Supplementary Materials

In Vitro Culture Expansion Shifts the Immune Phenotype of Human Adiposederived Mesenchymal Stem Cells

Richard Jeske#¹, Xuegang Yuan#^{1,2,*}, Qin Fu^{1,a}, Bruce A. Bunnell³,

Timothy M. Logan⁴, Yan Li^{1,5,*}

- 1. Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
- 2. The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, United States
- 3. Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
- 4. Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States
- 5. Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States

Supplementary Figure S1. Flow cytometry analysis of cell cycle distribution of hASCs at P5 and P12.

Supplementary Figure S2. Representative images for adipogenic differentiation and osteogenic differentiation. (A) Oil red O staining for adipogenic differentiation; and (B) Von Kossa staining for osteogenic differentiation. Scale bar: 100 µm.

A. Oil Red O staining

B. Von Kossa staining

Supplementary Figure S3. Comparison of M1/M2 macrophages with M0 macrophages to confirm the successful polarization. The relative mRNA levels of M1 and M2 markers were determined by RT-PCR.

Macrophage polarization

Supplementary Figure S4. The fold change in cytokine secretion when treated with IFN- γ compared to the control (without IFN- γ treatment) (corresponding to Figure 4D and 4E).

Supplementary Figure S5. Relative mRNA expression of cell signaling genes for P12 vs. P4 hASCs. * indicates *p*<0.05.

cell signaling

Supplementary Figure S6. Additional results from transcriptome analysis for P4 vs. P12 differentially expressed genes (DEGs). (A) Principal component analysis (PCA) demonstrated the separation of hMSCs at P4, P8, and P12 as categorized with the genes identified in transcriptomics. (B) Pericyte-related genes for P4 vs. P12 group. (C) Astrocyte-related genes for P4 vs. P12 group or similarly expressed for P4 vs. P12 group. (D) Microglia-related genes (highly expressed in P4 group or similarly expressed for P4 vs. P12 group). (E) Microglia-related genes (significantly upregulated in P12 group) for P4 vs. P12 group. (F). Extracellular matrix (ECM)-related genes differentially expressed in P4 and P12 groups. The numbers are the Log2 values of ratios of P12 cells to P4 cells. Negative values indicate that the genes are present in higher amounts in the P4 group, while positive values indicate that the genes are present in higher amounts in the P12 group. The number 1 indicates two-fold increase.

	8								1 C	_			
Δ					B Pe	ricyte genes	baseMean	log2(P12/P4)	-	A	strocyte gene	baseMean	log2(P12/P4)
					EN	IG (CD105)	38723.145	-1.241		S	100B	0.811308246	-3.046
	° (•				AE	BCC9	1561.067	-0.895		G	FAP	12.90551414	-1.974
	P12				ТВ	X18	1716.458697	-0.882		K	CNJ10	2.332570528	-1.753
	4				FC	DXF2	929.2241212	-0.875	1	Т	NC	43632.6892	-1.363
					TH	IY1 (CD90)	40450.069	-0.561	1	N	FIA	1339.162	-0.888
	2				КС	NJ8	882.153	-0.503	1	N	FIB	2193.258	-0.824
5	e e				AN	NPEP (CD13)	26186.308	-0.470	1	N	FIX	25634.959	-0.714
0	0			P4	710	C1	700.062	-0.433	-	С	D44	33709.79159	-0.389
i i i i i i i i i i i i i i i i i i i					D	CEPB	22146 14871	-0.162	-	S	OX9	530.2990605	-0.388
2	3				TA		22140.14871	0.102	-	V	IM	267859.151	-0.312
	-2				14		5.102	-0.122	-	R	YR3	27.037	0.116
					IVI	CAM (CD146)	1242.046	0.120	_	V	/IF1	0.256	0.191
	-4				FC	DXC1	977.156	0.161		S	LC1A2	45.65872059	0.228
					VT	N	138.6162746	0.168		S	LC1A3	348.615	0.275
					AC	CTA2	23344.235	0.346		G	JA1	14403.97849	1.153
	•	•			CN	N1 (Calponin	4748.632	0.373		н	EPACAM	0.661	2.948
		P8			N	F5E (CD73)	26038.684	0.738		A	LDH1L1	1.414	3.198
	-88 -6	-4 -2 0	2 4 6	8 10 12 14	16	-				_		1	
D			PC1 (65.89%)			E	Microglia ge	enes baseMean l	og2(P12/P4)	F	ECM gene	baseMean	log2(P12/P4)
Mic	roglia genes	baseMean	log2(P12/P4)	Microglia genes	baseMea	an log2(P12/P4)	CSF1	10355.638	0.989		LAMA2	8741.126955	-0.931
ITM	24	48 865	-4 371	ENTPD1	682.0	88 0.028	TLR4	1983.246	1.169		LAMC1-AS1	1.2213/9200	-0.444
TYR	ORP	1 074	-3 440	CD20081	1.4	77 0 325	CTSD	25569.058	1.328		LAMB4	1.68833/388	3 -0.404
SDI1	001	1.074	-1 592	RGS10	666.1	13 0 330	SIGLEC11	0.265	1.639		LAMA4	20597.24486	-0.393
	MIS	10478 582	-1.552	GDR24	2.0	12 0.136	CX3CR1	3.259	1.843		LAMB1	23003.9890	-0.333
DRC	VIL5	056.000	1.00	DUNY1	6427.20	12 0.450	CD274	128.116	1.869		LAMB2P1	3.668089793	l -0.110
TA	51	930.090	-1.495		10900.2	0.407	IL34	83.639	2.313		LAMC1	107128.6094	0.181
TIVI	IVI119	9546.277	-1.254		19809.28	88 0.476	GAS6	55906.156	2.402		LAMB2	42504.5721	0.186
SELF	2G	181.319	-0.942	SIRPA (CD172a)	8163.3:	33 0.574	CD14	136.674	2.622		LAMC3	0.74983529	0.208
ME	RTK	4.970	-0.935	AIF1	0.13	39 0.917	TLR2	17.550	3.770		LAMA1	1016.707873	1.055
CD7	4 (HLA-DR)	16.147	-0.786	P2RY14	6.25	58 - 5.993	CSE3	809.98	3 882		LAMC2	1479.088708	3 1.177
GAS	6-AS1	8.779	-0.782	P2RY11	1.24	42 - 3.660	CD200	130 574	4 206		LAMA5	2910.295926	5 1.414
CSF	1R	26.666	-0.703	P2RY4	1.52	29 - 3.103	CD162	E2 477	5.000		LAMA3	187,712963	1.731
PTP	RC	8.483	-0.648	P2RY6	171.70	02 -1.375	C0105	121.005	3.550		LAMB3	792 119483	1.937
ITG	AM .	0.356	-0.512	P2RY12	5.94	43 -0.940		121.965	10.4/1		EN1	3152597 47	0.996
CD6	8	5385.799	-0.432	P2RY2	14.50	02 -0.392	SIGLECIS	51.082	0.439		VTN	129 616274	0.169
TIR	3	263.816	-0.145	P2RY1	1.4	39 3.210	SIGLEC16	2.810	1.003		CEDC 4	4021 002740	1 215
1.01		200.010					SIGLEC10	0.909	1.542		CSPG4	4631.658/:	-1.215
							SIGLEC9	1.311	3.066		CSPG5	2.24389821	0.494

Supplementary Figure S7. The differential expression of CDK related genes. (A) P12 vs P4 comparison. (B) P8 vs. P4 comparison. The numbers are the Log2 values of ratios of P12 or P8 cells to P4 cells. Negative values indicate that the genes are present in higher amounts in the P4 group, while positive values indicate that the genes are present in higher amounts in the P12 or P8 group. The number 1 indicates two-fold increase.

В

CDKs	baseMean	log2(P12/P4)
CDK1	952.4750226	-1.616
CDK2	1525.840086	-0.707
CDK5RAP3	1885.393652	-0.635
CDK5R2	1.325657851	-0.542
CDK15	498.9790924	-0.489
CDK11B	2548.143836	-0.416
CDK16	6618.662043	-0.317
CDK2AP1	17654.9712	-0.254
CDK10	1171.946976	-0.254
CDK12	2850.469724	-0.239
CDK9	2128.767777	-0.207
CDK5	597.4168291	-0.159
CDK19	871.6929315	-0.149
CDK5RAP2	2192.176754	-0.143
CDK8	1027.590743	-0.070
CDK5RAP1	629.5394949	-0.061
CDK13	2321.256303	0.065
CDK4	3857.34302	0.095
CDK7	1295.525634	0.232
CDK14	3006.119183	0.327
CDK18	29.27011385	0.405
CDK11A	664.4656778	0.439
CDK2AP2	1609.455423	0.756
CDK17	2106.155631	0.789
CDK20	280.2641336	0.849
CDK6	4215.75467	0.851
CDK5R1	182.5135189	0.971

Α

CDKs	baseMean	log2(P8/P4)
CDK1	864.92042	-2.417
CDK2	1309.3479	-1.469
CDK5RAP3	1848.4298	-0.715
CDK10	1085.902	-0.558
CDK11B	2592.4577	-0.415
CDKL1	148.88681	-0.402
CDK2AP1	17381.029	-0.356
CDK11A	517.57515	-0.315
CDK5R2	1.491666	-0.257
CDK5RAP1	615.27473	-0.210
CDK5	598.6013	-0.199
CDK9	2203.2784	-0.148
CDK16	7148.7493	-0.130
CDK5RAP2	2313.4319	-0.041
CDK12	3102.2201	-0.035
CDK2AP2	1238.0307	-0.001
CDK4	3807.1458	0.012
CDK20	208.24041	0.064
CDK15	611.80386	0.095
CDK13	2438.1369	0.143
CDK5R1	132.39873	0.150
CDK7	1294.5284	0.188
CDK18	27.933153	0.233
CDK14	3083.1923	0.345
CDKAL1	328.92719	0.381
CDK8	1234.3665	0.383
CDK19	1095.6397	0.436
CDK17	1910.6925	0.519
CDKL5	658.37766	0.633
CDK6	3907.5991	0.635
CDKL3	54.023247	0.922
CDKL2	2.1456202	1.338
CDKL4	1.8742296	1.341

Supplementary Figure S8. Additional results from transcriptome analysis for P4 vs. P12 DEGs. (A) Genes related to HLA molecules. (B) Genes related to IGF family; (C) Genes related to BMP family; (D) Genes related to TNF family; (E) Genes related to Sirt family; (F) Genes related to HOXB family.

The numbers are the Log2 values of ratios of P12 cells to P4 cells. Negative values indicate that the genes are present in higher amounts in the P4 group, while positive values indicate that the genes are present in higher amounts in the P12 group. The number 1 indicates two-fold increase.

Δ				R						- C	·				_			
~	HLA mole.	baseMean I	og2(P12/P4)		IGF fa	mily		baseMean	log2(P12/P4)	_ `	' BMP fam	ily baseM	ean	log2(P12/P4)	D	TNF family	baseMean	log2(P12/P4)
	HLA-F-AS1	43.77147	-1.235		IGF1			869.1093976	5 - 5.581		BMP6	2108.	286	-0.627		TNFRSF18	2.817383607	-4.025
	HLA-DOB	6.647761	-0.703		IGFLR	1		60.36906922	-1.906		BMP8B	3.640	394	-0.574		TNFRSF13C	3.456440663	-2.905
	HLA-DPA1	129.0556	-0.569		IGFBP	4		135072.1545	5 -1.396		BMP8A	18.27	88	-0.386		TNFRSF11A	35.78336718	-2.349
	HLA-DPB1	122.2067	-0.173		IGFBP	6		25133.20754	-0.647		BMPR2	676	1.8	-0.287		TNFRSF4	0.6158154	-1.538
	HLA-E	16659.19	0.119		IGF1R			4092.516875	0.333		BMPR1A	2000.	609	-0.114		TNFAIP8L2	1.307279355	-1.205
	HLA-DRB1	1.758995	0.608		IGF2B	P1		975.3617673	3 0.442		BMP1	8880.	317	-0.100		TNFRSF19	653.8814426	-1.118
	HLA-DMA	97.56198	0.644		IGFBP	3		411339.0225	0.442		BMP2K	901.6	341	0.192		TNFRSF25	110.1173648	-1.064
	HLA-C	39423.42	1.051		IGF2B	P2		4113.9674	0.774		BMPR1B	244.0	578	0.759		TNFAIP8L1	263.6274254	-0.993
	HLA-F	1141.597	1.081	1	IGF2R			15376.79686	0.976		BMP4	155.0	61	1.179		TNFSF12-TNFSF13	32.25616217	-0.992
	HLA-V	6.257282	1.237		IGFBP	7-AS1		4.305984467	1.018		BMP3	3.675	63	1.288		TNFSF13B	120.2761215	-0.943
	HLA-A	36981.53	1.321	1	IGFBP	L1		164.863802	1.066		BMPER	4072.	/12	1.721		TNFRSF1A	9809.22317	-0.528
	HLA-B	33961.32	1.797	1	IGFBP	1		13.173016	5 1.202		BMP2	70.67	927	2.199		TNFAIP8	745.2096742	-0.407
	HLA-L	143.7689	1.939	1	IGFBP	7		54106.13298	3 1.494							TNFSF12	1061.483972	-0.161
ĺ	HLA-H	2857.198	2.685	1	IGFBP	5		192195.6806	5 1.564							TNFRSF17	0.498982471	0.166
1	HLA-DMB	0.82848	3.260	1	IGF2			1301.942909	1.685							TNFRSF14	451.7659646	0.267
	HLA-J	15.39483	3.611	1	IGFN1			14.16057657	2.019							TNFRSF8	40.66739948	0.314
	HLA-G	89.24683	3.814	1	IGF2B	P3		394.7769587	3.035	_						TNFSF13	200.1672166	0.368
					IGF2-	AS		3.029705344	3.576	_						TNFAIP2	3741.234598	0.417
					IGFBP	2		172.6736262	4,185							TNFSF9	575.2855043	0.419
						-		21210100202								TNFRSF12A	10860.94794	0.562
Ε						E										TNFRSF10D	1060.690427	0.562
						Г										TNFRSF10C	77.03143272	0.684
	SIRT family	base	eMean log	32(P1	2/P4)]	нох	B family	baseMean	log2(P12/P4)					TNF	12.51162954	0.812
	SIRT1	115	1.256524	-0.3	163	1	HOX	B13	79.27192014	-	4.333					TNFRSF9	8.036096226	1.260
ĺ	SIRT7	495	.5490563	-0.3	125	1	HOX	B2	1850.519974	(0.380					TNFRSF10B	5336.393181	1.268
	SIRT3	61	7.401115	-0.0	087	1	HOX	B3	1338.926444	(0.595					TNFRSF14-AS1	27.38478175	1.287
ĺ	SIRT5	356	.3647251	-0.0	079	1	нох	B4	501.5388577	(0.568					TNFSF15	65.9010019	1.384
Ì	SIRT6	913	.6728866	0.0	037	1	нох	B5	338.8508101	:	1.042					TNFRSF1B	509.8729528	1.571
	SIRT2	189	6.887045	0.0	066	1	нох	B6	440.8451823	(0.797					INFRSF11B	19315.97724	1.749
	SIRT4	31.8	39167153	0.6	530	1	нох	B7	563.1165311		1.341					INFRSF6B	250.5819342	1.862
					-	-	нох	B8	135.6717927	3	3.748					INFSF14	4.37867127	1.872
							нох	B9	225.5430772	1	2.932					INFRSF21	1048.459011	2.070
																INFAIP3	5979.853757	2.158
																INFAIP6	1212.057436	2.448
																INFRSF10A	185.6879216	3.777
																INFSF8	2.688279237	4.205
																INFSF18	2.947932439	5.099
																TNFSF4	893.1020063	5.473

6

Supplementary Figure S9. Additional results from transcriptome analysis for P4 vs. P12 DEGs. (A) Genes related to collagen molecules. (B) Genes related to metabolism; (C) Genes related to CD markers; (D) Additional genes related to CD markers.

