The corresponding model
fit is illustrated in Fig. 3A of the main text.

To estimate the range of ∆s values that result in good fits to the data, we assume that the best-
fit parameters give a perfect fit, and calculate the error in this case. We define the maximum
acceptable error as

√
2 · Eb, where Eb is the error from the best-fit parameters. This gives us an

estimate of the standard deviation of the best fit, and provides a benchmark for when the model is
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different from the data. We find that only a small range of significantly decreased stretch amplitudes
(∆s = 0.4− 0.55 nm) result in good fits to the force transient measurements (Fig. S7).
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Figure S7: Sum of the squared error as a function of the half-sarcomere stretch size. For each point, the
stretch amplitude was fixed and the other parameters were optimized to fit the model to a measurement from
a 0.5% muscle length stretch. Values within the shaded region are considered acceptable fits, and represent
error that is within one standard deviation of the error produced by the best-fit parameters.

5.2 Comparing Parameter Fits from Force Transient and Force-Velocity Mea-
surements

Next, to compare the model fits of force transient measurements to fits of force-velocity measure-
ments, we consider combinations of two model parameters, unloaded ADP release rate (k0D) and
the force-dependent parameter (E) (Fig. 3B of the main text). To determine the force transient
parameters, we perform the same fits as above, but with the stretch amplitude fixed at the best
fit value of ∆s = 0.437 nm. For the force-velocity parameters, we perform fits to the four-state
model with various amounts of weak binding (see section 2.2 for justification). In each case, error
is defined as the sum of the squared difference between model and data divided by the number of
data points, and Matlab’s fminsearch is used for optimization.

We determine the variability in these parameters by optimizing the model to determine the best-fit
parameters at a given E, and use this result to define an upper bound on the acceptable error (see
section 5.1). We sweep through k0D values to determine a range that provides satisfactory fits to
the data for the given E value. We perform this sensitivity analysis for both the force transient fits
and the force-velocity fits (Fig. S8).

5.3 Explanation 1 Extended: Strong Binding Cannot Cause Phase I and II of
Force Transient Response

In most of our analysis, we assume that phase I and II in the force transient response are at-
tributed to weakly-bound cross-bridges that rapidly re-equilibrate post-stretch (Fig. 1F main
text). However, it is also possible that the weakly-bound cross-bridges act on a faster time scale
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Figure S8: Sensitivity analysis for fitting model to data. In each, the gray shaded regions denote acceptable
error, and represent error that is within one standard deviation from the error produced by each best-fit.
These results are used to determine the error bars in Figs. 2D, 3B, and 4B of the main text. A) Sum
of the squared error in fitting force transient measurements as a function of ADP release rate for a fixed
force-dependence. For each panel, the five-state model (including ∆s as an unknown parameter) is fit to
the force transient measurement from a 0.5% muscle length stretch. B) Sum of the squared error in fitting
force-velocity measurements as a function of ADP release rate for fixed force-dependence. For each panel,
the four-state model plus drag was fit to force-velocity measurements.

than the temporal resolution of the force transient measurements (i.e. the time between data points,
∆t = 0.125 ms). In this case, weakly-bound cross-bridges re-equilibrate before the first measure-
ment post-stretch, and phase I and II of the force transient response are solely due to strongly-bound
cross-bridges. Then, phase III and IV would arise from some other mechanism that is not included
in our model.

To test our assumption that phase I and II are due to weakly-bound cross-bridges, we tested the
viability of the model as described above, with weakly-bound cross-bridges acting on a time scale
faster that the resolution of the measurements. To do so, we implemented two fourth-order Runge-
Kutta algorithms to solve for force as a function of time. The first begins at the instant of stretch
and iterates through time using a small time step (∆t = 0.00625 ms) until it reaches the first point
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in time post-stretch from our measurements, t = 0.125 ms. The second RK4 algorithm begins at
this time point and iterates through time using a larger step size (∆t = 0.05 ms). In this way,
we can capture the rapid response of the weak-binding cross-bridges without having to maintain a
short, and computationally inefficient, time step. We fix two of the weak binding parameters (k−w
and k+w0

) to be large enough so that the weakly-bound cross-bridges have re-equilibrated by the end
of our first RK4 simulation. We can then compare the result of the second RK4 simulation with our
force transient measurement, ensuring that the peak is solely due to strongly-bound cross-bridges.
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Figure S9: The model cannot simultaneously fit the force transient and force-velocity measurements with
the assumption that the peak in force post-stretch is solely attributable to strongly-bound cross-bridges. A)
Assuming strong-binding causes the peak in force post-stretch, the five-state model can fit the derivative of
the force transient trace for a 0.5% muscle length stretch. The corresponding force trace is reproduced here.
The model result has been shifted to account for an offset in the result due to fitting the derivative. The
best-fit parameters suggest a decreased stretch amplitude (∆s = 3.61) and a negligible force-dependence
(E = 0.01). B) Combinations of unloaded ADP release rate and the force-dependent parameter that fit the
force transient measurements under these conditions (black circles) are inconsistent with those required to
fit force-velocity measurements (gray squares). To fit model to data, the weak binding parameters k−w and
k+w0

were fixed to be large, and the five-state model was fit to both the force-velocity and force transient
measurements.

