Supporting Information

Promoting photocatalytic CO₂ reduction with a molecular copper purpurin chromophore

Yuan et al.

Supplementary Figure 1. HRMS spectra. HRMS spectra of $Na_2Cu(PP)_2$ (a) and $(TBA)_2(CuPP)_2$ (b) in CH₃OH (negative ion mode).

Supplementary Figure 2. HRMS spectra. HRMS spectra (magnification of Supplementary Figure 1b) of $(TBA)_2(CuPP)_2$ in CH₃OH (negative ion mode). The most intense signal is at m/z ($[PP^{2-} + H^+]^-$) = 255.03000 (calcd: 255.02990) (a); A peak at m/z = 571.98047 (calcd: 571.98102) corresponds to a fragment of $[(TBA)_2Cu(PP)_2 - 2TBA^+ + H^+]^-$ (b); A peak at m/z = 813.25719 (calcd: 813.25797) corresponds to of $[(TBA)_2Cu(PP)_2 - TBA^+]^-$ (c).

Supplementary Figure 3. ¹H NMR spectrum. ¹H NMR spectrum of CuPP in d_6 -DMSO.

Supplementary Figure 4.¹H NMR spectrum. ¹H NMR spectrum of CuPP in CD₃CN.

Supplementary Figure 5. ¹³C NMR spectrum. ¹³C NMR spectrum of CuPP in d_6 -DMSO.

Supplementary Figure 6. ¹**H NMR spectrum.** ¹**H NMR spectrum of 5, 10, 15, 20-** tetrakis(2',6'-dimethoxyphenyl)-21H,23H-porphyrin in CDCl₃.

Supplementary Figure 7. ¹**H NMR spectrum.** ¹**H NMR** spectrum of 5, 10, 15, 20-tetrakis(2',6'-dihydroxyphenyl)-21H,23H-porphyrin in CD₃OD.

Supplementary Figure 8. ¹H NMR spectrum. ¹H NMR spectrum of BIH in *d*₆-DMSO.

Supplementary Figure 9. HRMS spectra. HRMS spectra of 5, 10, 15, 20-tetrakis(2',6'-dimethoxyphenyl)-21H,23H-porphyrin (a); 5, 10, 15, 20-tetrakis(2',6'-dihydroxyphenyl)-21H,23H-porphyrin (b); and chloro iron (III) 5, 10, 15, 20-tetrakis(2',6'-dihydroxyphenyl)-21H,23H-porphyrin (FeTDHPP) (c) in CH₃OH (positive ion mode).

Supplementary Figure 10. UV-vis spectra. UV-vis spectra of CuPP at different concentrations (a); linear plots of absorbance at 278 nm (black) and 566 nm (red) (b).

Supplementary Figure 11. Excitation and absorbance spectra. Normalized excitation and absorbance spectra of PP (a) and CuPP (b) at 298 K in DMF.

Supplementary Figure 12. Absorbance and emission spectra. Normalized absorbance and emission spectra of PP (a, λ_{exc} : 484 nm) and CuPP (b, λ_{exc} : 540 nm) at 298 K in DMF.

Supplementary Figure 13. Emission spectra. Normalized emission spectra of PP (a, λ_{exc} : 484 nm) and CuPP (b, λ_{exc} : 540 nm) at 298 K and 77K in DMF.

Supplementary Figure 14. Emission spectra. Solid state emission spectra of PP (a) and CuPP (b) with excitation wavelength of 350 nm at 298 K.

Supplementary Figure 15. Electrochemical study. CV of BIH (5 mM) in DMF containing 0.1M TBAPF₆ at 0.1 V/s scan rate.

Supplementary Figure 16. Electrochemical study. CV of CuPP (1 mM) with multiple scans in DMF containing 0.1M TBAPF₆ at 0.1 V/s scan rate.

Supplementary Figure 17. Electrochemical study. SWV of 1 mM CuPP under N_2 (black solid) or CO₂ (red solid) in DMF containing 0.1 M TBAPF₆ at scan rate 0.1 V/s; dash lines show integrals for reduction waves. Inset: magnification of the SWV under N_2 .