The numbers are the Log2 values of ratios of P12 cells to P4 cells. Negative values indicate that the genes are present in higher amounts in the P4 group, while positive values indicate that the genes are present in higher amounts in the P12 group. The number 1 indicates two-fold increase.

Collagens	baseMean	log2(P12/P4)	Collagens	baseMean	log2(P12/P4)
COL22A1	18.16699548	-5.464	COL12A1	161294.4	0.237
COL9A3	40.62497878	-5.363	COL6A1	268983.9	0.310
COL14A1	4195.637739	-4.004	COL6A2	239605.1	0.410
COL21A1	50.17505599	-3.219	COL4A5	113.8265	0.696
COL5A1-AS1	0.839783824	-2.119	COL18A1	3505.806	0.759
COL9A2	88.25097468	-1.740	COL4A2	72964.59	0.911
COL6A6	45.04364395	-1.595	COL2A1	1.400271	1.040
COL28A1	2.643228221	-1.594	COL4A1	64428.23	1.130
COL5A3	6343.384109	-1.420	COL7A1	1263.731	1.367
COL1A1	2862050.39	-1.199	COL11A1	13442.38	1.510
COL4A6	5.960923388	-0.990	COL13A1	1014.179	1.515
COL3A1	612010.0978	-0.881	COL8A2	2627.548	1.731
COL1A2	1383521.724	-0.832	COL10A1	35.26074	2.021
COL24A1	18.28113159	-0.731	COL15A1	3282.041	2.039
COL5A1	229666.6541	-0.443	COL4A3	11.02153	2.277
COL17A1	22.47471159	-0.415	COL8A1	14326.77	2.395
COL11A2	49.67347745	-0.239	COL23A1	0.530382	2.628
COL6A3	153382.6586	0.041	COL26A1	2.621529	2.695
COL16A1	44231.51486	0.061	COL4A4	142.2575	2.844
COL27A1	1239.143323	0.163	COL25A1	19.53168	3.726
COL5A2	97022.05758	0.220			

Metablism ge	nes		
GeneName	log2(P12/P4)	GeneName	log2(P12/P4)
FASN	-1.534	MDH1	0.206
G6PD	-1.155	ACO1	0.233
IDH1	-1.033	SLC25A11	0.239
OGDH	-0.831	РКМ	0.271
IDH2	-0.647	GAPDH	0.394
ACAA1	-0.624	ALDOC	0.537
SLC38A2	-0.553	ENO1	0.543
PDHA1	-0.405	GOT1	0.560
GOT2	-0.361	ALDOA	0.562
IDH3B	-0.330	GPI	0.613
SDHA	-0.314	LDHA	0.699
SLC25A1	-0.161	PGM1	0.742
ACO2	-0.100	PGAM1	0.747
FH	-0.031	GFPT1	0.904
GLUD1	-0.013	GFPT1	0.904
SUCLA2	-0.012	PGK1	1.481
PFKL	0.176	PDK1	1.597
SLC1A5	0.194	HK2	1.996
MDH2	0.206	SLC2A1 (GLUT1	3.213

CD Markers	baseMean	log2(P12/P4)	CD Markers	baseMean	log2(P12/P4)
CD24	74.361	-4.515	CD200R1	1.477	0.325
CD37	0.731	-2.880	CD47	3883.016	0.468
CD300C	3.335	-2.381	CD46	4054.915	0.476
CD93	5.272	-1.770	CD276	10594.922	0.557
CD81-AS1	11.515	-1.620	CD2AP	1768.409	0.687
CD248	68550.584	-1.334	CD36	5299.353	0.717
CD160	4.726	-1.322	CD302	911.640	0.732
CD38	49.629	-0.930	CD58	337.553	1.011
CD4	10.283	-0.915	CD19	1.768	1.044
CD74	16.147	-0.786	CD9	3190.723	1.155
CD96	3.936	-0.716	CD70	60.406	1.340
CD226	5.230	-0.658	CD72	22.843	1.450
CD320	1875.124	-0.565	CD163L1	79.339	1.460

CD79A	6.220	-0.525	CD40	66.642	1.678
CD99	27769.293	-0.510	CD80	2.742	1.821
CD109	9798.364	-0.482	CD274	128.116	1.869
CD27	7.266	-0.446	CD22	2.281	1.888
CD101	8.414	-0.434	CD55	3544.863	1.956
CD68	5385.799	-0.432	CD177	17.316	2.167
CD207	0.620	-0.399	CD14	136.674	2.622
CD44	33709.792	-0.389	CD28	3.585	2.710
CD34	328.603	-0.251	CD82	1140.020	3.048
CD59	53760.170	-0.247	CD83	87.724	3.141
CD81	33227.582	-0.088	CD200	130.574	4.206
CD63	43238.708	-0.012	CD163	53.477	5.990

Supplementary Figure S10. Corresponding to Figure 5: results from transcriptome analysis for P4 vs. P8 DEGs. (A) Interleukin mRNA expression (shown in fold change) for P8 vs. P4 hASCs, showing upregulation at P8. (B) Chemokine mRNA expression (shown in fold change) for P8 vs. P4 hASCs, showing upregulation at P8. (C) Integrin mRNA expression for P8 vs. P4 hASCs. (D) Growth factor mRNA expression (TGF, PDGF, and VEGF) for P8 vs. P4 hASCs. (E) Matrix metalloproteinase (MMP) mRNA expression for P8 vs. P4 hASCs.

The numbers are the Log2 values of ratios of P12 cells to P4 cells. Negative values indicate that the genes are present in higher amounts in the P4 group, while positive values indicate that the genes are present in higher amounts in the P12 group. The number 1 indicates two-fold increase.

•										R				С		
А	Chemokines									Ľ	Cytokines			Integrins		
	GeneName	baseMean	log2	(P8/P4)	Gene	Name	bas	eMean l	og2(P8/P4)		GeneName	baseMean	log2(P8/P4)	GeneName	baseMean	log2(P8/P4)
	CCL11	27.307268		4.980	CXCL	2	188	35.990883	4.934		IL24	22.5438	5.208	ITGA10	633.4072812	-2.913
	CCL3L3	2.3506537		4.746	CXCL	3	518	34.075441	3.763		IL1B	1724.7066	4.783	ITGA7	1143.990523	-2.563
	CCL5	1391.541		4.575	CXCL	3	429	0.7851775	3.328		IL20RB	886.16843	4.484	ITGA9	74.49356566	-2.172
	CCL3	3.3570674		4.489	CXCL:	l1	42.	77240795	2.142		IL1A	410.21221	4.217	ITGA6	1795.1382	-1.336
	CCL20	42.763076		3.569	CXCL:	L	249	0.328263	1.845		IL6	10767.57	3.786	ITGB1BP2	24.12172822	-1.302
	CCL7	25.718934		2.234	CXCL:	L6	242	.3919335	1.790		IL32	2447.4953	3.311	ITGA8	513,1237266	-1.195
	CCL2	3247.7936		2.226	CXCL	5	554	.2751933	1.387		IL26	2.2146394	3.035	ITGA9-AS1	11,73507402	-1.156
	CCL28	53.862767		2.189	CXCL:	L O	101	.1402488	1.202		IL11	755.98735	2.038	ITGB3BP	231,7241597	-0.996
	CCL26	48.619602		1.681	CXCL	5	1	572.1913	0.721		IL34	57.657961	1.604	ITGAE	279.4912276	-0.671
	CX3CR1	3.4016833		1.885	CXCL	L 2	140	91.81796	-2.349		IL17B	12.123236	1.449	ITGB1BP1	2042.304913	-0.313
					CXCL	L4	8.5	70047589	-2.666		IL15	106.98297	1.285	ITGB1	172386.5645	-0.162
_						-					IL12A	24.94199	1.065	ITGB5	24092.539	-0.136
υ						E					IL12A	24.94199	1.065	ITGA3	2506,707543	0.129
	GeneName	baseMe	an	log2(P8/	P4)	MMP f	amily			_	IL20	-3914.228	-0.210	ITGA5	48071.30203	0.264
	TGFB3	1090.35	57848	-2.09	97	GeneN	ame	baseMean	n log2(P8/P4)	_	IL1R1	19556.444	-0.658	ITGA4	6691 113382	0.330
	TGFBR3	2721.71	16799	-0.85	53	MMP1	5	604.94654	4 -1.533		IL17D	92.80179	-0.947	ITGA2	910 9906176	0.346
	TGFB1	7841.83	32536	-0.48	38	MMP2	4	271.1162	7 -1.274		IL33	484.2651	-1.423	ITGA1	2565 508841	0.597
	TGFB1I1	6120.54	18596	-0.21	2	MMP3		742.9281:	1 -1.237					ITGB3	700 307449	0.760
	TGFBI	369079	.1314	-0.09	95	MMP1	5	132.4337	5 -1.123					ITGBL1	25898 49686	0.940
	TGFBRAP1	1323.86	57685	0.44	4	MMP1	1	136.35719	9 -0.544					ITGB8	1065.606965	1,177
	TGFBR3L	66.6257	71074	1.07	7	MMP2	4OS	5224.9024	4 -0.368					ITGA11	40755 38067	1.836
	TGFBR1	6267.96	51718	1.22	7	MMP1	9	1833.5683	3 - 0.356					ITGR2	9 709580575	1 917
	TGFB2	324.059	95582	3.01	9	MMP1	4	53104.542	2 0.187					11001	51105000575	
	PDGFD	1239.9	8333	-0.79	95	MMP1	7	1463.3863	3 0.232							
	PDGFRA	19866.8	31299	-0.44	2	MMP2		113012.66	6 0.689							
	PDGFRB	25818.2	21028	0.22	9	MMP1		467.22114	4 0.816							
	PDGFC	2409.81	16128	0.57	8	MMP2	4-AS1-ED	61.50027	6 0.897							
	PDGFA	584.555	53859	1.93	8	MMP2	5-AS1	71.926243	3 0.915							
	VEGFB	2945.25	52126	0.52	1	MMP2	3B	463.8804	5 1.754							
	VEGFC	5767.38	32571	0.83	8	MMP9		14.467134	4 2.843							
	VEGFA	12736.3	86066	2.97	8	MMP2	8	5.5421294	4 2.987							
						MMP8		4.9968554	4 3.674							

Supplementary Figure S11. Additional results from transcriptome analysis for P4 vs. P8 DEGs). (A) Pericyte-related genes for P4 vs. P8 group. (B) Astrocyte-related genes for P4 vs. P8 group. (C) Genes related to IGF family; (D) Genes related to HLA molecules; (E) Microgliarelated genes (highly expressed in P4 group or similarly expressed for P4 vs. P8 group). (F) Additional microglia-related genes (significantly upregulated in P8 group) for P4 vs. P8 group.

The numbers are the Log2 values of ratios of P12 cells to P4 cells. Negative values indicate that the genes are present in higher amounts in the P4 group, while positive values indicate that the genes are present in higher amounts in the P12 group. The number 1 indicates two-fold increase.

			В			С				D		
Pericyte genes	baseMean	log2(P8/F	Astrocyte ge	nes baseMean	log2(P8/P4)		IGF family	baseMean	log2(P8/P4)	HLA family	baseMean	log2(P8/P4
MCAM (CD146)	873.926007	B -1.163	S100B	0.8278594	-3.103		IGFN1	3.1147434	-3.438	HLA-F-AS1	46.508011	-0.554
KCNJ8	779.107206	7 -1.057	KCNJ10	2.3269112	-1.828		IGF1	950.29354	-2.828	HLA-E	19274.416	0.460
ENG (CD105)	41156.0652	2 -1.050	GFAP	14.007791	-1.411		IGFBP4	138000.82	-1.398	HLA-G	25.908068	1.726
TBX18	1881.09021	5 -0.594	NFIA	1381.1178	-0.835		IGFLR1	72.843573	-0.932	HLA-F	1663.3242	1.789
ZIC1	683.152706	7 -0.587	RYR3	21.324956	-0.701		IGFBP6	32914.736	0.138	HLA-A	49359.42	1.840
FOXF2	1040.35364	-0.546	VIM	247854.46	-0.649		IGF1R	4109.8911	0.299	HLA-C	62319.115	1.908
VTN	115.075484	3 -0.435	WIF1	0.1193208	-0.583		IGF2BP1	940.45655	0.306	HLA-L	149.72705	1.981
THY1 (CD90)	42730.9123	-0.418	CD44	33621.445	-0.456		IGF2BP3	100.30526	0.373	HLA-H	2167.05	2.178
ACTA2	19165.1388	-0.277	SOX9	554.51307	-0.312		IGF2R	13661.302	0.672	HLA-B	48721.491	2.404
CNN1 (Calponin)	3896.57546	2 -0.232	NFIX	29611.134	-0.283		IGF2BP2	4229.401	0.800	HLA-V	12.611372	2.497
ANPEP (CD13)	29006.3073	B -0.186	SLC1A2	44.799152	0.110		IGFBP7	41457.545	0.895	HLA-J	33.145076	4.750
ABCC9	2088.47090	0.035	SLC1A3	339.3898	0.193		IGFBP3	560598.41	1.106			
TAGLN	132897.775	5 0.094	NFIB	3120.127	0.246		IGFBP5	171968.46	1.311	1		
PDGFRB	25818.2102	8 0.229	TNC	75310.774	0.445		IGF2	1151.01	1.401	1		
NT5E (CD73)	24614.9016	7 0.560	GJA1	13521.622	0.980		IGFBP2	42.736512	1.865	1		
FOXC1	1448.64571	5 1.047	ALDH1L1	0.5035779	1.435							
			HEPACAM	0.3943449	2.169							
						F						
							Microglia genes	baseMean l	og2(P8/P4			
Vicroglia genes b	aseMean log2	2(P8/P4)	Microglia genes	baseMean	log2(P8/P4)		TLR4	1425.179	0.373			
PI1 (.8467581	-3.128	TLR3	302.6554057	0.200		CSF1	8806.659	0.570			
TM2A 6	0.124383	-2.063	GPR34	1.940852482	0.329		CISD	18969.61	0.637			
YROBP :	.3654746	-1.989	ITM2B	20646.43105	0.539		GAS6	26293.38	0.923			
GAS6-AS1	.2532602	-1.828	CD74 (HLA-DR)	25.99002444	0.616		CD274	88.93981	1.094			
TGAM	.2285244	-1.284	CD200R1	1.846806044	0.625		IL34	57.65796	1.604			
VERTK 4	.8751891	-1.092	RUNX1	7207.822949	0.682		SIGLEC11	0.275384	1.626			
DLFML3 :	.1923.391	-0.997	SIRPA (CD172a)	9762.472758	0.950		TLR2	5.3/200/	1.764			
SF1R 2	7.002647	-0.712	AIF1	0.000) NA		CX3CR1	3.401683	1.885			
ROS1 :	166.4418	-0.678	P2RY14	6,701	-4.650		CD14	112.1942	2.277			
SELPLG 2	11.69131	-0.415	P2RY11	1.270	-3.720		CSF3	50.5019	2.943			
IMEM119	2249.937	-0.334	P2RY4	1.558	-3.156		CD200	67.63061	3.155			
ENTPD1 (16.30073	-0.330	P2RY6	170.318	-1.536		CD163	18.056	4.356			
CD68	812.4687	-0.228	P2RY2	12.924	-0.883		CSF2	7.801062	6.479			
PTPRC	.9719904	-0.158	P2RY12	6.403	-0.729		SIGLEC15	26.81242	-2.294			
RGS10	631.9165	0.146	P2RY1	0.749	2.125		SIGLEC16	2.572308	0.755			
				0.715			SIGLEC10	0.377671	-0.567			
							ISIGLEC9	0.250838	0.140			

Supplementary Figure S12. Additional results from transcriptome analysis for P4 vs. P8 DEGs). (A) Collagen-related genes for P4 vs. P8 group. (B) Laminin-related genes for P4 vs. P8 group. (C) Genes related to metabolism (no significant change); (D) Genes related to HLA molecules; (E) Genes related to CD markers for P4 vs. P8 group. (F) Additional genes related to CD markers for P4 vs. P8 group.