As with our other models, this model is inconsistent with the measured peak force from our force
transient traces (main text Fig. 2B). We must therefore adjust for this discrepancy, and we do so by
letting the stretch amplitude be a parameter of fit (see section 3.2 of the main text for justification).
Additionally, because phase III and IV of the force transient response would not be described by
this model, we fit the derivative of the force transient trace. The advantage of this approach is
that the derivative is invariant to the addition of a constant value being added to the force trace.
Since phase III and IV act on a longer time scale that phase I and II, they are reasonably well
approximated by a constant in this model.

With these assumptions and with this implementation, the model is able to fit our force transient
measurements (Fig. S9a). However, it requires a small force-dependence and large unloaded ADP
release rate (best-fit gives E = 0.01 and k0D = 830.07 s−1) to be able to reproduce the timescale
of phase I and II. As we fix E and optimize the fit to the data, we find that the predicted ADP
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release rate is too large to be consistent with the fits to our force-velocity measurements (Fig. S9b).
Thus, phase I and II are too fast to be due to strongly-bound cross-bridges, and we conclude that
the peak force cannot be attributed to detachment of strongly bound cross-bridges in this manner.

6 Explanation 2: Unexplained Force

In section 3.3 of the main text, we briefly present an argument against the presence of an additional
force, not due to actin and myosin, in the force transient measurements. Here, we discuss our
methods (sections 6.1, 6.2, 6.3, 6.4) and findings (section 6.5) in more detail.

6.1 Passive Force in Force Transient Measurements

When we consider that the force transient measurements may include additional non-cross-bridge
forces, one possibility is that passive elements in the muscle fiber are contributing to the measured
force. Our model only accounts for force from cross-bridge interactions, and therefore would not
reproduce passive force.

To control for this, we perform the force transient measurements at low calcium concentrations
(pCa 8.0). At this low calcium concentration, there is very little cross-bridge cycling, and thus any
force produced can be attributed to passive elements. We find that the force produced for pCa 8.0 is
negligible compared to that produced at a saturating calcium concentration of pCa 5.0 (Fig. S10a,
b). In particular, we find that the pre-stretch isometric stress value for pCa 5.0 is 15 - 20 times
greater than the pre-stretch isometric stress value for pCa 8.0 (Fig. S10c). Notably, this difference
in magnitude is present for all of the fibers and at every stretch amplitude we considered, confirming
that the force from passive elements is negligible across all of our experimental conditions.
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Figure S10: Passive stress produced for pCa 8.0 is negligible compared to active stress produced at pCa
5.0. A, B: Stress (mN/mm2) as a function of time (sec) for muscle fibers quickly stretched a small percentage
of their length (A: 0.75% ML, B: 1% ML) at saturating calcium concentration of pCa 5.0 (blue) and low
calcium concentration of pCa 8.0 (red). C: Ratio of pre-stretch isometric stress at pCa 5.0 compared to
that at pCa 8.0 at various stretch amplitudes. Each data point includes values from two fibers. Together,
these plots illustrate that the passive force produced at low calcium concentrations is negligible, and about
15 times less than that produced at saturating concentrations.
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6.2 Adjusting Model to Include Non-Cross-Bridge Force

While the above experiments show that purely passive elements are not contributing significantly
to force, there is evidence that some elastic elements in muscle stiffen in the presence of calcium
[23] or that non-cross-bridge elements can contribute to force [24]. It is possible, then, that the
contribution of these elements to muscle force underlie the discrepancy between our measurement
of peak force, and that predicted by Eq. 1 of the main text, reproduced below:

Fp

F0
=

(S + d)κ

dκ
=
S
d

+ 1 =
1800 · s%

d
+ 1 (20)

where κ is myosin’s stiffness, d is myosin’s step size, Fp is peak force post-stretch, F0 is pre-stretch
isometric force, and S is stretch length:

We call the force produced by these non-cross-bridge elements an “unexplained force”. To account
for this, we let it be a parameter in the model. Additionally, we let this value be different pre- and
post-stretch. Thus, the force calculation in Eq. 20 becomes,

Fp

F0
=
F p
xb + F p

nc

F 0
xb + F 0

nc

(21)

where F 0
xb and F p

xb are the cross-bridge forces pre- and post-stretch, and F 0
nc and F p

nc are the
non-cross-bridge forces pre- and post-stretch, respectively. While this initially introduces two new
parameters to the model, we can use the following calculation to reduce it to just one new parameter.