Supplementary Figure 18. Electrochemical study. SWV of 2 mM PP under N_2 (a) or CO₂ (b) in DMF containing 0.1M TBAPF₆ at 0.1 V/s scan rate.

Supplementary Figure 19. Electrochemical study. Oxidative part of CVs of 1 mM PP (a) and 1 mM CuPP (b) in DMF containing 0.1M TBAPF₆ at 0.1 V/s scan rate.

Supplementary Figure 20. Electrocatalytic CO₂ reduction. Bulk electrolysis time course for the amount of CO and H₂. Condition: with or without CuPP (10 μ M) under CO₂-saturated DMF containing 0.1M TBAPF₆ at -1.89 V (vs SCE) using a carbon rod working electrode.

Supplementary Figure 21. Photocatalytic CO₂ reduction and UV-vis spectra changes with the *in situ* generated CuPP. (a) The amount of CO produced with the *in situ* generated CuPP (0.1 mM Cu²⁺ and 0.2 mM PP) (black) or with isolated CuPP (red) as the photosensitizers in CO₂-saturated DMF solution containing 1.0 μ M FeTDHPP and 10 mM BIH; (b) UV-vis spectra changes for a solution containing 0.1 mM Cu²⁺, 0.2 mM PP, and10 mM BIH in DMF. "Source data are provided as a Source Data file."

Supplementary Figure 22. Photocatalytic CO₂ reduction. CO (left) and H₂ (right) generation in CO₂-saturated DMF solutions containing 1.0 μ M FeTDHPP and 0.1 mM CuPP at different BIH concentrations. "Source data are provided as a Source Data file."

Supplementary Figure 23. Photocatalytic CO₂ reduction. CO generation in CO₂-saturated DMF solutions containing 2 μ M FeTDHPP and100 mM BIH at different CuPP concentrations. "Source data are provided as a Source Data file."

Supplementary Figure 24. Photocatalytic CO₂ reduction. TON (dot) and amounts (triangle) of CO of the photocatalytic CO₂ reduction experiments irradiated for 23h in CO₂-saturated DMF solution containing 0.1 mM CuPP and 100 mM BIH with varying amounts of FeTDHPP. "Source data are provided as a Source Data file."

Supplementary Figure 25. Photocatalytic CO₂ reduction. Photocatalytic CO₂ reduction in the presence (0.02 mL, ~270000 eq. vs. catalyst) and absence of Hg in CO₂-saturated DMF solution containing 0.1 mM CuPP, 1.0 μ M FeTDHPP, and 100 mM BIH. "Source data are provided as a Source Data file."

Supplementary Figure 26. Dynamic light scattering (DLS) measurement. Particle size distribution of a CO₂-saturated DMF solution containing 0.1 mM CuPP, 1.0 μ M FeTDHPP, and 100 mM BIH determined by dynamic light scattering (DLS) before and after irradiation.

Supplementary Figure 27. Photocatalytic CO₂ reduction. Photocatalytic CO₂ reduction in CO₂-saturated DMF solutions containing: 0.2 mM PP (black) or 0.1 mM CuPP (red), 2 μ M Co(qpy)Cl₂ (qpy = 2,2':6',2":6",2"'-quaterpyridine)¹ and 30 mM BIH. "Source data are provided as a Source Data file."

Supplementary Figure 28. Stability tests of photocatalytic systems. Stability tests of photocatalytic systems containing 0.1 mM CuPP, 1 μ M FeTDHPP, and 100 mM BIH. The same amount of each component or their mixtures were added to reaction vails at 23 hours. "Source data are provided as a Source Data file."

Supplementary Figure 29. UV-vis absorption spectra. UV-vis absorption spectra of systems containing: (a) 0.1 mM CuPP, and 100 mM BIH; (b) 0.1 mM CuPP, 0.2 μ M FeTDHPP and 10 mM BIH upon irradiation with white LED light in a 2 mm path length of quartz cuvette (dilution factor of 5).