The numbers are the Log2 values of ratios of P12 cells to P4 cells. Negative values indicate that the genes are present in higher amounts in the P4 group, while positive values indicate that the genes are present in higher amounts in the P12 group. The number 1 indicates two-fold increase.

Α			в													
Collagen genes	baseMean	log2(P8/P4)	Lamin	ins				Metabolis	m							
COL22A1	19.02668966	-4.290	ECM g	ene b	aseMean	log2(P8/P4)		GeneNam	е	log2(P8/P4) GeneNan	e log2(P8	3/P4)			
COL28A1	2.15654904	-3.670	LAMA	2 1	10409.852	-0.348		FASN		-1.713	PKM	0.	.008			
COL17A1	14.47717403	-3.182	LAMB	4 1	.9424711	-0.240		OGDH		-1.104	SUCLA2	0.	.018			
COL6A6	39.05414512	-2.885	LAMA	5 1	562.7417	-0.124		G6PD		-0.980	PFKL	0.	.260			
COL21A1	61.78972475	-1.975	LAMA	1 6	584.37834	0.056		IDH2		-0.747	ALDOC	0.	.311			
COL9A3	53.37389936	-1.716	LAMB	2P1 3	8.9517584	0.062		SLC38A2		-0.544	GAPDH	0.	.372			
COL14A1	5330.296083	-1.612	LAMA	4 2	4891.186	0.111		IDH1		-0.534	GPI	0.	.419			
COLEC12	3251.779381	-1.496	LAMC	2 1	015.8622	0.262		IDH3B		-0.502	LDHA	0.	.502			
COL9A2	95.30564992	-1.446	LAMB	2 4	15049.492	0.301		PDHA1		-0.489	ALDOA	0.	.555			
COLGALT1	16081.32484	-0.490	LAMC:	1 1	17365.62	0.375		SDHA		-0.465	PGM1	0.	.580			
COL5A3	8683.017178	-0.254	LAMB	3 3	890.67252	0.426		SLC25A1		-0.458	GFPT1	0.	.589			
COLGALT2	276.7657438	0.253	LAMB	1 3	80549.548	0.427		GOT2		-0.396	PGAM1	0.	.751			
COL27A1	1348.309875	0.331	LAMC	3 0).8789969	0.575		ACO1		-0.385	ENO1	0.	769			
COL18A1	3090.377486	0.360	LAMA	3 1	159.53939	1.364		MDH2		-0.317	GOT1	1.	.039			
COL1A2	2078111.224	0.387	FN1	3	336999.1	1.073		ACAA1		-0.276	SLC1A5	1.	.262			
COL1A1	4702004.515	0.389	VTN	1	15.07548	-0.435		ACO2		-0.226	PGK1	1.	.505			
COL6A1	285002.3357	0.403	CSPG4	. 4	073.0969	-2.099		GLUD1		-0.198	HK2	1.	.711			
COL6A2	248978.9651	0.445	CSPG5	1	1.6029233	-0.551		MDH1		-0.146	PDK1	2.	.089			
COL5A1	330811.9863	0.532	П					SLC25A11		-0.055	SLC2A1 (GI	UT1 3.	.090			
COL12A1	186271.7967	0.559									-					
COL6A3	198067.6591	0.647	CD Marke	r baseMea	n log2(P8	/P4) CD N	arker	baseMean	log2	(P8/P4)	E					
COL16A1	58461.76716	0.717	CD24	78.00052	4 -4.6	70 CD27		8.594487665	(0.031	CD320	2006.7097	-0.403	CD72	18.9656551	1.037
COL3A1	1105710.498	0.803	CD37	0.884608	6 -2.2	08 CD81		35543.51401	(0.056	CD79A	6.4168097	-0.400	CD274	88.93980647	1.094
COL5A2	133287.175	0.948	CD1D	0.873845	5 -2.0	70 CD27	-AS1	375.023374	(0.075	CD3EAP	744.93362	-0.392	CD55	2308.998904	1.123
COL4A2	77603.23522	1.003	CD160	5.052208	- 1.8	02 CD47		3483.289107	(0.139	CD151	23550.369	-0.248	CD34	588.6512124	1.169
COLEC10	19.99988239	1.269	CD22	0.606706	8 -1.5	58 CD7		7.32564829	(0.146	CD68	5812.4687	-0.228	CD163L1	81.10102244	1.472
COL4A1	71583.32838	1.315	CD93	5.932798	2 -1.2	01 CD46		3672.215982	(0.179	CD63	41303.909	-0.203	CD38	129.0682795	1.538
COL11A1	12369.87606	1.315	CD4	9.970278	-1.0	31 CD16	4	15683.86198	(0.231	CD2BP2	2912.9015	-0.195	CD177	12.65214833	1.563
COL8A2	2251.718871	1.389	CD36	2959.498	- 0.8	48 CD22	6	7.311187496	(0.254	CD19	1.1106145	-0.160	CD82	531.3420725	1.702
COL4A4	67.26282092	1.491	CD248	82408.99	5 -0.6	38 CD2A	Р	1583.141664	().379	CD276	8370.6867	-0.125	CD79B	1.162489724	1.759
COL7A1	1380.109014	1.497	CD59	48905.44	9 -0.6	25 CD70		42.09056305	(0.425	CD99	32663.45	-0.043	CD28	2.504790373	2.078
COL10A1	27.49548904	1.529	CD300C	4.681732	- 0.6	22 CD30	2	830.211304	(0.463				CD14	112.194181	2.277
COL1A2-AS1	12.24391896	1.610	CD101	8.160124	7 -0.5	72 CD83		22.10610543	(0.481				CD200	67.63061132	3.155
COL8A1	15809.3176	2.534	CD81-AS1	14.94840	15 - 0.5	41 CD58		275.9994606	(0.507				CD80	7.499752035	3.502
COL15A1	5607.191027	2.922	CD109	9943.304	- 0.4	89 CD74		25.99002444	(0.616				CD163	18.05600314	4.356
COL25A1	11.7449788	2.936	CD44	33621.44	5 - 0.4	56 CD20	OR1	1.846806044	(0.625						
			CD9	1748.916	i5 -0.4	32 CD96		6.120009505	(0.696						
			CD40	28.18519	8 -0.4	07 CD33		1.101263924	0	0.930						

Supplementary Figure S13. Heatmaps for DEGs of P4 vs. P8 only in Venn Diagram.

SUGP1

	min	
row	min	row max
- N	0.4 - 0.0.4	
1 7 1	P4 8 8 8 8	id
		PRKAR1A
		LETM2
		TRMT61A
17		OGFOD2
		FAM92A
		CUL2 COX6B2
		FAM217B
		ZNF778
		GUSBP3 ZNE283
-		DNAH2
		CEP83-DT
		ADAMIS8 NUBPL
		ZNF195
		ZNF813
		ZNF225 ZMYND10
		ANKRD26P1
		SGPP2
		CIAO2A
		PGM5P4-AS1
		BRK1
		NEIL2 C7orf26
		COX18
		PSMC6
		PWAR5
		MAGOH
		CYB5A
		SNORA92
		LCMT1-AS1
		HMMR-AS1
		LOC101060391
		MYL4 FOXD4L6
		PTPN2
		PCDHA6
		PSD2 LOC652276
		KIF5A
		ZNF141
		ZNF132 WRN
		TAF1B
_		HOPX
		LOC643201 NCR3LG1
		ZNF510
		CREB3L3
		TTC4
		THTPA
		AP4B1-AS1
		GTF2IP1
		RBM38
		UTP15
		EPHX2
		MED21
		SLC4A1AP
		ZNF671 PECR
		LCORL
		CCDC61
		PCCA
		TMEM100
		GAS6-AS1
		LOC100128242
		ZNF112
		KLHL34
		CD160
		GPATCH1
		PCDHGA8
		KCNRG
		F10202-A01

row min	
F 0 0 7 F 0 0	0.4
P44 P4	B B id
	AGO1
	FAF1
	LSG1
	ZNF66
	ACSBG1
	LCLAT1
	PRDM2
	CBX2
	CLDN2
	RORA-AS1
	PCDHA7
	FIP1L1
	FAN1
	ZNF432
	GIPC3 CDK5RAP1
	FAM186B
	NNAT
	ZNF530
	FGF13
	ZNF174
	LOC101928323
	SOD2-OT1
	FAM160B2
	ESR1
	LOC441081
	ZSCAN20
	HCRTR1
	LOC441454
	CASC10
	GPC5
	XKR5
	LOC641367 FANCI
	DNALI1
	FAM104B
	NIP7 MTERE2
	MRPL22
	CNOT9
	ARHGEF16
	BEAN1
	FBH1
	PEX10
	MAP10
	PITPNA-AS1
	PROB1
	LOC100268168
	GHET1
	VAMP3
	RPP30
	FAM169A
	GCSHP3
	DAND5
	SLC25A44
	CCDC24
	SERINC5
	INTS2
	KRT9
	LOC101928103
	GPLD1 USP15
	C14orf93
	IRX2
	GLUD2
	GPR19
	VPS33B
	PRTG
	UBE2QL1
	O D L L WE I

ow max

source min	
row min	row max
-004-004	
4 4 4 8 8 8 8	
	CD144
	ZNE169
	LOC100506100
	ASB9
	SMPD2
	LOC100128885
	ZNE681
	TRPV3
	SAP25
	POLR2I
	LOC101929718
	ZNE710-AS1
	C2orf48
	RABIF
	MAGIX
	ZNF786
	RDM1
	ZNF398
	FGD3
	LOC105377590
	LINC02511
	KRT85
	THOC1
	LOC101928000
	RHBDL3
	MT1A
	COL28A1
	ZFP14
	FEF1A2
	AQP9
	ZNF418
	LINC00707
	TGM3
	TMF1
	TRAM1L1
	ALDOB
	DNHD1
	PREX2
	TM4SE4
	TMEM231
	PCLO
	MIXL1
	HIST1H2AM
	ELP5
	IL17RD
	MUT
	TERC
	POLR2J3
	DUSP23
	LRP4-AS1
	LOC728158
	MCEE
	NUDT7
	LOC100506472
	ZNF142
	EED
	KRT13
	ANKEF1
	PINX1
	SCARNA10
	ZNF117
	MMEL1
	LINC00028
	GTE2H2C
	ZNF254
	CGB8
	ARMC2
	KREMEN2
	LINC00506
	THOT THEAL

Supplementary Figure S14. Heatmaps for DEGs of P4 vs. P12 only in Venn Diagram.

row	min					row r
4-1	e-+ -	12-1	12-2	12-3	12-4	
idala	6.0	í d	٩	۵.	۵.	id
	۰.		-	-		ZNF394 RC3H1
	1					BCL2L2-PABPN1
						BCL2L15
						CITA PPP1R26-AS1
						SLC44A4
						SEC14L1P1
						ZNF8-ERVK3-1
- 20						CPLX1
						FOXP3
						FLJ42627
						MIR17HG
						MUC6
						ASRGL1
						GSEC
						SSC4D
	_		_			STRADA
			-		-	LINC01140
						PRDM11
						LOC105369340
			-		-	ZNF776 NUDT17
						FER1L5
						RAB26
						FLAD1 RSC1A1
	į,					MIOS
						TNNC1
				_		ZSWIM1
	H			۲		ZNF701
						IL16
						ELMOD1
						INE1
	đ					GRK6P1
						GACAT2
						LINGO1 RNF222
						ZNF727
						C11orf95
						CD93 EGE14-AS2
						KIF25
						LOC101927974
	-				_	SLC25A27
	mi					ESPNL
						MRRF
	_					ZNF442
						POGZ
						LOC101928068
						MICB-DT
						TUBB2B
						PRSS30P
	_					ZNF660
						LIFR-AS1
					1	C8orf37
						FRMPD3
						SLC46A2
						SLC16A13
						MRPL30
						CCDC162P
						FSD2
						RAMP2-AS1
						ALG1L9P
						LOC391322
						I MEM239 PLIN4
						TRIM17
						SDHAP2
						HOXB-AS1
						LOC100506082
						KLHL26
						MOB3C
						LOC729867
						RDH13
						GRB7
						ATP6V0CP3 NRPE19
						ZNF746
				1		PPP1R12A-AS1
						ADAMTS17
						NKX3-2
						NXF3
						LANCL3 SERPINES
						02NFIND0

row min	
4-1 4-1 12-1 12-2 12-3 12-4	
нададааа	Id BACCELACI
	C16orf71
	TLDC2
	LOC101928111
	LOC102546299
	FAM71F1
	EFNA4
	KCNA7
	FLJ31356
	TMED10P1 SERP2
	ZNRF3-AS1
	ADAMTSL2 PARD6G-AS1
	TSC22D4
	BCRP2
	UBA3
	ZRSR2
	LOC283335
	FAM157B
	WNT2B
	LINC00526
	CDHR4
	CCDC173
	ZNF749 SIT1
	RSPO4
	LOC729224
	LOC100128494
	ZNF287
	MRM2
	CD81-AS1
	ZNF584
	DRD1
	WDFY3-AS2
	CXorf56
	OXER1 LOC645967
	LINC01843
	LOC284933
	CD300C
	SDHAP1
	RRAGB
	APOE
	MALINC1
	SULT1A3
	C19orf84
	FMO3
	LPAR5
	SNX15
	BIRC7 ZNF266
	TDRD12
	SYT5 ARHGAP5.AS1
	BBS12
	TTYH2 LOC286437
	POMC
	PPARGC1A PODXL2
	ZNF512
	WASH5P CPN2
	OGDHL
	PCF11-AS1
	GJA9-MYCBP
	CNTNAP3
	CDC42BPG KTN1-AS1
	LCMT1
	LOC100128398 7SCAN22
	PTOV1-AS1
	LOC729218 SRGAP1
	PLEKHG6
	ZDHHC11
	ZNF702P
	SNAI3-AS1
	GJB5
	CYP2T1P
	USCR9 ZNF841
	SAMD15
	LOC375196 GMEB2
	SRRM5

row	min			row
		_	la la	
22	12	12-1	12-3	
1 2 2	g g	àà	àà	id
				RN7SL832P
_				KIAA0556
				LINC01589
				PACSIN1
				TLL1
				LOC102725072
				DDX11L5
	-			ACOT12
				TAF8
	- 2			PLEKHG1
				MBLAC1
				RALY-AS1
				RGP1
		_	_	BMS1P4
				SERF1B
				POC1B-GALNT4
				C9orf72
				LOC101927969
			_	LINC01144
				TNEPSE13C
-				CTAGE7P
				KLB
				NAALADL1
				VAX2
				MDGA2
				KCNB1
				VGF
				KAT5
				USF3
				RILPL2
				GYPE
				GPATCH2 CEP350
				PEX3
	- 2			TMEM191B
				LOC101448202
				LINC00235
	_			MATN1
		_		NPPA-AS1
-2	-		-	CACNA2D2
				FIZ1
				VSIG10L
				IPO9-AS1
				TMEM110-MUSTN1
	•	_		CNRH1
			-	HGC6.3
				OR7E12P
				KMT2A
				LOC102724064
			-	LAG3
			-	FBXO3
				ABCB7
				ZNF781
				SLFN12L
				ZNF737
			-	USA12 HIST1H3H
				LILRB3
				RBM12B-AS1
				ZCCHC9
				HIST1H4H
				L RRIO3
				NRG4
				RAD1
				SLC35F4
				MAEL
				HIST1H2AH
				HIST1H2AE
				HIST1H4F
				DANT2
				ZNF124
				ZNF239
				SETD2
				ALKBH2 ETOJIT1
				FAM13A-AS1
				EXOSC1
				OAZ3
				TMPRSS9
				MED14OS
				DDN
				ANKRD20411P
				LOC101929431
				TLE6
				SEC24B-AS1
				GPALPP1
				OPA1
				7NF213_AC1
				ZKSCAN3
				RPS10-NUDT3
				PPP1R12B
				CEP295NL

Supplementary Figure S15. Schematic of proteomics analysis work flow for hASCs at P4, P8, and P12.

