Supplementary text 1. Participant enrolment and retention, sample size calculation, and power calculations for annual decline in forced expiratory volume in 1 second and 15th percentile density assessed by CT

To achieve adequate participant enrolment, a recruitment plan was set up prior to the start of recruitment; this detailed the number of subjects expected at each site across the different study populations, and was based on feedback during site feasibility assessments. This plan was monitored constantly during the recruitment phase to track planned versus actual enrolment numbers. Local approaches to facilitate recruitment, such as advertising, were also used. To promote participant retention, a comprehensive strategy was set up during the course of the study. This included maintaining frequent contact with study participants (especially from Visits 5 to 7, where visits are 1 year apart), for example via phonecalls and greetings cards, as well as awareness training for site staff.

As this study is exploratory in nature, sample size calculations are focused on achieving the desired precision for biomarker estimates and relevant clinical assessments in all COPD patient groups except for the A1ATD group. This study planned to enrol 125 patients with mild COPD, 125 with moderate COPD and 125 with severe COPD – by assuming a \leq 20% dropout rate after 3 years, at least 100 subjects per group are expected to contribute to the analysis by the end of the study period.

For annual decline in forced expiratory volume in 1 second (FEV₁), available information reports standard deviations (SDs) ranging from about 20 mL/year [1] to 60 mL/year.[2] Using this information and considering a planned 100 subjects in each group, supplementary table 1 reports the coverage probability for the half-width of a 95% confidence interval (CI) for annual FEV₁ decline for a given SD. For

example, if the observed SD is 50 mL/year, and the true half-width of the CI is 11 mL/year, with 100 subjects, the probability that the observed CI covers the true CI is 93.8%. The reported SD on annual decline in 15th percentile density (PD15) ranges from 3.4 g/L [3] to 5.5 g/L.[4] Using the same assumptions as for FEV₁ decline, we report the coverage probability of a true CI for a given SD and half-width of the CI for 100 subjects (supplementary table 2).

In addition, with 100 subjects in each group, and allowing for up to 15 covariates, a partial Pearson correlation coefficient of 0.30 can be declared significant with 80% power between any two continuous variables (e.g. FEV₁ and a new biomarker) within the group.

Supplementary table 1. Study sites

Study site and address					
United States, Alabama					
University of Alabama at Birmingham					
Birmingham, Alabama, United States, 35294					
United States, California					
University of California San Diego					
San Diego, California, United States, 92103-8415					
The Lundquist Institute for Biomedical Innovation at					
Harbor-UCLA Medical Center					
Torrance, California, United States, 90502					
United States, Colorado					
National Jewish Health					
Denver, Colorado, United States, 80206					
United States, Iowa					
University of Iowa Hospitals and Clinics					
Iowa City, Iowa, United States, 52242					
United States, Maryland					
Johns Hopkins University					
Baltimore, Maryland, United States, 21224					
United States, Massachusetts					
Brigham and Women's Hospital					
Boston, Massachusetts, United States, 02115					

Study site and address	
United States, Pennsylvania	
Temple University Hospital	
Philadelphia, Pennsylvania, United States, 19140	
United States, Texas	
Baylor College of Medicine	
Houston, Texas, United States, 77030	
Diagnostics Research Group	
San Antonio, Texas, United States, 78229	
United States, Utah	
University of Utah Health Sciences Center	
Salt Lake City, Utah, United States, 84108	
Belgium	
Brussels – UNIV St-Pierre	
Brussels, Belgium, 1000	
UZ Leuven	
Leuven, Belgium, 3000	
Canada, Alberta	
University of Alberta Hospital (University of Alberta)	
Edmonton, Alberta, Canada, T6G 1Z1	
Canada, Ontario	
Saint Joseph's Healthcare	
Hamilton, Ontario, Canada, L8N 4A6	
McMaster University Medical Centre	
Hamilton, Ontario, Canada, L8N 4K1	