Supplementary Figure 30. UV-vis absorption spectra. UV-vis absorption spectra of CuPP (25 μ M) with addition of BIH (10 mM) or FeTDHPP (1 μ M) under N₂ (a) or CO₂ (b).

Supplementary Figure 31. Emission quenching. Stern-Volmer plot (b) of the emission quenching (a) (λ_{exc} :540 nm) of CuPP (25 μ M) by BIH in DMF. "Source data are provided as a Source Data file."

Supplementary Figure 32. Emission quenching. Stern-Volmer plot (b) of the emission quenching (a) (λ_{exc} :540 nm) of CuPP (25 μ M) by FeTDHPP. "Source data are provided as a Source Data file."

Supplementary Figure 33. UV-vis absorption spectra. Absorption spectra of CuPP $(25 \ \mu M)$ with addition of FeTDHPP.

Supplementary Figure 34. UV-vis absorption spectra. UV-vis absorption spectra of systems containing: (a) 0.1 mM CuPP (red) or 0.2 mM PP (black), 0.04 μ M FeTDHPP and 20 mM BIH (spectra taken with dilution factor of 5); (b) 0.1 mM CuPP, 0.2 μ M FeTDHPP and 100 mM BIH before irradiation (black), irradiation for 10 minutes (red) then bubbled with air (blue) (spectra taken with dilution factor of 50). Condition: (a) 2 mm path length quartz cuvette; (b) 1 cm path length quartz cuvette.

Supplementary Figure 35. Emission decay. Emission decay of PP (50 μ M) in DMF at 298K (a) or 77K (b).

Supplementary Figure 36. Emission decay. Emission decay of CuPP (25 μ M) in DMF at 298K (a) and 77K (b).

Supplementary Figure 37. Crystal structure of CuPP. Complete ORTEP diagram of CuPP at 50% probability.

Cu-Complex	Cu-O1	Cu-O2	Reference
CuPP	1.9268(17) ^a	1.9168(18) ^a	This work
bis(catecholato)Cu	$1.9165(4)^{a}$	1.9303(3) ^a	2
$Cu(py)_2(Lw)_2$	2.454(2) ^b	1.945(2) ^c	3
$Cu(Lw)_2(H_2O)_2$	2.336(2) ^b	$1.954(3)^{a}$	4
Cu(L1) ₂ (EtOH) ₂	2.225(2) ^b	1.9301(17) ^a	5
Cu(Lap) ₂ (DMF) ₂	2.301(1) ^b	1.914(1) ^a	6
CuL ₂ py ₂	2.415(4) ^b	1.948(2) ^c	7

Supplementary Table 1. Cu-O bond lengths (Å) of Cu catecholate complexes

^aphenoxy coordination; ^bquinonic carbonyl coordination; ^cenolic coordination;

Supplementary	Table	2.	Summary	of	photophysical	data	of	PP	and	CuPP.
Photophysical pa	rameter	s of	PP and Cu	PP a	at 298 K in DMF	⁷ solut	ions			

Sample	Madium	Absorbance		Fluorescence						
	Medium	$\lambda_{\text{max}}(nm)$	$\epsilon_{\lambda max}(M^{-1}\;cm^{-1})$	$\lambda_{max}(nm)$	a) Φ_{F}^{a}	$\tau (ns)$	$\kappa_{\rm F}/10^7~({\rm s}^{-1})$	$\kappa_{\rm NF}/10^9~({\rm s}^{-1})$		
PP	DMF	478	9940	582 ^b	2.7×10 ⁻²	1.1	2.5	0.88		
CuPP	DMF	566	38530	693°	8.2×10 ⁻³	0.98	0.84	1.01		

^a Measured under N₂, by absolute method using an integrating sphere, error 1-20 %. ^b $\lambda_{exc} = 484$ nm; ^c $\lambda_{exc} = 540$ nm.