Supplementary Figure S16. GO analysis of DEPs (P8/P4 hASCs with 90 DEPs)

Supplementary Figure S17. Pathway enrichment analysis of DEPs (P8/P4)

B.

Supplementary Figure S18. GO analysis of DEPs overlapped between P8/P4 and P12/P4 hASCs.

Supplementary materials for RNA-Seq data analysis

Supplementary Spreadsheet 1. "P4_vs_P12_Deseq2_Plus" for RNA-Seq data analysis.

DEGs for P4 and P12 comparison.

Supplementary Spreadsheet 2. "P4_vs_P8_Deseq2_Plus" for RNA-Seq data analysis.

DEGs for P4 and P8 comparison.

Supplementary Tables

ID	Years old	BMI	race
Donor1	43	24.8	caucasian
Donor2	40	21.1	caucasian
Donor3	39	<25	caucasian

Supplementary Table S1. The donor information for the derived hASCs used in this study.

Supplementary Table S2. Primer sequences for target genes in RT-PCR analysis.

Gene	Forward primer 5' to 3'	Reverse primer 5' to 3'
Oct-4	CAGCAGATCAGCCACATCGCC	TGAGAAAGGAGACCCAGCAGCC
Nanog	CCTGTGATTTGTGGGGCCTG	GACAGTCTCCGTGTGAGGCAT
SOX2	GTATCAGGAGTTGTCAAGGCAGAG	TCCTAGTCTTAAAGAGGCAGCAAAC
P53	CTGGACGACAGGCAGACTTT	GCACAAACACGAACCTCAAA
P15	GCTGTTTCATCAGCAGCCTAA	TTCCACAATGGAGCTAGAAGCA
(CDKN2B)		
P21	GAGACTCTCAGGGTCGAAAACG	GGATTAGGGCTTCCTCTTGGAG
NFKB	GACGAGCTCCGAGACAGTGAC	GAGGCACCACTGGTCAGAGAC
mTOR	GCCTGGATGGCAACTACAGAA	CCAGTTCAGCAAGGGGTCATA
PIK3CA	TTGGAGAACTTGGCCTTCATCT	ACCCAATTAGGTCTGAGGACTGAA
AKT1	TATCGTGTGGCAGCACGTGTA	GCCGTGAACTCCTCATCAAAAT
PTEN	GGCTGCTGTTGGCTTATCAGT	AAACGCGGTAATTTTCAGAGC
SIRT1	TCGCAACTATACCCAGAACATAGACA	CTGTTGCAAAGGAACCATGACA
SIRT3	GCATCCCTGCCTCAAAGC	CGTCAGCCCGAATGTCCTC
CD38	TTCCCGCAGTTTTTCTTTGAA	GCACCTCTCAGCTGCCTACTG
CD73	GCCTGGGAGCTTACGATTTTG	TAGTGCCCTGGTACTGGTCG
NAMPT	CTCCATTCTGAGCACCAAACG	ATGCCATTTGCTTTTGTCTGG
PDK1	AAACAGGGGAGCTTTGTCTGG	CTGCCCATTCACATCCCTCTA
PKM2	AAAAATGGATGCCCAGAGGAC	GAGTCGGCTTCAATGGAACAA
LDHA	CCTTGAGCCAGGTGGATGTTT	CACTGGATCCCAGGATGTGAC
G6PD	CTACCCGAGCCCAGCTACATT	TTCTGTTGGGCTGGAGTGAGT
(GL6PD)		

6PGD	CCATGCCCTGTTTTACCACTG	AGGTGTGAGCCCCGAAGTAAT
(6PGLD)		
TALDO1	CTGTCATCAACCTGGGAAGGA	GGGCGAAGGAGAAGAGTAACG
TKTL1	ACCTTGGGATTCTGTGTGCTG	CCTAACAAGCTTTCGCTGCTG
TNFα	TGGCCAATGGCGTGGAGCTG	GTAGGAGACGGCGATGCGGC
IL-6	GAACTCCTTCTCCACAAGCG	TTTTCTGCCAGTGCCTCTTT
IL-1β	CCACAGACCTTCCAGGAGAATG	GTGCAGTTCAGTGATCGTACAGG
IL-12β	CCAAGGGGTGACGTGCGGAG	GGTGGGTCAGGTTTGATGATGTCCC
IL-10	AAGCCTGACCACGCTTTCTA	ATGAAGTGGTTGGGGGAATGA
TGF-β	CCTACATTTGGAGCCTGGAC	TGTCCTTAAATACAGCCCCC
CD163	CCAGTCCCAAACACTGTCCT	ATGCCAGTGAGCTTCCCGTTCAGC
ALP	CAGTCTGCTGTGCCCCTGC	GTAGTTCTGCTCGTGGACGCC
BMP2	TTCCCCGTGACCAGACTTTTGG	GCCACTTCCACCACGAATCCAT
Osteo-	GGCAGCGAGGTAGTGAAGAGAC	GAAAGCCGATGTGGTCAGCCAA
calcin		
Osteo-	AGCGGAAAGCCAATGATGAGAGC	ACTTTTGGGGTCTACAACCAGCAT
pontin		
Runx2	CCAACCCACGAATGCACTATC	TAGTGAGTGGTGGCGGACATAC
CEBPA	AGCCTTGTTTGTACTGTATG	AAAATGGTGGTTTAGCAGAG
FABP4	ACGAGAGGATGATAAACTGGTGG	GCGAACTTCAGTCCAGGTCAAC
LPL	CTGACCAAGGATAGTGGGATATAG	GGTAACTGAGCGAGACTGTGTCT
PPARG	AGCCTGCGAAAGCCTTTTGGTG	GGCTTCACATTCAGCAAACCTGG
TFEB	CCTGGTGGAGATTCCCTGTCT	CAGGACCAGTTGCCTCAGATG
BECN1	ACTGTGTTGCTGCTCCATGCT	AACGGCAGCTCCTTAGATTTGT
LAMP1	TCACACGTAGGACGCATGAAG	GAAGCGCTCCAGACACTCATC
MFN1	AAATGCTCAAAGGGTGCTCCT	GATGCATTATCTGGCGTTGCT
MFN2	GATGCCTGTCACCAAGGTGTT	TGCTTTTTGGGAGAGGTGTTG
FIS1	CTGGTGCGGAGCAAGTACAAT	CACGGCCAGGTAGAAGACGTA
DNM1L	CGATGCACTTTTCTCCAGCAC	TTCCGTTGTTTCTTGCCTCTG
GAPDH	TCACTGCCACCCAGAAGACTG	GGATGACCTTGCCCACAGC
TUB1a	TGAGGAGGTTGGTGTGGATTC	AAAAGCAGCACCTTTGTGACG
(TUBA1A)		

Supplementary Table S3. DEPs between P8 and P4 hASCs. For a total of 90 DEPs, 44 were up regulated and 46 were down regulated.

Protein name	Gene	Molecular Weight	Fold Change (p8 vs p4)
Protein AHNAK2	AHNAK2	617 kDa	8
Keratin, type I cytoskeletal 14	KRT14	52 kDa	6.6
Enoyl-CoA delta isomerase 2, mitochondrial	ECI2	44 kDa	5.2
Desmin	DES	54 kDa	5.2
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	ECH1	36 kDa	3.8
Fibrillin-1	FBN1	312 kDa	3.3
Keratin, type II cytoskeletal 8	KRT8	54 kDa	3.3
Collagen alpha-3(VI) chain	COL6A3	344 kDa	3.3
Paraspeckle component 1	PSPC1	59 kDa	3.2
Nuclear mitotic apparatus protein 1	NUMA1	238 kDa	3.1
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	NDUFA12	17 kDa	3
Probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase	NOP2	89 kDa	2.9
Acyl-coenzyme A thioesterase 9, mitochondrial	ACOT9	50 kDa	2.8
Lysosomal protective protein	CTSA	54 kDa	2.7
NAD-dependent malic enzyme, mitochondrial	ME2	65 kDa	2.7
Ribosome production factor 2 homolog	RPF2	36 kDa	2.7
Early endosome antigen 1	EEA1	162 kDa	2.7
Pyrroline-5-carboxylate reductase 1, mitochondrial	PYCR1	33 kDa	2.7
Ferrochelatase, mitochondrial	FECH	48 kDa	2.6
Lon protease homolog, mitochondrial	LONP1	106 kDa	2.6
Serine/arginine repetitive matrix protein 2	SRRM2	300 kDa	2.5
Mitochondrial import inner membrane translocase subunit Tim13	TIMM13	11 kDa	2.5
Monofunctional C1-tetrahydrofolate synthase, mitochondrial	MTHFD1L	106 kDa	2.5
Heat shock protein beta-7	HSPB7	19 kDa	2.5
Ras-related protein R-Ras2	RRAS2	23 kDa	2.4
Mitochondrial import receptor subunit TOM40 homolog	TOMM40	38 kDa	2.4
Semaphorin-7A	SEMA7A	75 kDa	2.4
Transmembrane emp24 domain-containing protein 5	TMED5	26 kDa	2.4
U1 small nuclear ribonucleoprotein C	SNRPC	17 kDa	2.4
NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial	NDUFV1	51 kDa	2.3

Adenosine deaminase	ADA	41 kDa	2.3
Heterogeneous nuclear ribonucleoprotein F	HNRNPF	46 kDa	2.2
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial	NDUFA9	43 kDa	2.2
40S ribosomal protein S27-like	RPS27L	9 kDa	2.2
Collagen alpha-2(VI) chain	COL6A2	109 kDa	2.2
Flotillin-1	FLOT1	47 kDa	2.2
Voltage-dependent anion-selective channel protein 3	VDAC3	31 kDa	2.2
Polycystin-2	PKD2	110 kDa	2.1
Epidermal growth factor receptor	EGFR	134 kDa	2.1
Isochorismatase domain-containing protein 2	ISOC2	22 kDa	2.1
ADP/ATP translocase 2	SLC25A5	33 kDa	2.1
Mitochondrial import inner membrane translocase subunit TIM50	TIMM50	40 kDa	2
Enoyl-CoA delta isomerase 1, mitochondrial	ECI1	33 kDa	2
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8	NDUFA8	20 kDa	2
Acid ceramidase	ASAH1	45 kDa	-2
Protein S100-A4	S100A4	12 kDa	-2
60S ribosomal protein L26	RPL26	17 kDa	-2
Exportin-1	XPO1	123 kDa	-2
Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1	GFPT1	79 kDa	-2
Isocitrate dehydrogenase [NADP] cytoplasmic	IDH1	47 kDa	-2
Prostaglandin G/H synthase 1	PTGS1	69 kDa	-2
Bcl-2-associated transcription factor 1	BCLAF1	106 kDa	-2
DNA-(apurinic or apyrimidinic site) lyase	APEX1	36 kDa	-2
Peptidyl-tRNA hydrolase 2, mitochondrial	PTRH2	19 kDa	-2
Interferon-induced protein with tetratricopeptide repeats 3	IFIT3	56 kDa	-2
ATP-dependent DNA helicase Q1	RECQL	73 kDa	-2
60 kDa SS-A/Ro ribonucleoprotein	TROVE2	61 kDa	-2
Peptidase inhibitor 16	PI16	49 kDa	-2.5
Aldose reductase	AKR1B1	36 kDa	-2.5
High mobility group protein B1	HMGB1	25 kDa	-2.5
Microtubule-associated protein RP/EB family member 1	MAPRE1	30 kDa	-2.5

ATP-dependent 6-phosphofructokinase, platelet type	PFKP	86 kDa	-2.5
EH domain-containing protein 1	EHD1	61 kDa	-2.5
Malignant T-cell-amplified sequence 1	MCTS1	21 kDa	-2.5
Ubiquitin carboxyl-terminal hydrolase 5	USP5	96 kDa	-2.5
Cysteine and glycine-rich protein 2	CSRP2	21 kDa	-2.5
Drebrin-like protein	DBNL	48 kDa	-2.5
Actin-related protein 2/3 complex subunit 3	ARPC3	21 kDa	-2.5
ADP/ATP translocase 1	SLC25A4	33 kDa	-2.5
Bifunctional purine biosynthesis protein PURH	ATIC	65 kDa	-2.5
Hepatoma-derived growth factor	HDGF	27 kDa	-2.5
Sorbin and SH3 domain-containing protein 2	SORBS2	124 kDa	-2.5
Interferon-induced GTP-binding protein Mx2	MX2	82 kDa	-2.5
Puromycin-sensitive aminopeptidase	NPEPPS	103 kDa	-2.5
Protein YIF1B	YIF1B	34 kDa	-2.5
Interferon-induced protein with tetratricopeptide repeats 1	IFIT1	55 kDa	-2.5
A-kinase anchor protein 12	AKAP12	191 kDa	-2.5
1,4-alpha-glucan-branching enzyme	GBE1	80 kDa	-2.5
NAD(P)H dehydrogenase [quinone] 1	NQO1	31 kDa	-2.5
Calponin-1	CNN1	33 kDa	-3.3
Myosin-10	MYH10	229 kDa	-3.3
Phosphoglucomutase-1	PGM1	61 kDa	-3.3
Purine nucleoside phosphorylase	PNP	32 kDa	-3.3
Integrin alpha-1	ITGA1	131 kDa	-3.3
Kinesin-1 heavy chain	KIF5B	110 kDa	-3.3
Dihydropyrimidinase-related protein 3	DPYSL3	62 kDa	-3.3
Myosin light chain 1/3, skeletal muscle isoform	MYL1	21 kDa	-5
Interferon-induced GTP-binding protein Mx1	MX1	76 kDa	-5
Protein-glutamine gamma-glutamyltransferase 2	TGM2	77 kDa	-10
Myosin-7	MYH7	223 kDa	-14.3

Supplementary Table S4.	Upstream analysis of DEPs (P8/P4 hASCs)
-------------------------	---