Stı	idy site and address
Ca	nada, Quebec
	McGill University Health Centre (MUHC)
	Montreal, Quebec, Canada, H4A 3J1
Ca	nada, Saskatchewan
	Royal University Hospital
	Saskatoon, Saskatchewan, Canada, S7N 0W8
Ca	nada
	IUCPQ (Laval University)
	Quebec, Canada, G1V 4G5
De	nmark
	Aarhus University Hospital, Skejby
	Aarhus N, Denmark, 8200
	Gentofte Hospital
	Hellerup, Denmark, 2900
	Hvidovre Hospital
	Hvidovre, Denmark, 2650
Fin	land
	HYKS Keuhkosairauksien tutkimusyksikkö
	Helsinki, Finland, 00029
	TYKS, Keuhkosairauksien klinikka, Turku
	Turku, Finland, 20520
Ge	rmany
	IKF Pneumologie GmbH & Co. KG
	Frankfurt, Germany, 60596

Study site and address

Pneumologisches Forschungsinstitut an der LungenClinic

Grosshansdorf GmbH

Grosshansdorf, Germany, 22927

Fraunhofer ITEM

Hannover, Germany, 30625

KLB Gesundheitsforschung Lübeck GmbH

Lübeck, Germany, 23552

Japan

Kagoshima University Medical And Dental Hospital

Kagoshima, Kagoshima, Japan, 890-8520

Showa University Fujigaoka Hospital

Kanagawa, Yokohama, Japan, 227-8501

Kishiwada City Hospital

Osaka, Kishiwada, Japan, 596-8501

Osaka City University Hospital

Osaka, Osaka, Japan, 545-8586

Showa University Hospital

Tokyo, Shinagawa-ku, Japan, 142-8666

Republic of Korea

Konkuk University Medical Center

Seoul, Republic of Korea, 05030

SMG-SNU Boramae Medical Center

Seoul, Republic of Korea, 07061

Korea University Guro Hospital

Seoul, Republic of Korea, 08308

Study site and address

The Catholic University of Korea, Eunpyeong St. Mary's Hospital

Seoul, Republic of Korea, 22711

Poland

Respiratory Medicine Centre, private prac., Bialystok

Bialystok, Poland, 15044

University Clinical Center, Gdansk

Gdansk, Poland, 80 952

Institute of Tuberculosis & Lung Disease, Warsaw

Warsaw, Poland, 01138

Spain

Hospital del Mar

Barcelona, Spain, 08003

Hospital Vall d'Hebron

Barcelona, Spain, 08035

Hospital Clínic de Barcelona

Barcelona, Spain, 08036

Hospital de Bellvitge

L'Hospitalet de Llobregat, Spain, 08907

Hospital Son Espases

Palma de Mallorca, Spain, 07010

Hospital Quirónsalud Madrid

Pozuelo de Alarcón, Spain, 28223

Sweden

Skånes universitetssjukhus, Lund

Lund, Sweden, 221 85

Study site and address			
United Kingdom			
Queen Elizabeth Hospital Birmingham, United Kingdom, B15 2GW			
Glenfield Hospital Leicester, United Kingdom, LE3 9QP			
Royal Free Hospital London, United Kingdom, NW3 2PF			
Medicines Evaluation Unit Manchester, United Kingdom, M23 9QZ			

Supplementary table 2. Coverage probability of 95% CIs for FEV₁ annual decline based on 100 subjects

					Half-width	of a 95% CI				
SD	6	7	8	9	10	11	12	13	14	15
25	0.998	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999
30	0.557	0.993	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999
35	0.026	0.557	0.983	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999
40	<0.001	0.048	0.557	0.97	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999
45	<0.001	<0.001	0.072	0.557	0.954	>0.999	>0.999	>0.999	>0.999	>0.999
50	<0.001	<0.001	0.003	0.097	0.557	0.938	0.998	>0.999	>0.999	>0.999
55	<0.001	<0.001	<0.001	0.006	0.122	0.557	0.921	0.996	>0.999	>0.999
60	<0.001	<0.001	<0.001	<0.001	0.011	0.146	0.557	0.905	0.993	>0.999
65	<0.001	<0.001	<0.001	<0.001	<0.001	0.018	0.168	0.557	0.889	0.988
70	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.026	0.189	0.557	0.873

CI, confidence interval; FEV₁, forced expiratory volume in 1 second; SD, standard deviation.