The model predicts that for long time after stretch, the force from cross-bridges will be equal
to the pre-stretch cross-bridge isometric force. In the force transient data, however, the post-
stretch steady-state value is slightly higher than the pre-stretch value. We must account for this
residual force enhancement [25], which would not be reproduced by these models [26] and would
therefore lead to inaccurate parameter estimation. We account for this, and reduce the number
of parameters-of-fit, with the following calculation, where F ∗ denotes the post-stretch steady-state
value normalized to the pre-stretch steady-state in the data:

lim
t→∞

Fp

F0
=
F 0
xb + F p

nc

F 0
xb + F 0

nc

= F ∗ (22)

The force transient measurements determine the F ∗ value, and thus we can solve for F p
nc in terms

of F 0
nc. Thus, to account for this non-cross-bridge force, we fit the force transient measurements to,

Fp

F0
=
F p
xb + F ∗(F 0

nc + F 0
xb)− F 0

xb

F 0
xb + F 0

nc

(23)

where the cross-bridges forces are determined from the five-state model and F 0
nc is an additional

parameter of fit that determines the amount of unexplained force due to non-cross-bridge effects.

6.3 Fitting Model with Unexplained Force

To fit the model to the force transient measurements for the case of unexplained force, we allow the
unknown model parameters to vary (which now includes the parameter for additional unexplained
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force, F 0
nc). Note that in this case, we fix the stretch amplitude to be at the true experimental

value. We use RK4 to solve the system for force as a function of time, define error as the sum
of the squared difference between model and data divided by the number of data points, and use
Matlab’s fminsearch to optimize the parameters.

The optimization results in a set of best-fit parameters, including a best-fit value for F 0
nc. To

determine the range of F 0
nc values that can result in good fits to the data, we bound the error by√

2 · Eb, where Eb is the best-fit error (see section 5.1). We find that only a small range of values
for F 0

nc result in acceptable errors (Fig. S11a).

Additionally, to consider the plausibility of these results, we compared the unexplained force values,
F 0
nc, to the isometric force from cross-bridges, F 0

xb (Fig. S11b). Note that the isometric cross-bridge
force changes for different amounts of unexplained force. Thus, normalizing F 0

nc by F 0
xb results

in multiple error values for the same ratio of unexplained force to cross-bridge force (Fig. S11b).
However, there is a clear minimum and a single error value for each choice of unexplained force
(Fig. S11a). This best-fit unexplained force is 28.07 times that of isometric force from cross-
bridges, and that parameters that result in acceptable error predict an unexplained force that is 27
- 28.3 times that of isometric. We conclude that it is unreasonable to expect that force transient
measurements include an unexplained force of this magnitude.
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Figure S11: Sum of the squared error as a function of: A) the unexplained force value, F 0
nc, and B) the

unexplained force value normalized to pre-stretch isometric cross-bridge force, F 0
nc/F

0
xb. For each point, the

F 0
nc value was fixed, and the five-state model was fit to the force transient measurement. Values of F 0

nc that
result in acceptable error lie in the shaded box, which denotes error that is within one standard deviation of
the best fit. The best-fit values suggest that the non-cross-bridge forces are around 28 times that of isometric
cross-bridge force.

6.4 Comparing Parameter Fits from Force Transient and Force-Velocity Mea-
surements

We also compared the force transient fits to the force-velocity fits under these conditions. For the
force transient measurements, we let the unknown parameters (including F 0

nc) vary, and determine
the best-fit combinations of ADP release rate and force-dependence. The force-velocity parameters
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are based on the four-state plus drag fits (see section 2.2 for justification). In both cases, error is
defined as the sum of the squared difference between model and data divided by the number of
data points, and Matlab’s fminsearch is implemented for optimization. Additionally, we perform
a sensitivity analysis (see section 5.1) to consider the variability in acceptable parameters due to
noise in the data (Fig. S12).
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Figure S12: Sum of the squared error in fitting force transient measurements as a function of ADP
release rate for a fixed force-dependence. For each panel, the five-state model (including F 0

nc as an unknown
parameter) is fit to the force transient measurement from a 0.5% muscle length stretch. The gray shaded
regions denote acceptable error, and represent error that is within one standard deviation from the error
produced by each best-fit. This sensitivity analysis leads to the error bars on the force transient measurements
in Fig. S13b.

6.5 Rejection of Unexplained Force as Explanation for Model and Measurement
Discrepancy

Comparing the five-state model with an unexplained force to our force transient measurements,
we find that the optimization converges to a good fit to the entire force transient measurement,
reproducing all parts of the force response (i.e., phases I-IV, Fig. S13a). However, we reject this
explanation for two reasons. The first is that the best-fit predicts an implausibly large unexplained
force of about 28 times that of the isometric force from cross-bridges (Fig. S11b).