Upstream		Predicted	Activatio	p-value o	f
Regulator	Molecule Type	Activation State	n z-score	overlap	Target molecules in dataset
MAPK1	kinase	Activated	2.236	0.0157	EHD1,IFIT1,IFIT3,MX2,MYH7
	chemical - kinase				
SB203580	inhibitor	Activated	2.213	0.0413	IFIT1,IFIT3,MX1,NQO1,TGM2
fluticasone					
propionate	chemical drug	Activated	2	0.00578	IFIT1,MX1,PTGS1,TGM2
mir-122	microRNA	Activated	2	0.000531	KIF5B,MAPRE1,NPEPPS,TGM2
ВТК	kinase	Activated	2	0.00012	CTSA,IFIT1,IFIT3,MX1,MX2
oblimersen	biologic drug	Inhibited	-2	7.91E-05	IFIT1,IFIT3,MX1,MX2
	transmembrane				
TLR7	receptor	Inhibited	-2	0.00366	IFIT1,IFIT3,MX1,MX2
CREB1	transcription regulator	Inhibited	-2	0.00916	ARPC3,CNN1,CSRP2,MYH10,NDUFV1,RRAS2,SEMA7A
lipopolysaccharid					ADA,APEX1,EHD1,FBN1,HDGF,HMGB1,IDH1,IFIT1,IFIT3,MC
e	chemical drug	Inhibited	-2.033	0.00129	TS1,MX1,MX2,MYH7,NQO1,PFKP,PTGS1,TGM2
Interferon alpha	group	Inhibited	-2.082	0.0378	EGFR,IFIT1,IFIT3,MX1,MX2
IFNA2	cytokine	Inhibited	-2.18	0.00314	IFIT1,IFIT3,MX1,MX2,TGM2
					AKR1B1,HMGB1,IFIT1,IFIT3,ITGA1,MX1,NQO1,PFKP,PTGS1
IL1B	cytokine	Inhibited	-2.551	0.00174	,SLC25A4,TGM2
	chemical - endogenous				ADA,AKAP12,APEX1,COL6A3,DPYSL3,ECI2,EGFR,EHD1,HD GF,HNRNPF,IFIT1,IFIT3,ITGA1,KRT14,MYH7,NDUFV1,PNP,P
tretinoin	mammalian	Inhibited	-2.636	1.73E-06	TGS1,RPF2,SEMA7A,TGM2

Supplementary Table S5. DEPs between P12 and P4 hASCs. For a total of 318 DEPs, 86 were up regulated, and 232 were down regulated.

			Fold
	Gene	Molecular	Change by
Protein name	name	Weight	p12 vs p4
Dipeptidyl peptidase 4	DPP4	88 kDa	23
Integrin alpha-2	ITGA2	129 kDa	23
Calponin-1	CNN1	33 kDa	22
Keratin, type I cytoskeletal 14	KRT14	52 kDa	18
Lactadherin	MFGE8	43 kDa	11
	CACNA2D		
Voltage-dependent calcium channel subunit alpha-2/delta-1	1	125 kDa	9
Delta-sarcoglycan	SGCD	32 kDa	8.3
Synaptopodin-2	SYNPO2	118 kDa	6.6
Raftlin	RFTN1	63 kDa	6.3
Nexilin	NEXN	81 kDa	5.5
Flotillin-1	FLOT1	47 kDa	5.5
Plasma membrane calcium-transporting ATPase 4	ATP2B4	138 kDa	5.4
Ras-related protein R-Ras2	RRAS2	23 kDa	5.3
V-type proton ATPase 116 kDa subunit a isoform 1	ATP6V0A1	L96 kDa	5.2
Sorbin and SH3 domain-containing protein 2	SORBS2	124 kDa	5.1
ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2	BST1	36 kDa	4.8
Melanotransferrin	MELTF	80 kDa	4.7
Myosin regulatory light polypeptide 9	MYL9	20 kDa	4.5
Cysteine and glycine-rich protein 2	CSRP2	21 kDa	4.4
Myosin-10	MYH10	229 kDa	4.4
Myosin phosphatase Rho-interacting protein	MPRIP	117 kDa	4.4
Intercellular adhesion molecule 1	ICAM1	58 kDa	4.1
Actin, aortic smooth muscle	ACTA2	42 kDa	4.1
Superoxide dismutase [Mn], mitochondrial	SOD2	25 kDa	4
Solute carrier family 2, facilitated glucose transporter member 1	SLC2A1	54 kDa	4
Lysosomal protective protein	CTSA	54 kDa	3.8
Ankycorbin	RAI14	110 kDa	3.8
Large neutral amino acids transporter small subunit 1	SLC7A5	55 kDa	3.8
Aldehyde dehydrogenase X, mitochondrial	ALDH1B1	57 kDa	3.7
Matrix-remodeling-associated protein 7	MXRA7	21 kDa	3.7

Cell migration-inducing and hyaluronan-binding protein	CEMIP	153 kDa	3.7
Plasma membrane calcium-transporting ATPase 1	ATP2B1	135 kDa	3.4
Endoplasmic reticulum junction formation protein lunapark	LNPK	48 kDa	3.2
HLA class I histocompatibility antigen, B-44 alpha chain	HLA-B	40 kDa	3.2
BAG family molecular chaperone regulator 2	BAG2	24 kDa	3.1
ADP/ATP translocase 1	SLC25A4	33 kDa	3.1
Glutaredoxin-1	GLRX	12 kDa	3
Integrin beta-1	ITGB1	88 kDa	2.9
Selenoprotein M	SELENOM	16 kDa	2.9
Stromal interaction molecule 1	STIM1	77 kDa	2.9
Gamma-glutamyl hydrolase	GGH	36 kDa	2.9
Acid ceramidase	ASAH1	45 kDa	2.9
Mitochondrial import inner membrane translocase subunit Tim13	TIMM13	11 kDa	2.8
Peroxisomal acyl-coenzyme A oxidase 1	ACOX1	74 kDa	2.8
Guanine nucleotide-binding protein subunit beta-4	GNB4	38 kDa	2.7
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	ECH1	36 kDa	2.7
Utrophin	UTRN	394 kDa	2.7
Retinol dehydrogenase 10	RDH10	38 kDa	2.7
Microtubule-associated protein 1A	MAP1A	305 kDa	2.6
DnaJ homolog subfamily C member 5	DNAJC5	22 kDa	2.6
Polycystin-2	PKD2	110 kDa	2.6
Multidrug resistance-associated protein 4	ABCC4	150 kDa	2.6
Perilipin-2	PLIN2	48 kDa	2.6
GRAM domain-containing protein 2B	GRAMD2E	48 kDa	2.6
Cysteine and glycine-rich protein 1	CSRP1	21 kDa	2.5
N-acetylglucosamine-6-sulfatase	GNS	62 kDa	2.5
Copine-3	CPNE3	60 kDa	2.5
Polypeptide N-acetylgalactosaminyltransferase 2	GALNT2	65 kDa	2.5
Annexin A7	ANXA7	53 kDa	2.5
Enoyl-CoA delta isomerase 2, mitochondrial	ECI2	44 kDa	2.5

Heterogeneous nuclear ribonucleoprotein H3	HNRNPH3	37 kDa	0.5
Septin-7	SEPT7	51 kDa	0.5
Heterogeneous nuclear ribonucleoprotein A1	HNRNPA1	39 kDa	0.5
Procollagen galactosyltransferase 1	COLGALT1	72 kDa	0.5
Eukaryotic translation initiation factor 4 gamma 1	EIF4G1	175 kDa	0.5
Peptidyl-prolyl cis-trans isomerase FKBP3	FKBP3	25 kDa	0.5
Collagen alpha-1(XII) chain	COL12A1	333 kDa	0.5
Peptidyl-prolyl cis-trans isomerase FKBP7	FKBP7	26 kDa	0.5
ADP-ribosylation factor-like protein 1	ARL1	20 kDa	0.5
40S ribosomal protein S28	RPS28	8 kDa	0.5
Elongation factor 2	EEF2	95 kDa	0.5
Nuclear transport factor 2	NUTF2	14 kDa	0.5
Heterogeneous nuclear ribonucleoprotein U	HNRNPU	91 kDa	0.5
E3 ubiquitin/ISG15 ligase TRIM25	TRIM25	71 kDa	0.5
Proteasome subunit beta type-1	PSMB1	26 kDa	0.5
Coiled-coil domain-containing protein 47	CCDC47	56 kDa	0.5
Vigilin	HDLBP	141 kDa	0.5
Far upstream element-binding protein 1	FUBP1	68 kDa	0.5
Splicing factor 3A subunit 3	SF3A3	59 kDa	0.5
26S proteasome non-ATPase regulatory subunit 4	PSMD4	41 kDa	0.5
ATP-dependent RNA helicase A	DHX9	141 kDa	0.5
RNA-binding protein Raly	RALY	32 kDa	0.5
Serine hydroxymethyltransferase, mitochondrial	SHMT2	56 kDa	0.5
Guanine nucleotide-binding protein subunit alpha-13	GNA13	44 kDa	0.5
Cytoplasmic dynein 1 heavy chain 1	DYNC1H1	532 kDa	0.5
60S ribosomal protein L36	RPL36	12 kDa	0.5
Elongation factor 1-alpha 1	EEF1A1	50 kDa	0.5
RNA-binding protein 3	RBM3	17 kDa	0.5
26S proteasome regulatory subunit 7	PSMC2	49 kDa	0.5