Supplementary table 3. Coverage probability of 95% CIs for PD15 annual decline based on 100 subjects

					Half	-width of a §	95% CI				
SD	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.05
2.5	0.938	0.998	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999
3.0	0.146	0.557	0.905	0.993	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999	>0.999
3.5	0.001	0.026	0.189	0.557	0.873	0.983	0.999	>0.999	>0.999	>0.999	>0.999
4.0	<0.001	<0.001	0.005	0.048	0.226	0.557	0.846	0.970	0.997	>0.999	>0.999
4.5	<0.001	<0.001	<0.001	<0.001	0.011	0.072	0.257	0.557	0.822	0.954	0.993
5.0	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	0.021	0.097	0.284	0.557	0.801
5.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.006	0.033	0.122	0.306
6.0	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.011	0.048

CI, confidence interval; PD15, lung density at the 15th percentile point of the CT histogram; SD, standard deviation.

Supplementary table 4. Overview of permitted and restricted

medications/therapy

Drug class	Prior to	Between	Observational
	Visit 1	Visits 1 and 2	period
Corticosteroid – nasal/ocular	Permitted	Permitted	Permitted
Corticosteroid – oral, inhaled*	Permitted [†]	Permitted	Permitted
		(stable dose) [‡]	
Corticosteroid – i.v., i.m.	Permitted [†]	Not permitted [‡]	Permitted
SABA – inhaled [§]	Permitted [†]	Permitted	Permitted
		(stable dose) [‡]	
LABA – inhaled§	Permitted [†]	Permitted	Permitted
		(stable dose) [‡]	
SAMA – inhaled	Permitted [†]	Permitted	Permitted
		(stable dose) [‡]	
LAMA – inhaled§	Permitted [†]	Permitted	Permitted
		(stable dose) [‡]	
Leukotriene modifier	Permitted [†]	Permitted	Permitted
		(stable dose) [‡]	
Cromolyn sodium / nedocromil	Permitted [†]	Permitted	Permitted
sodium		(stable dose) [‡]	
Methylxanthines	Not	Not permitted	Permitted
	permitted [∥]		
PDE-4 inhibitors	Not	Not permitted	Permitted
	permitted [∥]		

Immunomodulators (e.g.	Not	Not permitted	Permitted
methotrexate)	permitted		
Immunotherapy (e.g.	Permitted [†]	Permitted	Permitted
subcutaneous or sublingual)			
Biologic antagonists (e.g.	Not	Not permitted	Not permitted
omalizumab)	permitted [∥]		
A1AT augmentation therapy	Not	Not permitted	Permitted
	permitted		
Other investigational drugs	Not	Not permitted	Not permitted
	permitted		

^{*}For patients taking stable maintenance OCS with a total daily dose of ≤20 mg prednisone or equivalent.

[†]Allowed as stable dose for at least 4 weeks before Visit 1.

[‡]If unstable (e.g. in case of exacerbations), extend screening period.

§Includes fixed dose combination therapy.

^{II}Allowed before Visit 1 with a washout period of 3 months or 6 half-lives whichever is greater.

A1AT, alpha1-antitrypsin; LABA, long-acting β 2-adrenergic agonist; LAMA, long-acting anticholinergic; OCS, oral corticosteroids; PDE-4, phosphodiesterase-4; SABA, short-acting β 2-adrenergic agonist; SAMA, short-acting anticholinergic.

Supplementary table 5. Steering committee members

Scientific expert	Affiliation	Role
Prof. James Crapo	National Jewish Health, Denver	Chair/Advisor/Discussant
	(CO), USA	
Prof. David Lynch	National Jewish Health, Denver	Advisor/Discussant
	(CO), USA	
Dr. Henrik Watz	Pulmonary Research Institute,	Advisor/Discussant
	Lungen Clinic Grosshansdorf	
	GmbH, Grosshansdorf, Germany	
Prof. Pascal Chanez	CHU Marseille – Hôpital Nord,	Advisor/Discussant
	Marseille, France	
Prof. Gaetan Deslee	CHU Reims – Hôpital Maison	Advisor/Discussant
	Blanche, Reims, France	
Dr. Alice Turner	Centre for Translational	Advisor/Discussant
	Inflammation Research,	
	Birmingham, UK	
Dr. Richard Casaburi	Los Angeles Biomedical	Advisor/Discussant
	Research Institute, Torrance	
	(CA), USA	
Prof. Kazuhisa Asai	Osaka University Graduate	Advisor/Discussant
	School of Medicine, Osaka,	
	Japan	
Dr. Harald Koegler	Boehringer Ingelheim	Medical Project Lead
Dr. Markus Beck	Boehringer Ingelheim	Participant/Discussant
Dr. Claudia Diefenbach	Boehringer Ingelheim	Participant/Discussant
Dr. Frank Risse	Boehringer Ingelheim	Participant/Discussant
Dr Abhya Gupta	Boehringer Ingelheim	Participant/Discussant