The second reason we reject unexplained force as the source of the discrepancy between simulation
and measurement is that the force-dependence required for the force transient fits is inconsistent
with the force-dependence required for the force-velocity fits (Fig. S13b). In particular, the force
transients require a large force-dependence that results in a force-velocity relationship that is too
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Figure S13: The model reproduces the force transient measurements given the addition of a non-cross-
bridge force, but the results are inconsistent with force-velocity measurements. A) Including an unexplained
force in the force response that is 28.1 times that of isometric cross-bridge force allows the five-state model
to fit force transient measurements. B) Combinations of unloaded ADP release rate and the force-dependent
parameter that fit force-velocity (gray squares) and force transient (black circles) measurements when the
force transient includes a non-cross-bridge force. Error bars denote parameter values that give results within
one standard deviation of the best-fit error. C) Model fits to force-velocity measurements with k0D fixed from
the best-fit to the force transient measurement, and E from the best-fit to the force transient measurement
(sold line) and best-fit to the force-velocity measurements (dashed line).

curved (Fig. S13c). This result is similar to our fits with decreased stretch amplitude due to series
elasticity (main text Fig. 3B). In that case, the model required an increased force-dependence (i.e.
larger E) to counteract the decreased stretch amplitude and to produce phase III of the force
transient response (see main text, section 3.2). However, in the case of unexplained force, our fits
have the full stretch amplitude, so we expected to see a leftward shift (toward smaller values of
E) in the best-fit parameters for our force transient measurements, and therefore better agreement
with the best-fit parameters for our force-velocity measurements. Indeed, we observed such a shift
(compare main text Fig. 3B to Fig. S13b), but it is modest and insufficient to allow us to find a
single parameter set to fit both of our measurements.

These fits still require a large force-dependence because of the large magnitude of the unexplained
force. In the normalized force transient response, the amplitude of force increases (phase I and III)
is measured relative to the total isometric force. Thus, if isometric cross-bridge force makes up less
of the total isometric force, the amplitude of phases I and III relative to the isometric cross-bridge
force increases. For example, we measured a peak force (phase I) of ∼ 1.4 times isometric, which
is ∼ 40% above isometric force (main text Fig. 2A). If all force arises from cross-bridges, then
this peak force results in a ∼ 40% increase in cross-bridge force. However, suppose that isometric
force is half due to cross-bridges and half due to an unexplained force. In this case, the increase
in force due to cross-bridges will still be ∼ 40% of the total isometric force but, since cross-bridges
only account for half of the isometric force, this would correspond to an ∼ 80% increase in cross-
bridge force, and a peak force of ∼ 1.8. A similar amplification occurs with phase III. This latter
effect is particularly important, because for the model to fit a larger phase III, it requires a larger
decrease in ADP release rate, and an increase in force-dependence (i.e. a larger E). Thus, while
the full stretch amplitude in these fits results in a smaller force-dependence compared to our fits
with decreased stretch amplitude (compare main text Fig. 3B to Fig. S13b), this effect is mostly
opposed by the large amount of unexplained force which requires larger force-dependence to fit the
increased amplitude of phase III relative to isometric cross-bridge force (Fig. S13b).

23



Thus, we reject the explanation that including an unexplained force due to non-cross-bridge effects
is the sole reason for the discrepancy we see between model and measurement.

7 Alternative Model Assumptions

Given the inconsistency between our measurements and our four- and five-state models, we conclude
that at least one of the model assumptions is wrong. Thus, we considered the model assumptions to
see if adjusting any would provide a solution to the discrepancy between model and data. We discuss
these assumptions below, including the effects of non-linear elasticity of myosin, force-dependence
of weak-binding kinetics and thin-filament activation. Notably, we found that none of these effects
is likely to explain the discrepancy.

7.1 Non-linear Elasticity

One of the key model assumptions is that myosin acts as a linear spring with constant stiffness, κ,
leading to a linear force-displacement relationship, F (x) = κx. While there is some experimental
evidence to support this assumption [27], there is also evidence to suggest that myosin’s stiffness
may be significantly lower when the molecule is compressed [28], leading to a non-linear force-
displacement curve for myosin.

We expected that such non-linear elasticity might improve the agreement between the model and
our measurements. In particular, the decreased stiffness during compression would decrease resistive
drag during shortening [29], leading to higher shortening velocities. Thus, at a given value of E,
this model would need a smaller ADP release rate to counteract the increase in velocity. This would
result in a downward shift in the best-fit parameters of the force-velocity fits (Figs. 3B and 4B in
main text). Because cross-bridge stiffness during lengthening does not change, we expected drag
during lengthening to remain largely unaffected, and therefore the best-fit parameters of the force
transient fits to remain the same. To test this idea, we implemented non-linear myosin elasticity in
our model.