Leucyl-cystinyl aminopeptidase	LNPEP	117 kDa	2.4
Reticulon-3	RTN3	113 kDa	2.4
Neudesin	NENF	19 kDa	2.4
Multidrug resistance-associated protein 1	ABCC1	172 kDa	2.4
Solute carrier family 12 member 4	SLC12A4	121 kDa	2.3
Dynamin-like 120 kDa protein, mitochondrial	OPA1	112 kDa	2.3
Tropomyosin alpha-3 chain	трмз	33 kDa	2.3
PDZ and LIM domain protein 5	PDLIM5	64 kDa	2.3
Plasminogen activator inhibitor 1	SERPINE1	45 kDa	2.2
Lysosome membrane protein 2	SCARB2	54 kDa	2.2
MICOS complex subunit MIC19	СНСНДЗ	26 kDa	2.2
Connective tissue growth factor	CTGE	38 kDa	2.2
	ATP6V0D	SORDU	
V-type proton ATPase subunit d 1	1	40 kDa	2.2
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2	PLOD2	85 kDa	2.2
Lysosomal acid glucosylceramidase	GBA	60 kDa	2.2
Protein O-mannosyl-transferase TMTC3	тмтсз	104 kDa	2.1
ATP synthase subunit gamma, mitochondrial	ATP5F1C	33 kDa	2.1
Guanine nucleotide-binding protein G(g) subunit alpha	GNAQ	42 kDa	2.1
Thy-1 membrane glycoprotein	THY1	18 kDa	2.1
Calasia.1 catalutic subunit	CAPN1	92 kDa	2.1
	CEDDINES		2.1
			2.1
Lysyl oxidase nomolog 2		87 KDa	2.1
Inorganic pyrophosphatase	PPA1	33 kDa	2.1
CD166 antigen	ALCAM	65 kDa	2.1
Tropomyosin beta chain	TPM2	33 kDa	2
NADH denydrogenase [ubiquinone] 1 aipna subcomplex subunit 9, mitochondrial		43 kDa	2
Moorin	MEN		0.5
			0.5
Nascent polypeptide-associated complex subunit alpha, muscle-specific form	NACA	205 KDa	0.5
Poly(U)-binding-splicing factor PUF60	PUF60	60 kDa	0.5
Interleukin enhancer-binding factor 3	ILF3	95 kDa	0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58	ILF3 NOP58	95 kDa 60 kDa	0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58	ILF3 NOP58	95 kDa 60 kDa	0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial	ILF3 NOP58 REXO2	95 kDa 60 kDa 27 kDa	0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1	ILF3 NOP58 REXO2 CAPRIN1	95 kDa 60 kDa 27 kDa 78 kDa	0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa	0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa	0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa	0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0)	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 ENO1 COL1A1	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 EN01 COL1A1 SNX9	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa 67 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A	ILF3 NOP58 REX02 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 EN01 COL1A1 SNX9 PSMC3	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 139 kDa 67 kDa 49 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin	ILF3 NOP58 REX02 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 EN01 COL1A1 SNX9 PSMC3 PLEC	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 139 kDa 67 kDa 49 kDa 532 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9 26S proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B	REXO2 CAPRIN1 RSL1D1 FUS IGF2B22 KRT8 SLC1A5 ENO1 COL1A1 SNX9 PSMC3 PLEC DDX39B	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa 67 kDa 49 kDa 532 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10	REXO2 CAPRIN1 RSL1D1 FUS IGF2B2 KRT8 SLC1A5 ENO1 COL1A1 SNX9 PSMC3 PLEC DDX39B RPS10	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa 67 kDa 49 kDa 532 kDa 19 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 EN01 SNC3 EN01 SNC3 PLEC DD1X39B RPS10 GPI	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa 67 kDa 49 kDa 532 kDa 49 kDa 53 kDa 63 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta	ILF3 NOF58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A50 EN01 COL1A1 SNX9 PSMC3 PLEC DDX39B RPS10 GPI COL2	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa 67 kDa 49 kDa 532 kDa 49 kDa 532 kDa 63 kDa 53 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9 26S proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 40S ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic	ILF3 NOF58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 EN01 COL1A1 SNX9 PSMC3 PSMC3 PSMC3 PSMC3 PSMC3 PSMC3 PSMC3 CM PS	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 139 kDa 67 kDa 49 kDa 532 kDa 19 kDa 63 kDa 51 kDa 51 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9 26S proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 40S ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 EN01 COL1A1 SNX9 PSMC3 PSMC3 PSMC3 PLEC DDX39 RPS10 GP1 GD12 CP1 CP1 CP1 CP1 CP1 CP1 CP1 CP1 CP1 CP1	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 139 kDa 67 kDa 49 kDa 532 kDa 19 kDa 63 kDa 51 kDa 51 kDa 28 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 26S proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 40S ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutamine-fructose-6-phosphate aminotransferase [isomerizing] 1	ILF3 NOP58 REX02 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 EN01 COL1A1 SNX9 PLCC DX30 RPS10 GP1 GP1 GP1 COL2 CP1 CP1 CP1 CP1 CP1 CP1 CP1 CP1 CP1 CP1	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 139 kDa 67 kDa 49 kDa 532 kDa 19 kDa 63 kDa 51 kDa 51 kDa 28 kDa 28 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 26S proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 40S ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(cf) hieroidan exterie 3	ILF3 NOF58 REX02 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A COL1A1 SNX9 PSMC3 PLCC DX38 RPS10 GP1 GP1 GP1 GP1 GP1 GP1 GP1 GP1 GP1 GP1	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 53 kDa 66 kDa 54 kDa 139 kDa 139 kDa 67 kDa 49 kDa 532 kDa 19 kDa 63 kDa 51 kDa 10 kDa 28 kDa 79 kDa 54 kDa 29 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(rC)-binding protein 2	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A COL1A1 SNX9 PLCC DDX39B RPSIO3 GPI GPI GDI2 GPI GPI GPI GPI GPI GPI GPI GPI GPI CM COL1A1 CM CM CM CM CM CM CM CM CM CM CM CM CM	95 kDa 60 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa 67 kDa 49 kDa 532 kDa 49 kDa 53 kDa 51 kDa 51 kDa 51 kDa 52 kDa 53 kDa 53 kDa 54 kDa 53 kDa 53 kDa 54 kDa 53 kDa 54 kDa 55 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(rC)-binding protein 2 Creatine kinase B-type	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KRT8 SLC1A5 EN01 COL1A1 SNX9 PSMC3 PSMC3 PSMC3 PSMC3 PSMC3 PSMC3 PSMC3 PSMC3 CM PSMC3 CM FUS CM GPI CM GPI CM GPI CM CM CM CM CM CM CM CM CM CM CM CM CM	95 kDa 60 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa 67 kDa 49 kDa 532 kDa 49 kDa 53 kDa 51 kDa 21 kDa 25 kDa 79 kDa 54 kDa 79 kDa 54 kDa 79 kDa 54 kDa 54 kDa 53 kDa 43 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Nueutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9 26S proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 40S ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutamine-fructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(rC)-binding protein 2 Creatine kinase B-type Alpha-centractin Emerin	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2B2 KRT8 SLC1A5 EN01 COL1A1 SNX9 PSL07 COL1A1 SNX9 PSL07 COL1A1 COL1A1 SNX9 PSL07 COL1A1	95 kDa 60 kDa 78 kDa 55 kDa 53 kDa 66 kDa 53 kDa 66 kDa 57 kDa 47 kDa 139 kDa 67 kDa 49 kDa 63 kDa 63 kDa 51 kDa 10 kDa 28 kDa 79 kDa 54 kDa 39 kDa 43 kDa 28 kDa 39 kDa 43 kDa 29 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutamine—fructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(rC)-binding protein 2 Creatine kinase B-type Alpha-centractin Emerin 265 proteasome non-ATPase regulatory subunit 2	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF282 KRT8 SLC1A5 EN01 COL1A1 SN29 PSM03 PLEC DDX398 RPS10 GPI GDI2 GPI GDI2 GPI GDI2 GPI SMA7 NONO PCBP2 CKB ACTR1 EMD PSMD2	95 kDa 60 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 54 kDa 139 kDa 67 kDa 47 kDa 49 kDa 532 kDa 19 kDa 63 kDa 10 kDa 28 kDa 39 kDa 39 kDa 43 kDa 28 kDa 28 kDa 28 kDa 28 kDa 29 kDa 54 kDa 29 kDa 54 kDa 54 kDa 53 kDa 54 kDa 55 kDa 54 kDa 55 kDa 56 kDa 57 kDa 57 kDa 57 kDa 53 kDa 53 kDa 51 kDa 51 kDa 52 kDa 53 kDa 53 kDa 53 kDa 53 kDa 53 kDa 54 kDa 53 kDa 54 kDa 55 kDa 55 kDa 55 kDa 55 kDa 55 kDa 56 kDa 56 kDa 57 kDa 57 kDa 57 kDa 53 kDa 53 kDa 53 kDa 53 kDa 53 kDa 54 kDa 53 kDa 54 kDa 55 kDa 55 kDa 55 kDa 55 kDa 56 kDa 56 kDa 56 kDa 57 kDa 56 kDa 57 kDa 57 kDa 57 kDa 57 kDa 53 kDa 54 kDa 53 kDa 54 kDa 54 kDa 54 kDa 55 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(rC)-binding protein 2 Creatine kinase B-type Alpha-centractin Emerin 265 proteasome non-ATPase regulatory subunit 2 Heterogeneous nuclear ribonucleoprotein R	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2B2 KRT8 SIC1A50 ENO1 COL1A1 SIC1A50 ENO1 COL1A1 SIC4 FUS COL1A1 SIC4 FUS COL1A1 COL1A1 SIC4 FUS COL1A1	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 54 kDa 139 kDa 67 kDa 47 kDa 49 kDa 532 kDa 19 kDa 63 kDa 51 kDa 10 kDa 28 kDa 28 kDa 79 kDa 54 kDa 28 kDa 28 kDa 28 kDa 23 kDa 43 kDa 43 kDa 43 kDa 43 kDa 43 kDa 43 kDa 43 kDa 43 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subuit alpha type-7 Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(rC)-binding protein 2 Creatine kinase B-type Alpha-centractin Emerin 265 proteasome non-ATPase regulatory subunit 2 Heterogeneous nuclear ribonucleoprotein R Eukaryotic translation initiation factor 5A-1	ILF3 NOP58 REXO2 CAPRIN1 RSL1D1 FUS IGF2BP2 KT83 SIC1A50 ENO1 COL1A1 SIC45 COL1A1 SIC45 COL1A1 COL1A	95 kDa 60 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 54 kDa 139 kDa 67 kDa 47 kDa 139 kDa 67 kDa 49 kDa 532 kDa 19 kDa 63 kDa 10 kDa 28 kDa 28 kDa 28 kDa 39 kDa 43 kDa 28 kDa 39 kDa 43 kDa 28 kDa 28 kDa 28 kDa 28 kDa 21 kDa 21 kDa 21 kDa 23 kDa 23 kDa 23 kDa 23 kDa 24 kDa 29 kDa 29 kDa 29 kDa 29 kDa 29 kDa 29 kDa 21 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutamine-fructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(rC)-binding protein 2 Creatine kinase B-type Alpha-centractin Emerin 265 proteasome non-ATPase regulatory subunit 2 Heterogeneous nuclear ribonucleoprotein R Eukaryotic translation initiation factor 5A-1 Probable ATP-dependent RNA helicase DDX17	ILF3 NOP58 REXO2 CAPRIN1 FUS IG2BP2 KRT8 CO11A1 CO11A1 CO11A1 CO11A1 SNX9 PLCC CO1A1 CO11A1 CO11A1 SNX9 PLCC CO1A1	95 kDa 60 kDa 78 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 54 kDa 139 kDa 67 kDa 49 kDa 67 kDa 49 kDa 532 kDa 49 kDa 63 kDa 10 kDa 28 kDa 79 kDa 53 kDa 28 kDa 39 kDa 43 kDa 28 kDa 39 kDa 43 kDa 28 kDa 71 kDa 100 kDa 71 kDa 100 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(1) chain Sorting nexin-9 265 proteasome regulatory subunit 6A Plettin Spliceosome RNA helicase DDX39B 405 ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(c/c)-binding protein 2 Creatine kinase B-type Alpha-centractin Emerin 265 proteasome non-ATPase regulatory subunit 2 Heterogeneous nuclear ribonucleoprotein R Eukaryotic translation initiation factor 5A-1 Probable ATP-dependent RNA helicase DDX17 Actin-related protein 2/3 complex subunit 3	ILF3 NOF58 CAPRIN1 FUS IG2BP2 KR101 FUS IG2BP2 KR10 COL1A1	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 54 kDa 139 kDa 67 kDa 49 kDa 67 kDa 49 kDa 532 kDa 49 kDa 63 kDa 10 kDa 28 kDa 28 kDa 29 kDa 39 kDa 28 kDa 29 kDa 39 kDa 28 kDa 39 kDa 39 kDa 28 kDa 39 kDa 30 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Interleukin enhancer-binding factor 3 Nucleolar protein 58 Oligoribonuclease, mitochondrial Caprin-1 Ribosomal L1 domain-containing protein 1 RNA-binding protein FUS Insulin-like growth factor 2 mRNA-binding protein 2 Keratin, type II cytoskeletal 8 Neutral amino acid transporter B(0) Alpha-enolase Collagen alpha-1(I) chain Sorting nexin-9 26S proteasome regulatory subunit 6A Plectin Spliceosome RNA helicase DDX39B 40S ribosomal protein S10 Glucose-6-phosphate isomerase Rab GDP dissociation inhibitor beta Dynein light chain 1, cytoplasmic Proteasome subunit alpha type-7 Glutamine-fructose-6-phosphate aminotransferase [isomerizing] 1 Non-POU domain-containing octamer-binding protein Poly(rC)-binding protein 2 Creatine kinase B-type Alpha-centractin Emerin 265 proteasome non-ATPase regulatory subunit 2 Heterogeneous nuclear ribonucleoprotein R Eukaryotic translation initiation factor 5A-1 Probable ATP-dependent RNA helicase DDX17 Actin-related protein 2/3 complex subunit 3	ILF3 NOP58 REXO2 CAPRIN1 FUS IGF2BP2 KRT8 SLC1A5 EN01 COL1A1 SNX9 PSMC3 PLC OD1A1 SNX9 PSMC3 GF1 GF1 GF1 GF1 GF1 GF1 GF1 CM SMA7 CF1 SMA7 SMA7 SMA7 SMA7 SMA7 SMA7 SMA7 SMA7	95 kDa 60 kDa 27 kDa 78 kDa 55 kDa 53 kDa 66 kDa 54 kDa 57 kDa 47 kDa 139 kDa 67 kDa 49 kDa 67 kDa 49 kDa 532 kDa 49 kDa 19 kDa 63 kDa 51 kDa 10 kDa 28 kDa 28 kDa 43 kDa 29 kDa 51 kDa 51 kDa 52 kDa 53 kDa 54 kDa 53 kDa 53 kDa 54 kDa 53 kDa 53 kDa 54 kDa 54 kDa 53 kDa 54 kDa 53 kDa 54 kDa 53 kDa 54 kDa 54 kDa 53 kDa 54 kDa 53 kDa 54 kDa 54 kDa 53 kDa 54 kDa 53 kDa 54 kDa 53 kDa 54 kDa 53 kDa 54 kDa 53 kDa 54 kDa 53 kDa 54 kDa 54 kDa 53 kDa 54 kDa 55 kDa	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Serine/arginine-rich splicing factor 9	SRSF9	26 kDa	0.4
Histone H4	HIST1H4A	11 kDa	0.4
Myristoylated alanine-rich C-kinase substrate	MARCKS	32 kDa	0.4
Proteasome subunit beta type-4	PSMB4	29 kDa	0.4
Heterogeneous nuclear ribonucleoprotein L	HNRNPL	64 kDa	0.4
Drebrin-like protein	DBNL	48 kDa	0.4
Serine/threonine-protein phosphatase PP1-alpha catalytic subunit	PPP1CA	38 kDa	0.4
Transforming growth factor beta-1-induced transcript 1 protein	TGFB1I1	50 kDa	0.4
Splicing factor U2AF 65 kDa subunit	U2AF2	54 kDa	0.4
Microtubule-associated protein RP/EB family member 1	MAPRE1	30 kDa	0.4
U1 small nuclear ribonucleoprotein 70 kDa	SNRNP70	52 kDa	0.4
Integrin-linked protein kinase	ILK	51 kDa	0.4
Signal recognition particle subunit SRP72	SRP72	75 kDa	0.4
U1 small nuclear ribonucleoprotein A	SNRPA	31 kDa	0.4
26S proteasome non-ATPase regulatory subunit 14	PSMD14	35 kDa	0.4
Nesprin-1	SYNE1	1011 kDa	0.4
	FAM114A		
Protein NOXP20	1	61 kDa	0.4
Eukaryotic translation initiation factor 3 subunit F	EIF3F	38 kDa	0.4
Alpha-parvin	PARVA	42 kDa	0.4
TAR DNA-binding protein 43	TARDBP	45 kDa	0.4
Nucleoside diphosphate kinase B	NME2	17 kDa	0.4
PhenylalaninetRNA ligase alpha subunit	FARSA	58 kDa	0.4
Eukaryotic translation initiation factor 3 subunit D	EIF3D	64 kDa	0.4
Far upstream element-binding protein 3	FUBP3	62 kDa	0.4
Sorting nexin-3	SNX3	19 kDa	0.4
X-ray repair cross-complementing protein 6	XRCC6	70 kDa	0.4
Protein transport protein Sec24D	SEC24D	113 kDa	0.4
THO complex subunit 4	ALYREF	27 kDa	0.4
Pre-mRNA-processing-splicing factor 8	PRPF8	274 kDa	0.4
Nuclease-sensitive element-binding protein 1	YBX1	36 kDa	0.4
Fermitin family homolog 2	FERMT2	78 kDa	0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic	FERMT2 RARS	78 kDa 75 kDa	0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4	FERMT2 RARS KPNA3	78 kDa 75 kDa 58 kDa	0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein	FERMT2 RARS KPNA3 STOM	78 kDa 75 kDa 58 kDa 32 kDa	0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P	FERMT2 RARS KPNA3 STOM GSTP1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa	0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa	0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa	0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 118 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa 45 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1 SERPINBE	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 SERP1 SERP1 SERP105	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1 SERPINB6 IPOS ADD1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 VGB1 SERBP1 SERBP1 SERP1NB6 IPOS ADD1 BCAT1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 23 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 81 kDa 43 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERPINBE IPOS ADD1 BCAT1 MCFD2	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 81 kDa 43 kDa 16 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(C)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 VFL1 SERP1 SERP10BE IPOS ADD1 BCAT1 MCFD2 SFPQ	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 81 kDa 43 kDa 16 kDa 76 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERP1NB6 IPO5 ADD1 SCAT1 MCFD2 SFPQ VARS	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 43 kDa 124 kDa 43 kDa 126 kDa 16 kDa 76 kDa 140 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase 405 ribosomal protein \$15	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERPINB6 IPO5 ADD1 BCAT1 MCFD2 SFPQ VARS RPS15	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 81 kDa 43 kDa 124 kDa 124 kDa 124 kDa 126 kDa 16 kDa 76 kDa 140 kDa 17 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase 40S ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1 SERBP1 SERPINB6 IPO5 ADD1 BCAT1 MCFD2 SFPQ VARS RPS15	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 81 kDa 124 kDa 16 kDa 76 kDa 16 kDa 16 kDa 17 kDa 53 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase 405 ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1 Eukaryotic peptide chain release factor subunit 1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1 SERBP1 SERBP1 SERPINB6 IPO5 ADD1 BCAT1 MCFD2 SFPQ VARS SFPQ VARS SL25A24 ETF1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 186 kDa 12 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 81 kDa 16 kDa 76 kDa 140 kDa 17 kDa 53 kDa 49 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase 40S ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1 Eukaryotic peptide chain release factor subunit 1 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1 SERBP1 SERBP1 SERPINBG IPOS ADD1 BCAT1 MCFD2 SFPQ VARS RPS15 SLC25A24 ETF1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 186 kDa 12 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 81 kDa 16 kDa 76 kDa 140 kDa 17 kDa 53 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase 40S ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1 Eukaryotic peptide chain release factor subunit 1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1 SERBP1 SERBP1 SERPINBG IPOS ADD1 BCAT1 MCFD2 SFPQ VARS SLC25A24 ETF1 PPP2R1A	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 23 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 81 kDa 43 kDa 16 kDa 16 kDa 17 kDa 53 kDa 49 kDa 55 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich Valine-tRNA ligase 40S ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1 Eukaryotic peptide chain release factor subunit 1 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform ATP-dependent 6-phosphofructokinase, liver type	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1 SERBP1 SERPINB60 IPO5 ADD1 BCAT1 MCFD2 SFPQ VARS SFPQ VARS SLC25A24 ETF1 PPP2R1A PFKL	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 23 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 43 kDa 124 kDa 43 kDa 16 kDa 76 kDa 140 kDa 17 kDa 53 kDa 49 kDa 55 kDa 85 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich Valine-tRNA ligase 40S ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1 Eukaryotic peptide chain release factor subunit 1 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform ATP-dependent 6-phosphofructokinase, liver type Interleukin enhancer-binding factor 2	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERBP1 SERPINB60 IPO5 ADD1 BCAT1 MCFD2 SFPQ VARS SLC25A24 ETF1 PPP2R1A PFKL ILF2	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 23 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 43 kDa 16 kDa 16 kDa 16 kDa 17 kDa 53 kDa 49 kDa 55 kDa 85 kDa 85 kDa 43 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(C)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase 40S ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1 Eukaryotic peptide chain release factor subunit 1 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform ATP-dependent 6-phosphofructokinase, liver type Interleukin enhancer-binding factor 2 Proteasome subunit alpha type-5	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERPINBG IPOS ADD1 BCAT1 MCFD2 SFPQ VARS RPS15 SLC25A24 ETF1 PPP2R1A PFKL ILF2 PSMA5	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 23 kDa 186 kDa 12 kDa 43 kDa 118 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 43 kDa 124 kDa 43 kDa 16 kDa 76 kDa 17 kDa 53 kDa 49 kDa 55 kDa 85 kDa 43 kDa 26 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(C)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase 40S ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1 Eukaryotic peptide chain release factor subunit 1 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform ATP-dependent 6-phosphofructokinase, liver type Interleukin enhancer-binding factor 2 Proteasome subunit alpha type-5 DNA damage-binding protein 1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERPINB6 IPO5 ADD1 BCAT1 MCFD2 SFPQ VARS RPS15 SLC25A24 ETF1 PPP2R1A PFKL ILF2 PSMA5 DDB1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 83 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 124 kDa 124 kDa 16 kDa 16 kDa 17 kDa 17 kDa 53 kDa 49 kDa 55 kDa 85 kDa 43 kDa 26 kDa 127 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Fermitin family homolog 2 ArgininetRNA ligase, cytoplasmic Importin subunit alpha-4 Erythrocyte band 7 integral membrane protein Glutathione S-transferase P Heat shock protein HSP 90-beta Tensin-1 Elongin-C UV excision repair protein RAD23 homolog B Ubiquitin-like modifier-activating enzyme 1 E3 UFM1-protein ligase 1 Poly(rC)-binding protein 1 Plasminogen activator inhibitor 1 RNA-binding protein Serpin B6 Importin-5 Alpha-adducin Branched-chain-amino-acid aminotransferase, cytosolic Multiple coagulation factor deficiency protein 2 Splicing factor, proline- and glutamine-rich ValinetRNA ligase 40S ribosomal protein S15 Calcium-binding mitochondrial carrier protein SCaMC-1 Eukaryotic peptide chain release factor subunit 1 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform ATP-dependent 6-phosphofructokinase, liver type Interleukin enhancer-binding factor 2 Proteasome subunit alpha type-5 DNA damage-binding protein 1 Adenylate kinase isoenzyme 1	FERMT2 RARS KPNA3 STOM GSTP1 HSP90AB 1 TNS1 ELOC RAD23B UBA1 UFL1 PCBP1 SERPINB6 IPO5 ADD1 SERPINB6 IPO5 SCAT1 MCFD2 SFPQ VARS RPS15 SLC25A24 ETF1 PPP2R1A PFKL ILF2 PSMA5 DDB1 AK1	78 kDa 75 kDa 58 kDa 32 kDa 23 kDa 23 kDa 186 kDa 12 kDa 43 kDa 90 kDa 37 kDa 45 kDa 43 kDa 124 kDa 124 kDa 13 kDa 124 kDa 140 kDa 17 kDa 53 kDa 49 kDa 53 kDa 49 kDa 55 kDa 43 kDa 26 kDa 26 kDa 22 kDa	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