Photosensitizers	E_{red} / V	E _{0,0} / eV	E^*_{red} / V	E^*_{ox} / V	$\Delta \mathbf{G} / \mathbf{eV}$
PP	-1.21	2.34	1.13	-1.47	-0.8
CuPP	-1.75	2.12	0.37	-1.61	-0.04

Supplementary Table 3. Thermodynamic driving force for electron transfer of photocatalytic systems

E₀₋₀ values were determined from the intersection of the normalized absorption and emission spectra of the CuPP, in CO₂-saturated DMF solution, and converted to eV^8 . The ground state redox potentials (E_{ox} and E_{red}) were measured by electrochemical methods (CVs). The excited state redox potentials were obtained as follows: ESOP (Excited State Oxidation Potential) = E_{ox}(CuPP^{*}) = E_{ox} - E₀₋₀; ESRP (Excited State Reduction Potential) = E_{red}(CuPP^{*}) = E_{red} + E₀. 0. The thermodynamic driving force for electron transfer were calculated from Rehm-Weller equation: the difference between reduction potential of excited state of photosensitizer and oxidation potential of BIH as sacrificial reagent. ($\Delta G = E^0_{(D+/D)} - E^0_{(A/A-)} - E_{0,0} - e^2/\epsilon d$). The last term which represents the columbic attraction energy was neglected because of small contribution to the overall energy. Therefore, the equation was simplified to $\Delta G = E_{ox}(BIH) - E^*_{red}(CuPP)$ where $E_{ox}(BIH)$ was +0.33 V (vs SCE). Potentials are given versus SCE. Supplementary Table 4. Control experiments for photocatalytic CO₂ reduction. Control experiments for photocatalytic CO₂ reduction in a 5 mL CO₂-saturated DMF solution containing FeTDHPP (1 μ M), CuPP (0.1 mM), and BIH (100 mM), under irradiation with white LED light for 23h at 25 °C.

Entry ^[a]	FeTDHPP (µM)	CO (µmol)	$H_2(\mu mol)$	TONco	TON _{H2}	Selectivity to CO
1	1	43	0.72	8600	144	98%
2	0	2.2	0	-	-	0
3	1	0	0	0	0	0
4	1	0	7.3	0	1466	0
5	1	0	0	0	0	0
6	1	0	0	0	0	0
7	0.2	16.1	0.84	16109	843	95%
8	2	59.6	0.63	5963	63	99%
9	1	41	0	8183	0	100%
10	5	84.6	1.08	3385	43	99%
11	10	156.5	0.62	3131	12	99%

[a] Entry 1: under CO₂ atmosphere, Entry 2: without FeTDHPP, Entry 3: without CuPP, Entry 4: under N₂ atmosphere, Entry 5: Experiments were carried out in the dark, Entry 6: without BIH; Entry 7: 0.2 μ M FeTDHPP, Entry 8: 2 μ M FeTDHPP, Entry 9: added 0.02 mL Hg, Entry 10: 5 μ M FeTDHPP, Entry 11: 10 μ M FeTDHPP.

Supplementary Table 5. The performance of photocatalytic CO_2 reduction with molecular complexes containing copper complexes photosensitizers in noblemetal-free systems in the literature.