To include non-linear elasticity in the model, we defined myosin’s force-displacement curve to be
piecewise linear, with a much smaller slope (i.e. lower myosin stiffness) for negative displacements
compared to positive displacements (Fig. S14b inset). Thus, with myosin’s stiffness given by κ(x),
we get a force-displacement relationship of F (x) = κ(x) · x. Additionally, in the model, myosin’s
probability of binding to actin with a given initial displacement depends on the negative exponential
of the potential energy required to achieve that displacement (see Walcott et al. 2012 [1] for a
discussion of this assumption). Therefore, since the force-extension function and the potential
energy-extension function are related (the former is the negative derivative of the latter), when we
modify the force-extension function to be non-linear, we must also modify the attachment rate as
a function of extension.

We implement this as follows. Let V (x) denote the potential energy. Since force is the negative
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derivative of the potential energy, we have

F (x) = −dV
dx

⇒ V (x) = −
∫
F (x)dx

We assume that the attachment rate is the negative exponential of the potential energy. Therefore,
we get the following expression for attachment rate:

κ+w(x) = k+w0
C exp

(
− V (x)

)

= k+w0
C exp

(∫
F (x)dx

)
(24)

= k+w0
C exp

(∫
κ(x) x dx

)

where C is chosen so that
∫∞
−∞ κ

+
w(x)dx = k+w0

.

With addition of this non-linearity, the system cannot be solved analytically. Instead, we solve the
system numerically, taking care to appropriately define the non-linearity as described above. To
solve for the force-velocity relationship, we implement an ODE solver in Matlab (ode15s) and solve
the system under steady-state conditions. To solve for the force transient response with stretch,
we implement fourth-order Runge-Kutta to solve the system for all x, at each point in time.

Surprisingly, we found that non-linear elasticity did not improve the agreement between our model
and the measurements. This lack of agreement arises from the interaction of two competing effects,
1) the expected decrease in drag, and 2) an unexpected decrease in effective power-stroke size. This
latter effect arises because, when myosin’s stiffness in compression is decreased, the amplitude of
the thermal excursions due to Brownian motion increase. Because myosin’s stiffness is asymmetric,
these thermal excursions are asymmetric, making it more likely for myosin to bind with non-zero
compression. Then, when the myosin molecule undergoes its power-stroke, this initial compression
decreases the effective power-stroke size.

The competition between these two effects is apparent in our simulated force-velocity curves. When
the decrease in stiffness for compressed myosin is small, the decrease in drag is the dominant effect.
We see this as both an increase in force for a given velocity value and an increase in unloaded
shortening velocity, vmax, as we expected (Fig. S14a and inset, respectively). However, when
myosin’s stiffness is decreased more significantly in compression, the reduction in effective power-
stroke size becomes the dominant effect. We see this as a decrease in force and unloaded shortening
velocity, vmax, compared to the previous case (Fig. S14a and inset, respectively). Thus, while
non-linear myosin stiffness increases shortening rate for a given E, this effect is limited.

Additionally, although we had anticipated a minimal effect of non-linear myosin stiffness on the
force transient after stretch, we observed a large effect. Non-linear myosin elasticity shifts the
best-fit parameters toward a larger force-dependence at a given ADP release rate, resulting in a
rightward shift in the best-fit parameters (Fig. S14b) and thus worse agreement with the best-fit
force-velocity parameters. This result is due to the decrease in effective power-stroke size, which has
a similar effect as decreased stretch amplitude due to series elasticity discussed earlier (section 3.2 in
main text). In particular, in the model the delayed increase in force in the force transient response
(phase III), arises from strongly-bound cross-bridges detaching more slowly post-stretch, due to
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Figure S14: Non-linear elasticity of myosin does not explain the discrepancy between model and data. A)
Force-velocity relationship for linear (dashed line) and non-linear (solid lines) cross-bridge elasticity. Inset:
unloaded shortening velocity vmax, as a function of non-linear stiffness, illustrating that vmax increases and
then decreases as the non-linear stiffness of myosin becomes more significant. B) Combinations of unloaded
ADP release rate and the force-dependent parameter for linear (solid circles) and non-linear (open colored
circles) cross-bridge elasticity. Inset: Force as a function of displacement for linear (dashed line) and non-
linear (solid lines) cross-bridge elasticity with varying degrees of non-linearity.

the force-dependence of ADP release. The effective reduction in power-stroke size decreases the
force each myosin molecule exerts and, therefore, to maintain the phase III response for non-linear
elastic cross-bridges, the force dependence of ADP release must increase. We therefore conclude
that non-linear myosin elasticity is unlikely to explain the difference we observe between our model
and measurements.

7.2 Force-Dependent Detachment of Weakly-Bound Cross-bridges

In our original four- and five-state models, we assume that the only force-dependent rate constant is
the ADP release rate. We make this assumption because the force-dependence in this transition has
been directly observed and characterized (e.g. [2, 3]). However, measurements with an ultra-fast
optical trap suggest additional force-dependence in the transition from a weakly-bound state to an
unbound state (i.e. state 1 to state 5 in Fig. S1) [30]. To understand whether this force-dependence
could explain the discrepancy between model and measurement, we explored its effect on the model.