Supplementary table 6. CT scan protocol in inspiration and expiration

Scan coverage	Lung apices to costophrenic recesses
Scanning mode	Helical
Scanning plane	Axial
Dose modulation	On
Detector	64 x 0.625 mm (GE VCT Discovery STE, VCT Discovery 750HD 64
configuration	slice)
	64 x 0.5 mm (Philips Brilliance 64 slice)
	(64)32 x 0.6 mm (Siemens Definition DS, Sensation 64 slice)
	(128)64 x 0.6 mm (Siemens Definition Edge, AS+ 128 slice, Flash 128
	slice, Somatom Force)
kVp	120 kVp
mA/mAs	GE (750HD, Discovery STE): Target noise index: 66.5, Maximum mA
	limit 100
	Philips (Brilliance 64): Reference mAs – 46 mAs (128 mA)
	Siemens (effective mA): Sensation 64, Definition (DS/AS 64 slice)/(AS+
	128 slice/Flash 128 slice), Edge, Force – Reference mAs 35 mAs
Pitch	GE (Discovery 750HD, Discovery STE) – 0.984
	Philips (Brilliance 64) – 0.923
	Siemens – 1.0
Rotation time	0.5 s
Reconstructions	1
Non-iterative	GE (750HD, Discovery STE): Standard, Bone
	Philips (Brilliance 64): B, D (YB)

	Siemens (Sensation 64, Definition DS/AS/AS+/Flash 64/128): B31f, B45f
	(B46f)
	Siemens (Somatom Force): Bf40d, Qr44d
	Siemens (Somatom Definition Edge): Bf37f, Bv45f
Iterative	GE (750HD, Discovery STE): Standard ASIR 40%, Bone ASIR 40%,
	Standard ASIR 100%
	Philips (Brilliance 64): B iDose L3, D (YB) iDose L3, B iDose L7
	Siemens (Sensation 64, Definition DS/AS/AS+/Flash 64/128): I31f
	SAFIRE 2, I44f SAFIRE 2, I31f SAFIRE 5
	Siemens (Somatom Force): Bf40d ADMIRE 2, Qr44d ADMIRE 2, Bf40d
	ADMIRE 5
	Siemens (Somatom Definition Edge): Bf37 f2, Br54 f2, Bf37 f5
Thickness	GE (Discovery 750HD, Discovery STE) – 0.625
	Philips (Brilliance 64) – 0.67
	Siemens – 0.75 mm
Interval	0.5 mm
DFOV	Lungs (no more than a 1 cm margin outside of the lungs on either side
	of the scan, where the lungs are the widest in the chest)
HD mode	GE (750HD, Discovery STE): OFF
	Philips (Brilliance 64): n/a
	Siemens (Sensation 64, Definition Edge/DS/AS/AS+/Flash 64/128,
	Somatom Force): n/a

DFOV, display field of view; HD, high definition.

References

- 1. Nishimura M, Makita H, Nagai K, *et al.* Annual change in pulmonary function and clinical phenotype in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2012;185(1):44-52. doi: 10.1164/rccm.201106-0992OC
- 2. Bhatt SP, Bodduluri S, Hoffman EA, *et al.* Computed tomography measure of lung at risk and lung function decline in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2017;196(5):569-76.
- Coxson HO, Dirksen A, Edwards LD, *et al.* The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. *Lancet Respir Med* 2013;1(2):129-36.
- Dirksen A, Piitulainen E, Parr D, *et al.* Exploring the role of CT densitometry: a randomised study of augmentation therapy in α1-antitrypsin deficiency. *Eur Respir J* 2009;33(6):1345-53.