Photosensitizer	Catalyst	Solvent	Electron donor	Initial TOF _{CO} (h ⁻¹)	TON _{CO}	TON _{H2}	Sel _{CO} (%) ^a	Light source	Reference
CuPP (PP = purpurin)	FeTDHPP (0.2 µM)	DMF	BIH	7650	16109	843	95	white LED $(\lambda > 400 \text{ nm})$	This work
in-situ formed [Cu(xantphos)(bathocuproine)] ⁺	Mn(pyrox)(CO) ₃ Br (0.01 µmol)	CH ₃ CN/TEOA (5:1, v/v)	BIH	-	1058	0	100	Hg lamp $(\lambda > 415 \text{ nm})$	9
Cu (P^P- (SO3Na)2)(N^N(SO3Na)2)]BF4	СоТМРуР (10 μМ)	H ₂ O	AscHNa	2600	2680	820	77	Xe lamp $(\lambda > 400 \text{ nm})$	10
in-situ formed [Cu(xantphos)(bathocuproine)] ⁺	$ \{ [Fe^{III}(LN4H_2)Cl]_2(\\ \mu \text{ -O}) \}^{2+} (25 \ \mu M) $	DMF/TEOA (4:1, v/v)	BIH	114	565	116	84	Xe lamp $(\lambda > 400 \text{ nm})$	11
$[Cu_2(P_2bph)_2]^{2+}$	fac- Mn(X ₂ bpy)(CO) ₃ Br (50 µM)	DMA/TEOA (4:1, v/v)	BIH	-	1004	68	95	Hg lamp (λ > 436 nm)	12
in-situ formed [Cu(xantphos)(bathocuproine)] ⁺	Fe ^{II} cyclopentadienone (130 µM)	NMP/TEOA (5:1, v/v)	BIH	-	487	7	99	Hg lamp ($\lambda =$ 400 – 700 nm)	13
Cu(dmp)(P) ₂ ⁺	Fe(dmp) ₂ (NCS) ₂ (50 μM)	CH ₃ CN/TEOA (5:1, v/v)	BIH	-	273	75	78	Hg lamp ($\lambda =$ 436 nm)	14

^aSel_{CO}: seletivity of CO production among all possible CO₂ reduction products

Supplementary Table 6. The performance of photocatalytic CO₂ reduction with molecular complexes containing organic photosensitizers in noble-metal-free systems in the literature

Photosensitizer	Catalyst	Solvent	Electron donor	Initial TOF _{CO} (h ⁻¹)	TON _{CO}	TON _{H2}	Sel _{CO} (%) ^a	Light source	Reference
9-CNA	FeTDHPP (2 µM)	MeCN	TEA	-	60	0	100	Xe lamp ($\lambda > 400 \text{ nm}$)	15
Non-sensitized	Fe- <i>p</i> -TMA (2 µM)	MeCN	BIH	_	101	0	100	solar simulator, 1 sun ($\lambda > 420 \text{ nm}$)	16
Non-sensitized	FeTDHPP (10 µM)	MeCN	TEA	6.3	30	10	75	Xe lamp (cut off IR and low UV)	17
3,7-di(4-biphenyl)-1- naphthalene-10-phenoxazine	Fe- <i>p</i> -TMA (10 µM)	DMF	TEA	-	140	23	73	solar simulator, 1 sun $(\lambda > 435 \text{ nm})$	18
Purpurin	Fe- <i>p</i> -TMA (2 µM)	MeCN/H ₂ O (1:9, v/v)	TEA	-	60	3	95	solar simulator, 1 sun ($\lambda > 420 \text{ nm}$)	19
Purpurin	$[Fe(dqtpy)(H_2O)]^{2+}$ (50 µM)	DMF	BIH	-	544	4	99.3	blue LED $(\lambda = 460 \text{ nm})$	20
Purpurin	$[Fe(qpy)(H_2O)_2]^{2+}$ (5 µM)	DMF	BIH	-	1365	0	92	here $IED() = 4(0, \dots)$	1
Purpurin	[Co(qpy)(H ₂ O ₂] ²⁺ (5 μM)	DMF	BIH	-	790	11	90	- blue LED ($\lambda = 460 \text{ nm}$)	
ZnTPP	fac-[Mn(phen)(CO)Br] (50 μ M)	MeCN/H ₂ O (20:1,v/v)	TEA	-	119	0	86	Xe lamp (500 W)	21
4CzIPN	FeTotpy (10µM)	DMF/H ₂ O (3:2, v/v)	TEA	3600	2250	16	99.3	white LEDs $(\lambda = 420-650 \text{ nm})$	22
p-terphenyl	$Co^{II}[TBPc] (20 \mu M)$	MeCN	TEA	-	50	-	100	Xe lamp ($\lambda > 310$ nm)	23

^aSel_{CO}: seletivity of CO production among all possible CO₂ reduction products

Supplementary Table 7. The performance of photocatalytic CO₂ reduction with molecular complexes containing nanostructured photosensitizers in noble-metal-free systems in the literature