We can gain an intuition for the effect of force-dependent detachment of weakly-bound cross-
bridges by looking at a simplification of the five-state model. If weak binding is fast compared to
the other state transitions, then the original five-state model (without force-dependent detachment
of weakly bound cross-bridges) reduces to the four-state model with an additional viscous drag from
the weakly-bound cross-bridges (Fig. S15a, see section 2). If weakly-bound cross-bridges detach
more rapidly with increasing force [30], then the weakly-bound cross-bridges display shear-thinning
behavior [13]. That is, the viscous drag constant decreases as shortening rate increases, leading to
less drag force at higher shortening velocities (Fig. S15b).

26



1

0

-0.2

0.2

0.4

0.6

0.8

Fo
rc

e/
F 0

6 12
Velocity (μm/sec)

1

0

-0.2

0.2

0.4

0.6

0.8

Fo
rc

e/
F 0

6 12
Velocity (μm/sec)

Force-Velocity Measurements
Model with linear drag
   = 0.92, kD

0 = 895
Linear Drag

E

Force-Velocity Measurements
Model with nonlinear drag
   = 0.92, kD

0 = 895

Nonlinear Drag

Model with nonlinear drag
   = 0.59, kD

0 = 580E

E

A B

Figure S15: Force-dependent detachment of weakly-bound cross-bridges does not explain the discrepancy
between model and data. A) Force-velocity measurements fit with the four-state model plus viscous drag.
The force from weakly-bound cross-bridges is linear with velocity (dashed line). B) Force-velocity mea-
surements fit with four-state model with force-dependent detachment from the weakly-bound state. The
force from weakly-bound cross-bridges is decreased at higher shortening velocities (dash-dotted gray line),
providing a poor fit to the measurements (red line). The model can fit the measurements with this non-linear
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Rather than decreasing the disparity between the model parameters that generate good fits to
our force-velocity and force transient measurements, such shear-thinning behavior has the opposite
effect. Specifically, shear-thinning drag increases the slope of the best-fit parameters for the force-
velocity data, shifting them further from the best-fit parameters for the force transient data (Figs.
3B and 4B in main text). This is because, as discussed in our model fits to Hill’s measurements
(Section 2.1), weakly-bound cross-bridges decrease the curvature of the force-velocity relationship.
Thus, as we increase the amount of weak binding, we can generate good fits to force-velocity data
with an increasing amount of force dependence (Fig. 2C in main text). Shear-thinning drag, how-
ever, is less effective in decreasing the curvature of the force-velocity curve, since the decrease in
force at higher shortening velocities introduces additional curvature (Fig. S15b). Thus, fitting our
force-velocity measurements with a model that includes force-dependent detachment requires less
force dependence and a smaller unloaded ADP release rate, which ultimately shifts the best-fit
parameters up and left, further away from the best-fit parameters for our force-transient measure-
ments (Figs. 3B and 4B in main text). We therefore conclude that force-dependent detachment of
weakly-bound cross-bridges is unlikely to explain the difference we observe between our model and
measurements.

7.3 Thin-Filament Activation

Our cross-bridge models assume that one myosin’s rate of strong binding (the transition from
state 1 to state 2 in Fig. S1) does not depend on whether neighboring myosin are bound. This
assumption would be violated if thin-filament activation contributes to the force transient response
(e.g. [31]). This mechanism is thought to occur in cardiac muscle [32, 33]. Once a myosin molecule
binds strongly to actin, it locally deforms the tropomyosin filament and facilitates the binding of
nearby myosin (e.g. [34, 35, 36]). The longer myosin is strongly bound to actin, the greater this
effect, so that under conditions of low ATP (which extends myosin’s strong binding lifetime), thin
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filaments can be activated at low calcium [37, 38]. If, as predicted by the model, phase III of the
force transient response arises from strongly bound myosin whose attachment lifetime is prolonged
due to the stretch imposed on the muscle fiber, this activation effect would amplify the response
and increase phase III. In other words, if thin-filament activation contributed to phase III, then
the model may be able to fit the data with a smaller force-dependence, which would then be more
consistent with the force-dependence needed to fit our force-velocity measurements. It is therefore
possible that the lack of this effect in the models is responsible for their inability to simultaneously
fit our force-velocity and force transient measurements.

To test this idea, we implemented our five-state cross-bridge model with a previously developed
model that includes thin-filament activation through local coupling of myosin molecules [34]. This
model includes one key parameter, ε, that describes the rate at which a single myosin molecule
binds divided by the rate at which it binds in the absence of regulation. By tuning this parameter,
we can effectively change the amount of local coupling between neighboring myosin molecules.
Intuitively, we expected that increasing the amount of thin-filament activation (i.e. decreasing ε)
should increase the magnitude of phase III.