	FAM129		
Niban-like protein 1	В	84 kDa	0.4
HLA class I histocompatibility antigen, A-3 alpha chain	HLA-A	41 kDa	0.4
AspartatetRNA ligase, cytoplasmic	DARS	57 kDa	0.4
60S ribosomal protein L35	RPL35	15 kDa	0.4
GTPase NRas	NRAS	21 kDa	0.4
Proteasome subunit alpha type-1	PSMA1	30 kDa	0.4
Transketolase	ткт	68 kDa	0.4
Nucleoprotein TPR	TPR	267 kDa	0.4
Probable ATP-dependent RNA helicase DDX5	DDX5	69 kDa	0.3
ATP-citrate synthase	ACLY	121 kDa	0.3
Apoptosis inhibitor 5	API5	59 kDa	0.3
T-complex protein 1 subunit gamma	ССТЗ	61 kDa	0.3
Glutathione S-transferase omega-1	GSTO1	28 kDa	0.3
60S ribosomal protein L26	RPL26	17 kDa	0.3
Golgi resident protein GCP60	ACBD3	61 kDa	0.3
ATP-dependent 6-phosphofructokinase, platelet type	PFKP	86 kDa	0.3
DNA-dependent protein kinase catalytic subunit	PRKDC	469 kDa	0.3
Pyrroline-5-carboxylate reductase 1, mitochondrial	PYCR1	33 kDa	0.3
Eukaryotic translation initiation factor 3 subunit B	EIF3B	92 kDa	0.3
TyrosinetRNA ligase, cytoplasmic	YARS	59 kDa	0.3
SUN domain-containing protein 2	SUN2	80 kDa	0.3
Dolichol-phosphate mannosyltransferase subunit 1	DPM1	30 kDa	0.3
Apolipoprotein L2	APOL2	37 kDa	0.3
LIM domain and actin-binding protein 1	LIMA1	85 kDa	0.3
Peroxiredoxin-6	PRDX6	25 kDa	0.3
Nucleolar RNA helicase 2	DDX21	87 kDa	0.3
T-complex protein 1 subunit beta	CCT2	57 kDa	0.3
T-complex protein 1 subunit epsilon	CCT5	60 kDa	0.3
26S proteasome regulatory subunit 6B	PSMC4	47 kDa	0.3
Eukaryotic initiation factor 4A-I	EIF4A1	46 kDa	0.3
Eukaryotic translation initiation factor 5	EIF5	49 kDa	0.3
Histone deacetylase 2	HDAC2	55 kDa	0.3
40S ribosomal protein S30	FAU	7 kDa	0.3
Matrix metalloproteinase-14	MMP14	66 kDa	0.3
ATP-binding cassette sub-family F member 2	ABCF2	71 kDa	0.3
Purine nucleoside phosphorylase	PNP	32 kDa	0.3
Lupus La protein	SSB	47 kDa	0.3
Inactive C-alpha-formylglycine-generating enzyme 2	SUMF2	34 kDa	0.3
Puromycin-sensitive aminopeptidase	NPEPPS	103 kDa	0.3

ruomychi-sensitive anniopeptidase	NFLFF5	103 KDa	0.5
	CDK5RAP	57 kg.	
CDK5 regulatory subunit-associated protein 3	3	57 KDa	0.3
NADPHcytochrome P450 reductase	POR	77 kDa	0.3
Serine/arginine-rich splicing factor 1	SRSF1	28 kDa	0.3
Hsp90 co-chaperone Cdc37	CDC37	44 kDa	0.3
Lysosomal alpha-glucosidase	GAA	105 kDa	0.3
Interferon-induced, double-stranded RNA-activated protein kinase	EIF2AK2	62 kDa	0.3
Lon protease homolog, mitochondrial	LONP1	106 kDa	0.3
Double-stranded RNA-specific adenosine deaminase	ADAR	136 kDa	0.3
ATPase family AAA domain-containing protein 3A	ATAD3A	71 kDa	0.3
26S proteasome regulatory subunit 8	PSMC5	46 kDa	0.3
D-3-phosphoglycerate dehydrogenase	PHGDH	57 kDa	0.3
Transportin-1	TNPO1	102 kDa	0.3
X-ray repair cross-complementing protein 5	XRCC5	83 kDa	0.3
Coatomer subunit delta	ARCN1	57 kDa	0.3
Splicing factor 3A subunit 1	SF3A1	89 kDa	0.3
Serine-threonine kinase receptor-associated protein	STRAP	38 kDa	0.3

Protein SEC13 homolog	SEC13	36 kDa	0.2
Coatomer subunit gamma-1	COPG1	98 kDa	0.2
Thyroid hormone receptor-associated protein 3	THRAP3	109 kDa	0.2
Constitutive coactivator of PPAR-gamma-like protein 1	FAM120A	122 kDa	0.2
Proteasome subunit alpha type-4	PSMA4	29 kDa	0.2
Pentraxin-related protein PTX3	РТХЗ	42 kDa	0.2
Transforming growth factor bate induced protein is b2	тсгрі		0.2
Transforming growth factor-beta-induced protein ig-n3	IGFBI	75 KDa	0.2
HLA class I histocompatibility antigen, Cw-7 alpha chain	HLA-C	41 kDa	0.2
Golgi-associated plant pathogenesis-related protein 1	GLIPR2	17 kDa	0.2
GTP-binding nuclear protein Ran	RAN	24 kDa	0.2
Fascin	FSCN1	55 kDa	0.2
Eukaryotic translation initiation factor 3 subunit C	EIF3C	105 kDa	0.2
Splicing factor 3B subunit 2	SF3B2	100 kDa	0.2
Eukaryotic initiation factor 4A-III	EIF4A3	47 kDa	0.2
Bifunctional glutamate/prolinetRNA ligase	EPRS	171 kDa	0.2
26S proteasome pon-ATPase regulatory subunit 13	PSMD13	43 kDa	0.2
zos proceasione non-Arrase regulatory subunit 15	CCTA		0.2
	CC14	58 KDa	0.2
Stress-induced-phosphoprotein 1	STIP1	63 kDa	0.2
Translationally-controlled tumor protein	TPT1	20 kDa	0.2
TryptophantRNA ligase, cytoplasmic	WARS	53 kDa	0.2
Glucose-6-phosphate 1-dehydrogenase	G6PD	59 kDa	0.2
Histone H1.2	HIST1H1C	21 kDa	0.2
T-complex protein 1 subunit alpha	TCP1	60 kDa	0.2
RuvB-like 1	RUVBL1	50 kDa	0.2
Coatomer subunit beta	COPB1	107 kDa	0.2
IsoleucinetRNA ligase, cytoplasmic	IARS	145 kDa	0.2
SerinetRNA ligase cytonlasmic	SARS	59 kDa	0.2
	SANS	55 KD4	0.2
Myosin light chain 1/3, skeletal muscle isoform	MYL1	21 kDa	0.2
EH domain-containing protein 4	EHD4	61 kDa	0.2
Band 4.1-like protein 3	EPB41L3	121 kDa	0.2
AsparaginetRNA ligase, cytoplasmic	NARS	63 kDa	0.2
Ras suppressor protein 1	RSU1	32 kDa	0.2
Coatomer subunit alpha	COPA	138 kDa	0.2
Far upstream element-binding protein 2	KHSRP	73 kDa	0.2
Lamin-B1	LMNB1	66 kDa	0.2
Platelet-derived growth factor receptor beta	PDGFRB	124 kDa	0.2
Eukaryotic translation initiation factor 3 subunit A	EIF3A	167 kDa	0.2
GIYCINETRNA ligase	GARS	83 KDa	0.1
Splicing factor 2B subunit 1	CE2D1		0.1
High mobility group protein HMG-1/HMG V	HMGA1	12 kDa	0.1
Phosnhoserine aminotransferase	DSAT1	40 kDa	0.1
14-3-3 protein eta	YWHAH	28 kDa	0.1
T-complex protein 1 subunit eta	CCT7	59 kDa	0.1
Transcription intermediary factor 1-beta	TRIM28	89 kDa	0.08

Supplementary Table S6. Upstream analysis of DEPs (P12/P4 hASCs)

Upstream		Predicted	Activation	p-value of	
Regulator	Molecule Type	Activation State	z-score	overlap	Target molecules in dataset
					ARPC3,CCT2,CCT3,CCT6A,DYNLL1,EEF2,EIF3D,EIF4A1,EIF5A,ENO1,ILF2,NACA,NARS,PCBP2,PSMA4,PSM
ST1926	chemical drug	Activated	4.69	1.06E-14	B1,RPS10,RPS15,SEPT7,SRP72,TPT1,YBX1
CD 437	also and a share of	6 - 61 6		2 015 15	API5,ARPC3,ATP5F1C,CCT2,CCT3,CCT6A,EEF2,EIF3D,EIF4A1,EIF5A,EN01,FSCN1,HLA-
CD 437	chemical drug	Activated	4.6	2.01E-15	C,HINKNPAI,ILFZ,NACA,NAKS,PCBPI,PCBPZ,PSWA4,PSWBI,RPS10,RPS15,SEPT7,YBX1
5-fluorouracil	chemical drug	Activated	4 14	1 57E-10	AT PSMR1 PSMR2 PPI 35 PPS28 SEPPINES SSR VRY1
Shadroarach	chernical arag	Activated	-1.2.1	1.072 10	ATP2B4.BAG2.FSCN1.HNRNPA1.ICAM1.LIMA1.PDGFRB.PSMA1.PSMA4.PSMA5.PSMA7.PSMB1.PSMB4.
					PSMC2,PSMC3,PSMC4,PSMC5,PSMD13,PSMD14,PSMD2,PSMD4,PTX3,SERPINE1,SRSF1,TNS1,UTRN,Y
valproic acid	chemical drug	Activated	3.534	6.3E-09	WHAH
					ABCC1,CEMIP,COL12A1,DDX21,DHX9,HNRNPU,MSN,MYL9,PCBP1,PDLIM5,PRPF8,PUF60,RBM3,RSL1D1
CST5	other	Activated	2.982	8.61E-08	,RTN3,SRSF1,SRSF9,TARDBP,VARS
					ACTA2,ATP2B4,ATP5F1C,COL1A1,CTGF,EEF1A1,EEF2,EIF2AK2,EIF4A1,EIF5,ENO1,FSCN1,FUS,G6PD,GSTP
					1,HIST1H4A,HLA-
sirolimus	chomical drug	Activated	2 979	5 505 16	B,HINKINPU,HSP9UABI,ILAWII,WIWIP14,NDUFA9,PDGFKB,PFKP,PLINZ,PSWIA4,PSWIBI,PSWIB4,KAN,KPL3
mir-122	microRNA	Activated	2.878	1.62E-07	ACTR1A.CSRP1.G6PD.MAPRE1.NPEPPS.NUTF2.RBM3.SERPINB6.SLC1A5.WARS.YARS
	transcription	, iciifuteu	2.77 2.1	1.022 07	
KLF3	regulator	Activated	2.714	0.0131	CCT3,EIF5A,EPRS,GLIPR2,GSTP1,MSN,PFKP,PSMC5,RUVBL1,SEC24D,TPM3
	Ū.				ATP5F1C,ATP6V0A1,ATP6V0D1,FAU,NDUFA9,PPA1,PSMA1,PSMA4,PSMA5,PSMA7,PSMB1,PSMB4,PS
RICTOR	other	Activated	2.711	1.17E-11	MC2,PSMC3,PSMC4,PSMC5,PSMD13,PSMD14,PSMD2,PSMD4,RPL26,RPS10,RPS15
EDN1	cytokine	Activated	2.542	3.28E-06	ACTA2,BAG2,CTGF,ICAM1,ITGA2,ITGB1,MPRIP,MSN,SERPINE1,SF3B2,SLC2A1,TPM2,TPM3,TPT1
cigarette smoke	chemical toxicant	Activated	2.434	0.000513	ACTA2,CCT5,CKB,G6PD,GSTP1,HDAC2,ICAM1,SERPINE1,SLC2A1,SOD2,TCP1,UGDH
	chemical -				
	endogenous				
fatty acid	mammalian	Activated	2.414	0.00566	ACOX1,ATP5F1C,PLIN2,PPA1,SERPINE1,SLC2A1
CDF	transcription	0	2 204	0.0001	
SKF	regulator	Activated	2.394	0.0061	ACIAZ,CAPRINI,CNNI,CSRP1,CSRP2,CIGF,FERM12,IIGB1,MIYLI,MIYL9,SLCZAI,IGFB11
sphingosine_1	endogenous				
phosphate	mammalian	Activated	2.366	0.0026	ACTA2 CTGE HDAC2 ICAM1 MMP14 SERPINE1
phosphate		, toth atou	2.000	0.0020	ACOX1.ADAR.CCT5.COL1A1.CTGF.DPP4.DYNLL1.ECI2.EEF1A1.EIF2AK2.EIF3B.EIF3C.EIF4A1.EIF4G1.EIF5.
	chemical -				ELOC,FUBP3,GARS,GNA13,GSTP1,HLA-A,HLA-B,HLA-
	endogenous				C,HMGA1,ICAM1,ILF3,ITGA2,ITGB1,KRT14,LOXL2,MMP14,NME2,PDGFRB,PLIN2,PNP,POR,PSMC4,PTX3
tretinoin	mammalian	Activated	2.327	3.89E-07	,RAD23B,RAI14,RAN,RUVBL1,SERPINE1,SERPINE2,TGFBI,TPR,TPT1,UBA1,XRCC5,XRCC6,YBX1
	transcription				
RELA	regulator	Activated	2.302	0.0146	ACTA2,ALCAM,COL1A1,CTGF,FSCN1,HLA-B,ICAM1,KRT8,PRDX6,PTX3,SERPINE2,SOD2,STIM1
	chemical - kinase				
IND S7	inhibitor	Activated	2.236	6.68E-05	ENO1,HNRNPL,KHSRP,PSMA1,STIP1
	chemical - kinase				
MEL S3	Inhibitor	Activated	2.236	7.97E-05	ENO1,HNRNPL,KHSRP,PSMA1,STIP1
4- hudrovutamovif					
on	chemical drug	Activated	2 228	0.00786	
eicosapentenoic	chemical drug	Activated	2.220	0.00700	CIGI, DDAZI, DINELI, ELI SA, GENA, SECZAT, SECZAT, INI OI
acid	chemical drug	Activated	2.213	0.0148	ECH1,PLIN2,PSMC2,SERPINE1,SLC2A1
	transcription				
MRTFA	regulator	Activated	2.204	0.0161	ACTA2,CNN1,HLA-A,ICAM1,ITGB1,MYL9
	transmembrane				
ITGB1	receptor	Activated	2.184	0.0599	ABCC1,ACTA2,COL1A1,ICAM1,SERPINE1