Photosensitizer	Catalyst	Solvent	Electron donor	Initial TOF _{CO} (h ⁻¹)	TON _{co}	TON _{H2}	Sel _{CO} (%) ^a	Light source	Reference
mpg-C ₃ N ₄	$[Fe(qpy)(H_2O)_2]^{2+}$ (20 µM)	MeCN/TEOA (4:1, v/v)	TEOA	-	155	<1	97	Hg lamp ($\lambda \ge 400$ nm)	24
CuInS ₂ /ZnS	Fe- <i>p</i> -TMA (1 μM)	H ₂ O	TEOA	-	450	4.5	99	monochromati-c laser pointer (λ = 450 nm)	25
CdS-MPA	Dinuclear cobalt complex (1 µM)	H ₂ O	TEOA	-	1380	32	95	Xe lamp ($\lambda > 420$ nm)	26
ZnSe	Ni(cyclam)Cl ₂ (10 µM)	H ₂ O	AcsH ₂	-	283	549	34	solar simulator, 1 sun ($\lambda > 400$ nm)	27
CdS	$[Ni(terpyS)_2]^{2+}$ (100 µM)	H ₂ O	TEOA	-	20	n.r.	93	solar simulator, 1 sun ($\lambda > 400$ nm)	28
CuInS ₂ /ZnS	FeTPP (2 µM)	DMSO	TMPD	-	60	10	84	monochromati-c laser pointer ($\lambda =$ 450 nm)	29

^aSel_{CO}: seletivity of CO production among all possible CO₂ reduction products

Photosensitizer	Catalyst	Solvent	Electron donor	Initial TOF _{CO} (h ⁻¹)	TON _{CO}	TON _{H2}	Selco (%) ^a	Light source	Reference
Ru(bpy) ₃ Cl ₂	CoTPPS (0.5 μM)	H ₂ O	AscHNa	2400	4000	5756	41	Xe lamp ($\lambda > 400$ nm)	30
<i>fac</i> -Ir(ppy) ₃	FeTDHPP (2 µM)	MeCN	TEA	-	140	11	93	Xe lamp ($\lambda > 420$ nm)	15
<i>fac</i> -Ir(ppy) ₃	FeTDHPP (2 µM)	MeCN	TEA	-	139	15	77	Solar simulator($\lambda >$ 420 nm)	31
<i>fac</i> -Ir(ppy) ₃	Fe- <i>p</i> -TMA (2 μM)	MeCN	TEA	-	367	26	78	Solar simulator($\lambda >$ 420 nm)	31
Ir(ppy) ₂ (bpy)	Fe- <i>p</i> -TMA (2 μM)	MeCN	TEA	-	178	103	57	Solar simulator(λ > 420 nm)	32

Supplementary Table 8. Homogeneous photocatalytic CO₂ reduction system containing porphyrin complex and noble metal photosensitizer

 $^{a}Sel_{CO}$: seletivity of CO production among all possible CO₂ reduction products

Compound	CuPP
CCDC	2017326
Empirical formula	$C_{60}H_{84}N_2O_{10}Cu$
Formula weight	1056.83
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.19435(8)
b/Å	17.13881(17)
c/Å	20.00751(17)
$\alpha/^{\circ}$	90
β/°	101.6430(9)
γ/°	90
Volume/Å ³	2752.07(5)
Z	2
$\rho_{calc}g/cm^3$	1.275
μ/mm^{-1}	1.040
F(000)	1134.0
Crystal size/mm ³	0.18 imes 0.12 imes 0.07
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	6.86 to 152.38
Index ranges	$-10 \le h \le 10, -21 \le k \le 21, -25 \le l \le 25$
Reflections collected	40969
Independent reflections	5720 [$R_{int} = 0.0372$, $R_{sigma} = 0.0166$]
Data/restraints/parameters	5720/0/336
Goodness-of-fit on F ²	1.094
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0606, wR_2 = 0.1606$
Final R indexes [all data]	$R_1 = 0.0617, wR_2 = 0.1613$
Largest diff. peak/hole / e Å ⁻³	0.74/-0.34