Unlike the differential equation simulations presented thus far, we now use a Monte Carlo simulation
to implement both the activation model and our five-state cross-bridge model. In particular, we
use a modified Gillespie algorithm to iterate the system throughout time, keeping track of the force
produced by the myosin molecules as a function of time. We use the parameters from our five-state
model best-fit to the force transient assuming the presence of an unexplained force (as in Fig. 4A of
the main text), and adjust the force result to account for the non-cross-bridge force. We find that,
even with an unreasonable amount of myosin coupling (ε = 0.1), the model gives nearly the same
result with and without thin-filament activation (Fig. S16). Thus, we conclude that thin-filament
activation does not play a large enough role in the force transient response to solve the disparity
between fitting our two measurements.
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Figure S16: Thin-filament activation does not have a significant effect on force transient results. Simulating
the five-state cross-bridge model including thin-filament activation using a modified Gillespie algorithm (red
line) gives nearly the same results as the five-state cross-bridge model without activation (blue line).
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8 Model with Force-Dependent Detachment of Weakly-Bound Cross-
Bridges and Series Elastic Element

To compare this model to our force transient measurements, we must numerically solve the full
PDE system (Eq. 1), modified to include force-dependent unbinding from the weakly bound state,
of the form

k−w = k−w0e
Ewb|x|/d

where Ewb is a non-dimensional constant that determines the force-dependence of this state. The
non-dimensional parameter Ewb is comparable to the non-dimensional parameter E, which deter-
mines the force-dependence of ADP release. However, the sign of the x dependence for this rate
constant is different from the equivalent expression for kD, since a resisting force slows, and an as-
sisting load accelerates ADP release, while a resisting or assisting load accelerates the detachment
of weakly bound cross-bridges.

The velocity, v(t), in Eq. 1 represents the velocity of actin relative to myosin. We model the series
elastic element as being in series with actin. Therefore, we keep track of actin’s position, xactin by
solving the following equation

xactin(t) = xactin(0) +

∫ t

0
v(τ)dτ

Then, the series elastic element applies a force FSE = κSE(S + L0 − xactin), where S is the
stretch applied to the system, and L0 is the initial length of the series elastic element (such that
κSEL0 = Fiso). Since the spring is in series with the cross-bridges, we require that FSE = F , where
F is the force from the cross-bridges as defined by Eq. 2.

We numerically solve these equations as described in section 1.4.1 (i.e., we use the method of
characteristics, and our own RK4 solver), but we must do an additional root find to find the
v(t) at each time step that satisfies the equation FSE = F . We start from the initial condition
described in that section, though the calculation of isometric steady state is adjusted to reflect the
force-dependence of k−w .

To make the simulations more robust, we cutoff the value of k−w at 100, 000 s−1. That is, at x values
where k−w (x) > 100, 000, we set k−w (x) = 100, 000. Without this, the equations become stiff and the
numerical solution unreliable. With this cutoff, the simulations were faster and more reliable. We
ensured that this cutoff did not affect our simulations by doubling the cutoff (to 200, 000 s−1), and
ensuring that our results did not change.

We used a wide grid in x, from −20 to 20 nm, with 20,000 evenly spaced points. We simulated the
model for 0.01 s, with 800 evenly spaced points. Increasing the number of points or the width of
the grid did not affect our results. Increasing the time of the simulations has only a minor affect
on our results and increases computational expense.

To compare this model to our force-velocity measurements, we follow the procedure described in
section 1.3.1, modified to account for the force-dependence of k−w . The spring in series with actin
does not affect these steady-state measurements.
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8.1 The fits to the data

The unknown parameters in the model are the unloaded ADP release rate (k0D), the unloaded
weak-binding detachment rate (k−w0), the weak-binding attachment rate (k+w ) the stiffness of the
series elastic element (κser), the force-dependence of the detachment rate from the weakly-bound
state (Ewb), and the force dependence of the detachment rate from the strongly-bound state (E).
We performed fits to the data by minimizing the mean squared error to our force transient (Et) and
force-velocity (Ef ) measurements. The objective function that we minimized was Et + 10Ef . We
weighted the error from the force-velocity measurements by a factor of 10, because in preliminary
simulations where we only fit the force transient or the force-velocity measurements, the mean
squared error of the best-fit to the force-velocity measurements was about 10 fold less than the
mean squared error of the best-fit to the force transient measurements.

We fixed the parameters Ewb and E, which determine the force-dependence of unbinding from
the weakly- and strongly-bound states, respectively. We then used Matlab’s fminsearch function
to determine the values of the other four parameters (k0D, k

−
w0, k

+
w , κser) that optimized the fit to

the data. We fixed Ewb and E at a several difference values (see Fig. 5D of the main text). We
did not include A and E in the optimization because the reaction rates depend exponentially on
these values. Therefore, if these values are not constrained, the equations can become stiff and the
numerical solutions unreliable.