CDKN2A	transcription regulator	Activated	2.158	0.0145	AK1,CTGF,DDX5,EEF1A1,GNA13,PDGFRB,PSMA5,PTX3,SERPINE1,TRIM28
SMAD2	transcription regulator	Activated	2.116	0.00206	ACTA2,CTGF,ITGB1,SERPINE1,TPM2,TPM3
SFRP1	transmembrane receptor	Activated	2	0.00886	ACLY,ACTA2,COL1A1,SERPINE1
					ATP5F1C,DPP4,EIF4A3,FKBP3,G6PD,GDI2,HDAC2,HNRNPA1,HNRNPR,ICAM1,ILF2,KRT14,LNPEP,
					LONP1,PCBP2,PLEC,PLIN2,PNP,PPA1,PSMA5,RAD23B,RARS,RBM3,SRSF1,SSB,STIM1,STOM,TAR
CD3	complex	Inhibited	-2.024	6.71E-09	DBP,THY1,TRIM25,XRCC6,YARS
RUNX2	transcription regulator	Inhibited	-2.074	0.0394	ACTA2,COL1A1,MMP14,NEXN,SERPINE1
					ACTA2,ATAD3A,CCT5,COL1A1,CTGF,EIF5A,HMGA1,HNRNPA1,ICAM1,ITGA2,MARCKS,MMP14,N
EGFR	kinase	Inhibited	-2.093	2.44E-07	UTF2,PSMB1,PSMB4,RAI14,SERBP1,SERPINE1,SERPINE2,SLC2A1,SRSF1,UBA1
	chemical - endogenous non-				
tunicamycin	mammalian	Inhibited	-2.099	0.00101	ACOX1,HDLBP,ICAM1,ILK,LONP1,NARS,PLIN2,SEC24D,SLC2A1,WARS
XBP1	transcription regulator	Inhibited	-2.137	0.00517	ARCN1,COPB1,COPG1,FKBP7,ICAM1,MCFD2,SEC24D,SELENOM,XRCC6
					BCAT1,GARS,IARS,NARS,PHGDH,PRKDC,PSAT1,PTX3,PYCR1,SARS,SHMT2,SLC1A5,SLC7A5,SOD2
ATF4	transcription regulator	Inhibited	-2.148	2.74E-09	,TKT,WARS
pimagedine	chemical drug	Inhibited	-2.219	2.97E-05	ACTA2,CNN1,CTGF,ICAM1,OPA1,SERPINE1
DDIT3	transcription regulator	Inhibited	-2.236	0.0348	ITGA2,PLEC,SARS,SRSF1,WARS
					ABCF2,HDAC2,ICAM1,PSMA1,PSMA5,PSMA7,PSMB4,PSMC4,PSMD13,PSMD14,PSMD2,PSMD4,
bortezomib	chemical drug	Inhibited	-2.261	7.03E-05	UFD1
simvastatin	chemical drug	Inhibited	-2.341	0.044	ACTA2.CTGF.HIST1H1C.ICAM1.MYH10.NONO.SERPINE1
STAT6	transcription regulator	Inhibited	-2.619	0.191	ACOX1,COL1A1,FSCN1,GNB4,MMP14,SERPINB6,SERPINE1,THY1
NFE2L1	transcription regulator	Inhibited	-2.646	5.21E-07	GSTP1.PSMA1.PSMA7.PSMB1.PSMC2.PSMC3.PSMD14
					ACOX1,ACTA2,ALCAM,ATP2B1,BCAT1,CCT2,CKB,CNN1,COL1A1,CTGF,DDX17,DYNLL1,ECH1,EIF3
					A.EIF3B.EIF3D.ELOC.ENO1.EPB41L3.FARSA.FLOT1.G6PD.GARS.GDI2.GNS.GSTP1.HDAC2.HDLBP.
					HLA-
					A.HNRNPA1.HSP90AB1.JARS.JCAM1.JLF3.JTGA2.KRT8.LJMA1.NARS.NOP58.PDGFRB.PFKL.PLIN2.
	chemical - endogenous				PNP.PSAT1.PSMA1.PSMB1.PSMC3.PTX3.PYCR1.RAN.RARS.RDH10.SLC12A4.SLC2A1.SLC7A5.SRS
beta-estradiol	mammalian	Inhibited	-2.71	6.66E-10	F1.STIP1.SYNE1.TARDBP.TARS.TIMM13.TPR.TRIM25.YARS.YWHAH
HSF1	transcription regulator	Inhibited	-2.789	4.79E-05	CCT2.CCT3.CCT4.CCT5.CCT6A.CCT7.CCT8.CSRP2.HSP90AB1.ICAM1.STIP1.TCP1
UCP1	transporter	Inhibited	-2.961	0.000968	EEF1A1.G6PD.GARS.GSTO1.PHGDH.PSAT1.PYCR1.SERPINE1.SHMT2
2-amino-1-					,,,,,,,,,,,,
methyl-6-					
phenylimidazo-					
4-5-b-pyridine	chemical toxicant	Inhibited	-3	1.79E-08	CCT2 CCT4 CCT5 CCT7 CCT8 PSMB1 PSMB4 RAN UBA1
i o s pjilanie	chemical contraint	inipited	•	1	ABCC1.ABCC4.ABCE2.COI 1A1.CTGE.FEF1A1.EFF2.FIF3C.FIF4A1.FIF5A.FAU.HDAC2.HI A-
					A HMGA1 HSP90AB1 ITGA2 ITGB1 NACA NME2 PHGDH PSMA7 RPI 26 RPI 35 RPS15 RPS28 SER
MYCN	transcription regulator	Inhibited	-3 044	6 71E-14	
interv	cranser priori regulator	minored	5.011	0.712 14	ABCC1 ABCC4 ABCF2 ADD1 ALCAM ATAD3A BCAT1 CCT3 COL1A1 CSRP2 DDX21 DDX39B DDX5
					FEE2 FIE3D FIE4A1 FIE4G1 FNO1 G6PD GAA GDI2 GEPT1 GGH GPI HDAC2 HI A-A HI A-
					B HMGA1 HNRNPA1 HNRNPILICAM1 ITGB1 KRT14 LIMA1 MSN MYL9 NARS NMF2 NOP58 PD
					GERB PEKI PEKP PSAT1 PYCR1 RARS RPI 26 RPI 35 RUVBI 1 SERPINE1 SERPINE2 SHMT2 SI C1A5
MYC	transcription regulator	Inhibited	-3 242	4 71E-18	SI C2A1 SI C7A5 SOD2 SPSE1 THY1 TKT VARS YBX1
HSF2	transcription regulator	Inhibited	-3 317	6 98E-12	CCT2 CCT3 CCT4 CCT5 CCT6A CCT7 CCT8 PSMA1 PSMA5 PSMC4 TCP1
11012	transcription regulator	minored	5.517	0.502 12	ABCC1 ABCC4 CCT3 CCT7 COL1A1 CTGE DDX39B DXNU11 FIE3C G6PD GST01 GSTP1 HSP90AB1
					MCED2 NARS PCRP1 PHGDH PLIN2 PSAT1 PSMA1 PSMA4 PSMA5 PSMA7 PSMB1 PSMB4 PSM
					C3 PSMD13 PSMD14 PSMD4 RAN RARS RUVBL1 SERPINE1 SHMT2 SI C2A1 SOD2 STIP1 TKT UG
NFF2L2	transcription regulator	Inhibited	-4.431	1.08F-19	DH
		Innoncea		1.002 15	CCT3 CCT7 DDX39B DYNUL1 FIE3C FIE3D GSTP1 HSP90AB1 MCED2 NARS PCRP1 PSAT1 PSMA1
1.2-dithiol-3-					PSMA4.PSMA5.PSMA7.PSMB1.PSMB4.PSMC2.PSMC3.PSMD13.PSMD14.PSMD4.RAN.RARS.RU
thione	chemical reagent	Inhibited	-4.965	7.18F-19	VBL1.SOD2.STIP1

Supplementary Table S7. DEPs overlapped between P8/P4 and P12/P4 hASCs. A total of 28 DEPs were overlapped with P4, P8 and P12 hASCs, 19 DEPs have the same changing trend between P8/P4 and P12/P4 comparisons.

	Gene	Molecula	Fold Change	Fold Change
Protein name	name	r Weight	by p8/p4	by p12/p4
ADP/ATP translocase 1 OS=Homo sapiens OX=9606 GN=SLC25A4 PE=1 SV=4	ARPC3	21 kDa	-2.5	-2.5
Actin-related protein 2/3 complex subunit 3 OS=Homo sapiens OX=9606 GN=ARPC3 PE=1 SV=3	ASAH1	45 kDa	-2	2.9
Acid ceramidase OS=Homo sapiens OX=9606 GN=ASAH1 PE=1 SV=5	CNN1	33 kDa	-3.3	8 22
Calponin-1 OS=Homo sapiens OX=9606 GN=CNN1 PE=1 SV=2	CSRP2	21 kDa	-2.5	5 4.4
Cysteine and glycine-rich protein 2 OS=Homo sapiens OX=9606 GN=CSRP2 PE=1 SV=3	CTSA	54 kDa	2.7	3.8
Drebrin-like protein OS=Homo sapiens OX=9606 GN=DBNL PE=1 SV=1	DBNL	48 kDa	-2.5	· -2.5
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial OS=Homo sapiens OX=9606 GN=ECH1 PE=1				
SV=2	ECH1	36 kDa	3.8	3 2.7
Enoyl-CoA delta isomerase 2, mitochondrial OS=Homo sapiens OX=9606 GN=ECI2 PE=1 SV=4	ECI2	44 kDa	5.2	2.5
Flotillin-1 OS=Homo sapiens OX=9606 GN=FLOT1 PE=1 SV=3	FLOT1	47 kDa	2.2	2 5.5
Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1 OS=Homo sapiens OX=9606				
GN=GFPT1 PE=1 SV=3	GFPT1	79 kDa	-2	2.5
Keratin, type I cytoskeletal 14 OS=Homo sapiens OX=9606 GN=KRT14 PE=1 SV=4	KRT14	52 kDa	6.6	5 18
Keratin, type II cytoskeletal 8 OS=Homo sapiens OX=9606 GN=KRT8 PE=1 SV=7	KRT8	54 kDa	3.3	-2
Lon protease homolog, mitochondrial OS=Homo sapiens OX=9606 GN=LONP1 PE=1 SV=2	LONP1	106 kDa	2.6	5 -3.3
Microtubule-associated protein RP/EB family member 1 OS=Homo sapiens OX=9606 GN=MAPRE1 PE=1	MAPRE			
SV=3	1	30 kDa	-2.5	-2.5
Myosin-10 OS=Homo sapiens OX=9606 GN=MYH10 PE=1 SV=3	MYH10	229 kDa	-3.3	4 .4
Myosin light chain 1/3, skeletal muscle isoform OS=Homo sapiens OX=9606 GN=MYL1 PE=2 SV=3	MYL1	21 kDa	-5	5 -5
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial OS=Homo sapiens				
OX=9606 GN=NDUFA9 PE=1 SV=2	NDUFAS	43 kDa	2.2	2 2
Pyrroline-5-carboxylate reductase 1, mitochondrial OS=Homo sapiens OX=9606 GN=PYCR1 PE=1 SV=2	NPEPPS	103 kDa	-2.5	-3.3
ATP-dependent 6-phosphofructokinase, platelet type OS=Homo sapiens OX=9606 GN=PFKP PE=1 SV=2	PFKP	86 kDa	-2.5	-3.3
Polycystin-2 OS=Homo sapiens OX=9606 GN=PKD2 PE=1 SV=3	PKD2	110 kDa	2.1	2.6
Purine nucleoside phosphorylase OS=Homo sapiens OX=9606 GN=PNP PE=1 SV=2	PNP	32 kDa	-3.3	-3.3
Lysosomal protective protein OS=Homo sapiens OX=9606 GN=CTSA PE=1 SV=2	PYCR1	33 kDa	2.7	-3.3
Puromycin-sensitive aminopeptidase OS=Homo sapiens OX=9606 GN=NPEPPS PE=1 SV=2	RPL26	17 kDa	-2	-3.3
60S ribosomal protein L26 OS=Homo sapiens OX=9606 GN=RPL26 PE=1 SV=1	RRAS2	23 kDa	2.4	5.3
	SLC25A			
Ras-related protein R-Ras2 OS=Homo sapiens OX=9606 GN=RRAS2 PE=1 SV=1	4	33 kDa	-2.5	5 3.1
Sorbin and SH3 domain-containing protein 2 OS=Homo sapiens OX=9606 GN=SORBS2 PE=1 SV=3	SORBS2	124 kDa	-2.5	5.1
Mitochondrial import inner membrane translocase subunit Tim13 OS=Homo sapiens OX=9606	TIMM1			
GN=TIMM13 PE=1 SV=1	3	11 kDa	2.5	5 2.8
Ubiquitin carboxyl-terminal hydrolase 5 OS=Homo sapiens OX=9606 GN=USP5 PE=1 SV=2	USP5	96 kDa	-2.5	-3.3