Supplementary Table 9. Crystal data and structure refinement for CuPP

Selected bond lengths (Å)										
Cu-O1	Cu-O2	01-C1	O2-C2	O3-C4	O5-C13	O4-C11				
1.9268(17)	1.9168(18)	1.303(3)	1.295(3) 1.239(3)		1.342(3)	1.274(3)				
	Selected angels (°)									
O1-Cu-C	01A	180.00	O2-Cu-O2A		180.00					
O1-Cu-O2		85.03(7)	O1-Cu-O2A		94.97(7)					
O1A-Cu-O2A		85.03(7)	O 1 <i>A</i>	O1A-Cu-O2		97(7)				
C1-O1-Cu		111.61(14)	C2-O2-Cu		112.23(14)					

Supplementary Table 10. Selected bond lengths (Å) and angels (°) of CuPP

Supplementary References

- 1. Guo, Z. *et al.* Highly efficient and selective photocatalytic CO₂ reduction by iron and cobalt quaterpyridine complexes. *J. Am. Chem. Soc.* **138**, 9413-9416, (2016).
- 2. Tapodi, B. *et al.* Preparation and X-ray structure of a (catecholato)copper(II) complex with a schönberg adduct. *Inorg. Chem. Commun.* **9**, 367-370, (2006).
- Peng, S-M. et al. Crystal and molecular structure of hydroxynaphthoquinone complex.I. The structure of bis(pyridine)bis(lawsone) copper (II) complex. Proc. Natl. Sci. Counc. B, ROC 5(2),139-144, (1981).
- Salunke-Gawali, S., Rane, S. Y., Puranik, V. G., Guyard-Duhayon, C. & Varret, F. Three dimensional hydrogen-bonding network in a copper complex of 2-hydroxy-1,4-naphthoquinone: Structural, spectroscopic and magnetic properties. *Polyhedron* 23, 2541-2547, (2004).
- Gokhale, N. H. *et al.* Transition metal complexes of buparvaquone as potent new antimalarial agents:
 1. Synthesis, x-ray crystal-structures, electrochemistry and antimalarial activity against plasmodium falciparum. *J. Inorg. Biochem.* 95, 249-258, (2003).
- 6. Farfán, R. A. *et al.* Structural and spectroscopic properties of two new isostructural complexes of lapacholate with cobalt and copper. *Int. J. Inorg. Chem.* **2012**, 973238, (2012).
- 7. Hernández-Molina, R. *et al.* Complexes of Co(II), Ni(II) and Cu(II) with lapachol. *Polyhedron* **26**, 4860-4864, (2007).
- 8. Mejía, E. *et al.* A noble-metal-free system for photocatalytic hydrogen production from water. *Chem. Eur. J.* **19**, 15972-15978, (2013).
- 9. Steinlechner, C. *et al.* Selective earth-abundant system for CO₂ reduction: Comparing photo- and electrocatalytic processes. *ACS Catal.* **9**, 2091-2100, (2019).
- Zhang, X., Cibian, M., Call, A., Yamauchi, K. & Sakai, K. Photochemical CO₂ reduction driven by water-soluble copper(I) photosensitizer with the catalysis accelerated by multi-electron chargeable cobalt porphyrin. *ACS Catal.* 9, 11263-11273, (2019).
- Sakaguchi, Y., Call, A., Cibian, M., Yamauchi, K. & Sakai, K. An earth-abundant system for lightdriven CO₂ reduction to CO using a pyridinophane iron catalyst. *Chem. Commun.* 55, 8552-8555, (2019).
- 12. Takeda, H. *et al.* Highly efficient and robust photocatalytic systems for CO₂ reduction consisting of a Cu(I) photosensitizer and Mn(I) catalysts. *J. Am. Chem. Soc.* **140**, 17241-17254, (2018).
- 13. Rosas-Hernández, A., Steinlechner, C., Junge, H. & Beller, M. Earth-abundant photocatalytic systems for the visible-light-driven reduction of CO₂ to CO. *Green Chem.* **19**, 2356-2360, (2017).
- 14. Takeda, H., Ohashi, K., Sekine, A. & Ishitani, O. Photocatalytic CO₂ reduction using Cu(I) photosensitizers with a Fe(II) catalyst. *J. Am. Chem. Soc.* **138**, 4354-4357, (2016).
- Bonin, J., Robert, M. & Routier, M. Selective and efficient photocatalytic CO₂ reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 136, 16768-16771, (2014).
- 16. Rao, H., Bonin, J. & Robert, M. Non-sensitized selective photochemical reduction of CO₂ to CO under visible light with an iron molecular catalyst. *Chem. Commun.* **53**, 2830-2833, (2017).
- Bonin, J., Chaussemier, M., Robert, M. & Routier, M. Homogeneous photocatalytic reduction of CO₂ to CO using iron(0) porphyrin catalysts: Mechanism and intrinsic limitations. *ChemCatChem* 6, 3200-3207, (2014).
- 18. Rao, H., Lim, C.-H., Bonin, J., Miyake, G. M. & Robert, M. Visible-light-driven conversion of CO2