The optimization converged at each E,Ewb pair we considered. We ensured that it converged by
starting each optimization from a random seed, and ensuring that each optimum discovered by the
optimization was reached from at least two of these random seeds. The best-fit parameters, for
Ewb = 20 and E = 0.5, were k0D = 1375s−1, k−w0 = 505.9s−1, k+w − 143.3s−1 and κSE = 0.000732.

References

[1] S. Walcott, D. M. Warshaw, E. P. Debold, Mechanical coupling between myosin molecules
causes differences between ensemble and single-molecule measurements, Biophysical journal
103 (3) (2012) 501–510.

[2] C. Veigel, J. E. Molloy, S. Schmitz, J. Kendrick-Jones, Load-dependent kinetics of force pro-
duction by smooth muscle myosin measured with optical tweezers, Nature cell biology 5 (11)
(2003) 980.

[3] N. M. Kad, J. B. Patlak, P. M. Fagnant, K. M. Trybus, D. M. Warshaw, Mutation of a
conserved glycine in the sh1-sh2 helix affects the load-dependent kinetics of myosin, Biophysical
journal 92 (5) (2007) 1623–1631.

[4] G. I. Bell, Models for the specific adhesion of cells to cells, Science 200 (4342) (1978) 618–627.

[5] G. I. Zahalak, A distribution-moment approximation for kinetic theories of muscular contrac-
tion, Mathematical biosciences 55 (1-2) (1981) 89–114.

[6] C. S. Newhard, S. Walcott, D. M. Swank, The load dependence of muscle’s force-velocity curve
is modulated by alternative myosin converter domains, American Journal of Physiology-Cell
Physiology 316 (6) (2019) C844–C861.

30



[7] E. Eisenberg, T. L. Hill, Muscle contraction and free energy transduction in biological systems,
Science 227 (4690) (1985) 999–1006.

[8] B. Brenner, Mechanical and structural approaches to correlation of cross-bridge action in
muscle with actomyosin atpase in solution, Annual review of physiology 49 (1) (1987) 655–
672.

[9] R. Cooke, K. C. Holmes, The mechanism of muscle contractio, Critical Reviews in Biochemistry
21 (1) (1986) 53–118.

[10] L. A. Stein, R. P. Schwarz Jr, P. B. Chock, E. Eisenberg, Mechanism of the actomyosin adeno-
sine triphosphatase. evidence that adenosine 5’-triphosphate hydrolysis can occur without
dissociation of the actomyosin complex, Biochemistry 18 (18) (1979) 3895–3909.

[11] B. Brenner, M. Schoenberg, J. Chalovich, L. Greene, E. Eisenberg, Evidence for cross-bridge
attachment in relaxed muscle at low ionic strength, Proceedings of the National Academy of
Sciences 79 (23) (1982) 7288–7291.

[12] B. Brenner, L. C. Yu, R. J. Podolsky, X-ray diffraction evidence for cross-bridge formation in
relaxed muscle fibers at various ionic strengths, Biophysical journal 46 (3) (1984) 299–306.

[13] M. Srinivasan, S. Walcott, Binding site models of friction due to the formation and rupture of
bonds: state-function formalism, force-velocity relations, response to slip velocity transients,
and slip stability, Physical Review E 80 (4) (2009) 046124.

[14] A. V. Hill, The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. Lond.
B 126 (843) (1938) 136–195.

[15] W. O. Fenn, A quantitative comparison between the energy liberated and the work performed
by the isolated sartorius muscle of the frog, The Journal of physiology 58 (2-3) (1923) 175–203.

[16] S. Galler, T. L. Schmitt, D. Pette, Stretch activation, unloaded shortening velocity, and myosin
heavy chain isoforms of rat skeletal muscle fibres., The Journal of physiology 478 (3) (1994)
513–521.

[17] S. Galler, K. Hilber, D. Pette, Stretch activation and myosin heavy chain isoforms of rat,
rabbit and human skeletal muscle fibres, Journal of Muscle Research & Cell Motility 18 (4)
(1997) 441–448.

[18] C. R. Straight, K. M. Bell, J. N. Slosberg, M. S. Miller, D. M. Swank, A myosin-based mech-
anism for stretch activation and its possible role revealed by varying phosphate concentration
in fast and slow mouse skeletal muscle fibers, American Journal of Physiology-Cell Physiology
317 (6) (2019) C1143–C1152.

[19] J. Ochala, D. J. Dorer, W. R. Frontera, L. S. Krivickas, Single skeletal muscle fiber behavior
after a quick stretch in young and older men: a possible explanation of the relative preservation
of eccentric force in old age, Pflügers Archiv 452 (4) (2006) 464–470.
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