to CH₄ with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. **140**, 17830-17834, (2018).

- Rao, H., Bonin, J. & Robert, M. Visible-light homogeneous photocatalytic conversion of CO₂ into CO in aqueous solutions with an iron catalyst. *ChemSusChem* 10, 4447-4450, (2017).
- 20. Chen, L. *et al.* A molecular noble metal-free system for efficient visible light-driven reduction of CO₂ to CO. *Dalton Trans.* **48**, 9596-9602, (2019).
- Zhang, J.-X., Hu, C.-Y., Wang, W., Wang, H. & Bian, Z.-Y. Visible light driven reduction of CO₂ catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer. *Appl. Catal. A.* 522, 145-151, (2016).
- 22. Wang, Y., Gao, X.-W., Li, J. & Chao, D. Merging an organic TADF photosensitizer and a simple terpyridine-Fe(III) complex for photocatalytic CO₂ reduction. *Chem. Commun.*, (2020).
- 23. Grodkowski, J. *et al.* Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO₂. *J. Phys. Chem. A* **104**, 11332-11339, (2000).
- 24. Cometto, C. *et al.* A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO₂-to-CO conversion with visible light. *J. Am. Chem. Soc.* **140**, 7437-7440, (2018).
- 25. Lian, S., Kodaimati, M. S. & Weiss, E. A. Photocatalytically active superstructures of quantum dots and iron porphyrins for reduction of CO₂ to CO in water. *ACS Nano* **12**, 568-575, (2018).
- 26. Bi, Q.-Q. *et al.* Selective photocatalytic CO₂ reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst. *ACS Catal.* **8**, 11815-11821, (2018).
- 27. Kuehnel, M. F. *et al.* ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visiblelight driven CO₂ reduction in water. *Chem. Sci.* **9**, 2501-2509, (2018).
- Kuehnel, M. F., Orchard, K. L., Dalle, K. E. & Reisner, E. Selective photocatalytic CO₂ reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. *J. Am. Chem. Soc.* 139, 7217-7223, (2017).
- Lian, S., Kodaimati, M. S., Dolzhnikov, D. S., Calzada, R. & Weiss, E. A. Powering a CO₂ reduction catalyst with visible light through multiple sub-picosecond electron transfers from a quantum dot. *J. Am. Chem. Soc.* 139, 8931-8938, (2017).
- 30. Call, A. *et al.* Highly efficient and selective photocatalytic CO₂ reduction to CO in water by a cobalt porphyrin molecular catalyst. *ACS Catal.* **9**, 4867-4874, (2019).
- Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO₂ with a molecular iron catalyst. *Nature* 548, 74-77, (2017).
- 32. Rao, H., Bonin, J. & Robert, M. Toward visible-light photochemical CO₂-to-CH₄ conversion in aqueous solutions using sensitized molecular catalysis. *J. Phys. Chem. C* **122**, 13834-13839, (2018).